1
|
Valetti F, Morra S, Barbieri L, Dezzani S, Ratto A, Catucci G, Sadeghi SJ, Gilardi G. Oxygen-resistant [FeFe]hydrogenases: new biocatalysis tools for clean energy and cascade reactions. Faraday Discuss 2024; 252:223-240. [PMID: 38836410 DOI: 10.1039/d4fd00010b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The use of enzymes to generate hydrogen, instead of using rare metal catalysts, is an exciting area of study in modern biochemistry and biotechnology, as well as biocatalysis driven by sustainable hydrogen. Thus far, the oxygen sensitivity of the fastest hydrogen-producing/exploiting enzymes, [FeFe]hydrogenases, has hindered their practical application, thereby restricting innovations mainly to their [NiFe]-based, albeit slower, counterparts. Recent exploration of the biodiversity of clostridial hydrogen-producing enzymes has yielded the isolation of representatives from a relatively understudied group. These enzymes possess an inherent defense mechanism against oxygen-induced damage. This discovery unveils fresh opportunities for applications such as electrode interfacing, biofuel cells, immobilization, and entrapment for enhanced stability in practical uses. Furthermore, it suggests potential combinations with cascade reactions for CO2 conversion or cofactor regeneration, like NADPH, facilitating product separation in biotechnological processes. This work provides an overview of this new class of biocatalysts, incorporating unpublished protein engineering strategies to further investigate the dynamic mechanism of oxygen protection and to address crucial details remaining elusive such as still unidentified switching hot-spots and their effects. Variants with improved kcat as well as chimeric versions with promising features to attain gain-of-function variants and applications in various biotechnological processes are also presented.
Collapse
Affiliation(s)
- Francesca Valetti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| | - Simone Morra
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Lisa Barbieri
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
- University School for Advanced Studies IUSS Pavia, Italy
| | - Sabrina Dezzani
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
- University School for Advanced Studies IUSS Pavia, Italy
| | - Alessandro Ratto
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| | - Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| |
Collapse
|
2
|
Qi N, Wang Y, Zhao X, Han X, Dong L, Hu X. Characteristic and calculation on the co-contribution in the bio-H 2 energy recovery enhancement with low temperature pretreated peanut shell as co-substrate. ENVIRONMENTAL RESEARCH 2022; 212:113169. [PMID: 35358542 DOI: 10.1016/j.envres.2022.113169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Bio-H2 production from organic wastewater together with lignocellulose wastes not only achieved the H2 energy recovery, but also be beneficial to carbon emission reduction and carbon neutralization. In order to obtain higher energy recoveries, promotion attempts were performed in bio-H2 fermentation with low temperature (-80-0 °C) pretreated peanut shell powder (PSP) as co-substrate. A maximum H2 production of 109.2 mL was obtained as almost double of the sum from the same amount of untreated PSP and glucose as sole substrate. The enhancement was co-contributed by 44% from PSP supplementary, 35% from low-temperature pretreatment, and 2.8% from buffer effect and acidification, respectively, and realized through C/N balancing, PSP conversion influencing, fermentative pH buffering and time prolonging. The experimental results uncovered the co-contribution realization ways of supplementing low-temperature pretreated lignocellulose wastes in the bio-H2 fermentation system, and provided mechanism support for application potential of low-temperature pretreatment on lignocellulose wastes in cold regions.
Collapse
Affiliation(s)
- Nan Qi
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; School of Environment, Liaoning University, Shenyang, 110036, China
| | - Yuqi Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xin Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Xiaoyu Han
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Lili Dong
- School of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Xiaomin Hu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
3
|
Mermejo BDC, Bortolucci J, de Andrade AR, Reginatto V. The Non-solventogenic Clostridium beijerinckii Br21 Produces 1,3-Propanediol From Glycerol With Butyrate as the Main By-Product. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.848022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ever-increasing biofuel production has raised the supply of glycerol, an abundant waste from ethanolic fermentation and transesterification, for biodiesel production. Glycerol can be a starting material for sustainable production of 1,3-propanediol (1,3 PD), a valued polymer subunit. Here, we compare how Clostridium pasteurianum DSMZ 525, a well-known 1,3-PD-producer, and the non-solventogenic Clostridium beijerinckii Br21 perform during glycerol fermentation. Fermentative assays in 80-, 390-, or 1,100-mM glycerol revealed higher 1,3-PD productivity by DSMZ 525 compared to Br21. The highest 1,3-PD productivities by DSMZ 525 and Br21 were obtained in 390 mM glycerol: 3.01 and 1.70 mM h−1, respectively. Glycerol uptake by the microorganisms differed significantly: C. beijerinckii Br21 consumed 41.1, 22.3, and 16.3%, while C. pasteurianum consumed 93, 44.5, and 14% of the initial glycerol concentration in 80, 390, and 1,100 mM glycerol, respectively. In 1,100 mM glycerol, C. beijerinckii Br21 growth was delayed. Besides 1,3-PD, we detected butyrate and acetate during glycerol fermentation by both strains. However, at 80 mM glycerol, C. beijerinckii Br21 formed only butyrate as the by-product, which could help downstream processing of the 1,3-PD fermentation broth. Therefore, C. beijerinckii Br21, an unexplored biocatalyst so far, can be used to convert glycerol to 1,3-PD and can be applied in biofuel biorefineries.
Collapse
|
4
|
Wang Y, Chen M, Xu J, Qi N, Dong L, Cao G, Zhao X. Potential and characteristics of bio-H 2 production from brewery wastewater by a maltose-preferring butyrate-type producer: Investigation in batch and semi-continuous cultures. ENVIRONMENTAL RESEARCH 2022; 205:112457. [PMID: 34875262 DOI: 10.1016/j.envres.2021.112457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
In the context of "Peak CO2 emissions & Carbon neutrality", H2 energy, as the green and clean energy, will make an important contribution to the carbon emission reduction and carbon neutralization. Bio-H2 production from organic wastewater achieved not only pollutants removal, but also the H2 energy recovery and carbon emission reduction. In this study, a maltose-preferring producer of Clostridium butyricum NH-02 was investigated for the potential and performance of bio-H2 production from brewery wastewater in batch and semi-continuous fermentation. Appropriate initial pH 7.0 and organic loading of 21,173 mg/L chemical oxygen demand (COD) (2670 mg/L reducing sugar (RS)) stimulated the batch H2 fermentation efficiency with a maximum H2 yield of 1.89 mol-H2/mol-RS and cumulative H2 production of 479.3 mL/L. Comparing to the batch fermentation, semi-continuous fermentation showed significant improvement in H2 productivity and yield. The maximum cumulative H2 yield of 5.21 mol-H2/mol-RS and production of 254.78 mL were obtained with the optimal hydraulic retention time (HRT) at 47 h after a 120 h fermentation. This study demonstrated the potential of H2 production from brewery wastewater with C. butyricum, and a great improvement in H2 production in semi-continuous fermentation.
Collapse
Affiliation(s)
- Yuqi Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Mengyao Chen
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Jingna Xu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Nan Qi
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Lili Dong
- School of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Guangli Cao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xin Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
5
|
Chen L, Zhang K, Wang M, Zhang Z, Feng Y. Enhancement of magnetic field on fermentative hydrogen production by Clostridium pasteurianum. BIORESOURCE TECHNOLOGY 2021; 341:125764. [PMID: 34438289 DOI: 10.1016/j.biortech.2021.125764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Microbial fermentation plays important roles in hydrogen production. Various methods to promote hydrogen production are being developed. Here, different magnetic field intensities (2.7 mT, 3.2 mT and 9.1 mT) were applied to the glucose fermentation system of Clostridium pasteurianum to evaluate the feasibility and effect of statistic magnetic field on hydrogen production. The results showed that the magnetic field intensity of 3.2 mT effectively enhanced the hydrogen production. The total glucose consumption reached 0.64 ± 0.010 mmol, the maximum hydrogen yield reached 2.34 ± 0.020 mol H2/mol glucose, and the maximum hydrogen production rate reached 0.065 ± 0.002 mmol/h. Compared with the control, the maximum biomass, carbon conversion efficiency and energy conversion efficiency were elevated by 366%, 114%, and 26.8%, respectively. Our results provide a new way for promotion of hydrogen production, better understanding of the interaction mechanism between magnetic field and microorganisms and for optimizing the hydrogen production.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Ke Zhang
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Mingpeng Wang
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
6
|
Arizzi M, Morra S, Gilardi G, Pugliese M, Gullino ML, Valetti F. Improving sustainable hydrogen production from green waste: [FeFe]-hydrogenases quantitative gene expression RT-qPCR analysis in presence of autochthonous consortia. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:182. [PMID: 34530890 PMCID: PMC8444407 DOI: 10.1186/s13068-021-02028-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 08/28/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Bio-hydrogen production via dark fermentation of low-value waste is a potent and simple mean of recovering energy, maximising the harvesting of reducing equivalents to produce the cleanest fuel amongst renewables. Following several position papers from companies and public bodies, the hydrogen economy is regaining interest, especially in combination with circular economy and the environmental benefits of short local supply chains, aiming at zero net emission of greenhouse gases (GHG). The biomasses attracting the largest interest are agricultural and urban green wastes (pruning of trees, collected leaves, grass clippings from public parks and boulevards), which are usually employed in compost production, with some concerns over the GHG emission during the process. Here, an alternative application of green wastes, low-value compost and intermediate products (partially composted but unsuitable for completing the process) is studied, pointing at the autochthonous microbial consortium as an already selected source of implementation for biomass degradation and hydrogen production. The biocatalysts investigated as mainly relevant for hydrogen production were the [FeFe]-hydrogenases expressed in Clostridia, given their very high turnover rates. RESULTS Bio-hydrogen accumulation was related to the modulation of gene expression of multiple [FeFe]-hydrogenases from two strains (Clostridium beijerinckii AM2 and Clostridium tyrobutyricum AM6) isolated from the same waste. Reverse Transcriptase quantitative PCR (RT-qPCR) was applied over a period of 288 h and the RT-qPCR results showed that C. beijerinckii AM2 prevailed over C. tyrobutyricum AM6 and a high expression modulation of the 6 different [FeFe]-hydrogenase genes of C. beijerinckii in the first 23 h was observed, sustaining cumulative hydrogen production of 0.6 to 1.2 ml H2/g VS (volatile solids). These results are promising in terms of hydrogen yields, given that no pre-treatment was applied, and suggested a complex cellular regulation, linking the performance of dark fermentation with key functional genes involved in bio-H2 production in presence of the autochthonous consortium, with different roles, time, and mode of expression of the involved hydrogenases. CONCLUSIONS An applicative outcome of the hydrogenases genes quantitative expression analysis can be foreseen in optimising (on the basis of the acquired functional data) hydrogen production from a nutrient-poor green waste and/or low added value compost, in a perspective of circular bioeconomy.
Collapse
Affiliation(s)
- M Arizzi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
- Acea Engineering Laboratories Research Innovation SpA, Roma, Italy
| | - S Morra
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - G Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - M Pugliese
- Centre of Competence for Innovation in Agro-Environmental Field (Agroinnova) and DiSAFA, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
- AgriNewTech Srl, Via Livorno 60, 10140, Torino, Italy
| | - M L Gullino
- Centre of Competence for Innovation in Agro-Environmental Field (Agroinnova) and DiSAFA, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
- AgriNewTech Srl, Via Livorno 60, 10140, Torino, Italy
| | - F Valetti
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| |
Collapse
|
7
|
Li Z, Gu J, Ding J, Ren N, Xing D. Molecular mechanism of ethanol-H 2 co-production fermentation in anaerobic acidogenesis: Challenges and perspectives. Biotechnol Adv 2020; 46:107679. [PMID: 33316366 DOI: 10.1016/j.biotechadv.2020.107679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Ethanol-type fermentation (ETF) is one of three fermentation types during the acidogenesis of the anaerobic biological treatment. Ethanoligenens, a representative genus of ETF, displays acidophilic, autoaggregative, and ethanol-H2 co-producing characteristics and facilitates subsequent methanogenesis. Here, the latest advances in the molecular mechanisms of the metabolic regulation of ethanol-H2 co-producing bacteria based on multi-omics studies were comprehensively reviewed. Comparative genomics demonstrated a low genetic similarity between Ethanoligenens and other hydrogen-producing genera. FeFe‑hydrogenases (FeFe-H2ases) and pyruvate ferredoxin oxidoreductase (PFOR) played critical roles in the ethanol-H2 co-metabolic pathway of Ethanoligenens. Global transcriptome analysis revealed that highly expressed [FeFe]-H2ases and ferredoxins drove hydrogen production by Ethanoligenens at low pH conditions (4.0-4.5). Quantitative proteomic analysis also proved that this genus resists acetic acid-induced intracellular acidification through the up-regulated expression of pyrimidine metabolism related proteins. The autoaggregation of Ethanoligenen facilitated its granulation with acetate-oxidizing bacteria in co-culture systems and mitigated a fast pH drop, providing a new approach for solving a pH imbalance and improving hydrogen production. In-depth studies of the regulatory mechanism underlying ethanol-H2 co-production metabolism and the syntrophic interactions of ethanol-H2 co-producing Ethanoligenens with other microorganisms will provide insights into the improvement of bioenergy recovery in anaerobic biotechnology. The coupling of ETF with other biotechnologies, which based on the regulation of electron flow direction, syntrophic interaction, and metabolic flux, can be potential strategies to enhance the cascade recovery of energy and resources.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiayu Gu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Qi N, Hu X, Xin X, Ye S, Fu Z, Zhao X. Mechanisms of biohydrogen recovery enhancement from peanut shell by C. guangxiense: Temperature pretreatment ranges from -80 to 100 °C. BIORESOURCE TECHNOLOGY 2020; 304:123026. [PMID: 32127244 DOI: 10.1016/j.biortech.2020.123026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
The potential of low-cost bioenergy recovery from peanut shell was limited for its complex cellulose structure. In order to enhance the total reducing sugar (TRS) yield for bio-H2 production, peanut shell with heat (HT, 50-100 °C) or freezing pretreatment (FT, -80 to 0 °C) under different duration (0.5-12 h) was investigated. For uncovering the enhancement mechanisms, morphological feature and crystalline structure were analyzed by scanning electron microscope (SEM) and X-ray powder diffraction (XRD). The optimal pretreatment of 50 °C for 12 h was obtained with TRS yield increased 73.6%, while the H2 yield of 1.25 ml/mg-TRS was peaked with pretreatment at -80 °C. The SEM and XRD further demonstrated that mechanisms of HT and FT were realized through different ways, which were cracking and collapsing in HT, and delamination and peeling in FT, respectively.
Collapse
Affiliation(s)
- Nan Qi
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, and School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xiaomin Hu
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, and School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xiaotong Xin
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Sicen Ye
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, and School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Zhongtian Fu
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, and School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xin Zhao
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, and School of Resource & Civil Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
9
|
Hassan EA, Abd‐Alla MH, Zohri AA, Ragaey MM, Ali SM. Production of butanol and polyhydroxyalkanoate from industrial waste by Clostridium beijerinckiiASU10. INTERNATIONAL JOURNAL OF ENERGY RESEARCH 2019; 43:3640-3652. [DOI: 10.1002/er.4514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/26/2019] [Indexed: 09/02/2023]
Affiliation(s)
- Elhagag Ahmed Hassan
- Botany and Microbiology Department, Faculty of ScienceAssiut University Assiut Egypt
| | | | | | - Marwa M. Ragaey
- Botany Department, Faculty of ScienceNew Valley University El‐Kharja Egypt
| | - Shimaa Mohamed Ali
- Botany Department, Faculty of ScienceNew Valley University El‐Kharja Egypt
| |
Collapse
|
10
|
Morsy FM, Elbadry M, El-Sayed WS, El-Hady DA. Dark and photofermentation H2 production from hydrolyzed biomass of the potent extracellular polysaccharides producing cyanobacterium Nostoc commune and intracellular polysaccharide (glycogen) enriched Anabaena variabilis NIES-2095. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2019; 44:16199-16211. [DOI: 10.1016/j.ijhydene.2019.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Clostridial whole cell and enzyme systems for hydrogen production: current state and perspectives. Appl Microbiol Biotechnol 2018; 103:567-575. [PMID: 30446778 DOI: 10.1007/s00253-018-9514-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Strictly anaerobic bacteria of the Clostridium genus have attracted great interest as potential cell factories for molecular hydrogen production purposes. In addition to being a useful approach to this process, dark fermentation has the advantage of using the degradation of cheap agricultural residues and industrial wastes for molecular hydrogen production. However, many improvements are still required before large-scale hydrogen production from clostridial metabolism is possible. Here we review the literature on the basic biological processes involved in clostridial hydrogen production, and present the main advances obtained so far in order to enhance the hydrogen productivity, as well as suggesting some possible future prospects.
Collapse
|
12
|
Constante Fonseca B, Schmidell W, Reginatto V. Impact of glucose concentration on productivity and yield of hydrogen production by the new isolateClostridium beijerinckiiBr21. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bruna Constante Fonseca
- Laboratório de Biotecnologia Ambiental e Energias RenováveisFaculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de QuímicaUniversidade de São PauloAvenida Bandeirantes 3900Ribeirão Preto SPBrazil, CEP 14040‐901
| | - Willibaldo Schmidell
- Departamento de Engenharia Química e Engenharia de AlimentosUniversidade Federal de Santa CatarinaFlorianópolis SCBrazil
| | - Valeria Reginatto
- Laboratório de Biotecnologia Ambiental e Energias RenováveisFaculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de QuímicaUniversidade de São PauloAvenida Bandeirantes 3900Ribeirão Preto SPBrazil, CEP 14040‐901
| |
Collapse
|
13
|
Evaluating new bio-hydrogen producers: Clostridium perfringens strain JJC, Clostridium bifermentans strain WYM and Clostridium sp. strain Ade.TY. J Biosci Bioeng 2018; 125:590-598. [PMID: 29352712 DOI: 10.1016/j.jbiosc.2017.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/09/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022]
Abstract
Three newly discovered H2 producing bacteria namely Clostridium perfringens strain JJC, Clostridium bifermentans strain WYM and Clostridium sp. strain Ade.TY originated from landfill leachate sludge have demonstrated highly efficient H2 production. The maximum H2 production attained from these isolates are in the descending order of strain C. perfringens strain JJC > C. bifermentans strain WYM > Clostridium sp. strain Ade.TY with yield of 4.68 ± 0.12, 3.29 ± 0.11, and 2.87 ± 0.10 mol H2/mol glucose, respectively. The result has broken the conventional theoretical yield of 4 mol H2/mol glucose. These isolates were thermodynamically favourable with Gibbs free energy between -33 and -35 kJ/mol (under process conditions: pH 6, 37 °C and 5 g/L glucose). All three isolates favour butyrate pathway for H2 production with the ratio of acetate and butyrate of 0.77, 0.65 and 0.80 for strain JJC, WYM and Ade.TY, respectively. This study reported provides a new insight on the potential of unique bacteria in H2 production.
Collapse
|
14
|
Xin Y, Sun B, Zhu X, Yan Z, Zhao X, Sun X. Resourceful treatment of alcohol distillery wastewater by pulsed discharge. BIORESOURCE TECHNOLOGY 2017; 244:175-181. [PMID: 28779669 DOI: 10.1016/j.biortech.2017.07.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Resourceful treatment of alcohol distillery wastewater by pulsed discharge in liquid (PDL) was first studied in this work. The biodegradability of alcohol wastewater can be effectively improved and chemical oxygen demand (COD) removal attained over 40% within 15min PDL treatment. Hydrogen produced from the treating processes was emphatically analyzed. The flow rate, and yield of hydrogen achieved were 80mL/min, 146mL/g COD removed within 30min respectively, which were much better than existing technologies. Meanwhile, the mechanism of hydrogen production from alcohol distillery wastewater by PDL was presented in this work indicating that different region in reactor has different mechanism. In discharge channel, high-energy electrons and resultant free radicals played a leading role. Far away from discharge channel, the neutral particles with strong oxidizing were more important. This work can be a good guidance for both treatment of refractory wastewater and mechanism of hydrogen production by plasma reforming.
Collapse
Affiliation(s)
- Yanbin Xin
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Bing Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Xiaomei Zhu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhiyu Yan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xiaotong Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xiaohang Sun
- College of Nature Resources, Department of Forest Biomaterials, North Carolina State University, 27695 Faucette Dr, Raleigh, USA
| |
Collapse
|
15
|
A survey for the applications of content-based microscopic image analysis in microorganism classification domains. Artif Intell Rev 2017. [DOI: 10.1007/s10462-017-9572-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Srivastava N, Srivastava M, Kushwaha D, Gupta VK, Manikanta A, Ramteke PW, Mishra PK. Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116). BIORESOURCE TECHNOLOGY 2017; 238:552-558. [PMID: 28477517 DOI: 10.1016/j.biortech.2017.04.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
In the present work, production of hydrogen via dark fermentation has been carried out using the hydrolyzed rice straw and Clostridium pasteurianum (MTCC116). The hydrolysis reaction of 1.0% alkali pretreated rice straw was performed at 70°C and 10% substrate loading via Fe3O4/Alginate nanocomposite (Fe3O4/Alginate NCs) treated thermostable crude cellulase enzyme following the previously established method. It is noticed that under the optimized conditions, at 70°C the Fe3O4/Alginate NCs treated cellulase has produced around 54.18g/L sugars as the rice straw hydrolyzate. Moreover, the efficiency of the process illustrates that using this hydrolyzate, Clostridium pasteurianum (MTCC116) could produce cumulative hydrogen of 2580ml/L in 144h with the maximum production rate of 23.96ml/L/h in 96h. In addition, maximum dry bacterial biomass of 1.02g/L and 1.51g/L was recorded after 96h and 144h, respectively with corresponding initial pH of 6.6 and 3.8, suggesting higher hydrogen production.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| | - Manish Srivastava
- Department of Physics & Astrophysics, University of Delhi, Delhi 110007, India
| | - Deepika Kushwaha
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Sciences, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Ambepu Manikanta
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - P W Ramteke
- Department of Biological Sciences, Sam Higginbottom University of Agriculture Technology & Sciences (Formerly Allahabad Agricultural Institute), Allahabad 221007, Uttar Pradesh, India
| | - P K Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
17
|
Mostafa A, Elsamadony M, El-Dissouky A, Elhusseiny A, Tawfik A. Biological H 2 potential harvested from complex gelatinaceous wastewater via attached versus suspended growth culture anaerobes. BIORESOURCE TECHNOLOGY 2017; 231:9-18. [PMID: 28189089 DOI: 10.1016/j.biortech.2017.01.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
The effect of cultural growth treating gelatinaceous wastewater on hydrogen fermentative was assessed using up-flow multi-stage anaerobic sponge reactor (UMASR) and anaerobic sequencing batch reactor (AnSBR). Both reactors were operated at five hydraulic retention times (HRTs). UMASR achieved the maximum COD removal efficiency of 60.2±4.4% at HRT of 48h. Moreover, UMASR exhibited superiority in the course of carbohydrates and proteins removal efficiencies' of 100 and 52.5±2.4% due to high amylase and protease activities' of 4.1±0.3 and 0.032±0.002U, respectively. Contrariwise, AnSBR assigned for the peak hydrogen production rate of 1.17±0.14L/L/day at HRT of 24-h. Lipase activity was quite high (0.307±0.023U) in AnSBR resulting in removal efficiency of 35.2±2.1% for lipids. Stover-Kincannon model emphasized that UMASR required lesser volume than AnSBR to sustain the same substrate degradation efficacy. Nevertheless, the net gain energy harvested from AnSBR surpassed UMASR by 4.0-folds at HRT of 24-h.
Collapse
Affiliation(s)
- Alsayed Mostafa
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt.
| | - Mohamed Elsamadony
- Public Works Engineering Department, Faculty of Engineering, Tanta University, 31521 Tanta City, Egypt
| | - Ali El-Dissouky
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Amel Elhusseiny
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Ahmed Tawfik
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), P.O. Box 179, New Borg El Arab City, Alexandria 21934, Egypt; National Research Centre, Water Pollution Research Dept., P.O. 12622, Giza, Egypt.
| |
Collapse
|
18
|
Zhao X, Li D, Xu S, Guo Z, Zhang Y, Man L, Jiang B, Hu X. Clostridium guangxiense sp. nov. and Clostridium neuense sp. nov., two phylogenetically closely related hydrogen-producing species isolated from lake sediment. Int J Syst Evol Microbiol 2017; 67:710-715. [DOI: 10.1099/ijsem.0.001702] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Xin Zhao
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Danyang Li
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Shuhong Xu
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Zhanghao Guo
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Yan Zhang
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Lin Man
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Binhui Jiang
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Xiaomin Hu
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| |
Collapse
|
19
|
Li Y, Zhang J, Zhu G, Liu Y, Wu B, Ng WJ, Appan A, Tan SK. Phytoextraction, phytotransformation and rhizodegradation of ibuprofen associated with Typha angustifolia in a horizontal subsurface flow constructed wetland. WATER RESEARCH 2016; 102:294-304. [PMID: 27372652 DOI: 10.1016/j.watres.2016.06.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
Widespread occurrence of trace pharmaceutical residues in aquatic environments is of great concerns due to the potential chronic toxicity of certain pharmaceuticals including ibuprofen on aquatic organisms even at environmental levels. In this study, the phytoextraction, phytotransformation and rhizodegradation of ibuprofen associated with Typha angustifolia were investigated in a horizontal subsurface flow constructed wetland system. The experimental wetland system consisted of a planted bed with Typha angustifolia and an unplanted bed (control) to treat ibuprofen-loaded wastewater (∼107.2 μg L(-1)). Over a period of 342 days, ibuprofen was accumulated in leaf sheath and lamina tissues at a mean concentration of 160.7 ng g(-1), indicating the occurrence of the phytoextraction of ibuprofen. Root-uptake ibuprofen was partially transformed to ibuprofen carboxylic acid, 2-hydroxy ibuprofen and 1-hydroxy ibuprofen which were found to be 1374.9, 235.6 and 301.5 ng g(-1) in the sheath, respectively, while they were 1051.1, 693.6 and 178.7 ng g(-1) in the lamina. The findings from pyrosequencing analysis of the rhizosphere bacteria suggest that the Dechloromonas sp., the Clostridium sp. (e.g. Clostridium saccharobutylicum), the order Sphingobacteriales, and the Cytophaga sp. in the order Cytophagales were most probably responsible for the rhizodegradation of ibuprofen.
Collapse
Affiliation(s)
- Yifei Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| | - Jiefeng Zhang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Bing Wu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Wun Jern Ng
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Adhityan Appan
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Soon Keat Tan
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; Maritime Research Centre, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
20
|
Gadow SI, Jiang H, Li YY. Characterization and potential of three temperature ranges for hydrogen fermentation of cellulose by means of activity test and 16s rRNA sequence analysis. BIORESOURCE TECHNOLOGY 2016; 209:80-89. [PMID: 26954308 DOI: 10.1016/j.biortech.2016.02.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
A series of standardized activity experiments were performed to characterize three different temperature ranges of hydrogen fermentation from different carbon sources. 16S rRNA sequences analysis showed that the bacteria were close to Enterobacter genus in the mesophilic mixed culture (MMC) and Thermoanaerobacterium genus in the thermophilic and hyper-thermophilic mixed cultures (TMC and HMC). The MMC was able to utilize the glucose and cellulose to produce methane gas within a temperature range between 25 and 45 °C and hydrogen gas from 35 to 60°C. While, the TMC and HMC produced only hydrogen gas at all temperature ranges and the highest activity of 521.4mlH2/gVSSd was obtained by TMC. The thermodynamic analysis showed that more energy is consumed by hydrogen production from cellulose than from glucose. The experimental results could help to improve the economic feasibility of cellulosic biomass energy using three-phase technology to produce hythane.
Collapse
Affiliation(s)
- Samir I Gadow
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai 9808579, Japan; Department of Agricultural Microbiology, Agriculture and Biology Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Hongyu Jiang
- Department of Environmental Science, Graduate School of Environmental Studies, Tohoku University, Sendai 9808579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai 9808579, Japan; Department of Environmental Science, Graduate School of Environmental Studies, Tohoku University, Sendai 9808579, Japan.
| |
Collapse
|
21
|
Microbial communities from 20 different hydrogen-producing reactors studied by 454 pyrosequencing. Appl Microbiol Biotechnol 2016; 100:3371-84. [PMID: 26825820 DOI: 10.1007/s00253-016-7325-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/10/2023]
Abstract
To provide new insight into the dark fermentation process, a multi-lateral study was performed to study the microbiology of 20 different lab-scale bioreactors operated in four different countries (Brazil, Chile, Mexico, and Uruguay). Samples (29) were collected from bioreactors with different configurations, operation conditions, and performances. The microbial communities were analyzed using 16S rRNA genes 454 pyrosequencing. The results showed notably uneven communities with a high predominance of a particular genus. The phylum Firmicutes predominated in most of the samples, but the phyla Thermotogae or Proteobacteria dominated in a few samples. Genera from three physiological groups were detected: high-yield hydrogen producers (Clostridium, Kosmotoga, Enterobacter), fermenters with low-hydrogen yield (mostly from Veillonelaceae), and competitors (Lactobacillus). Inocula, reactor configurations, and substrates influence the microbial communities. This is the first joint effort that evaluates hydrogen-producing reactors and operational conditions from different countries and contributes to understand the dark fermentation process.
Collapse
|
22
|
Sivagurunathan P, Lin CY. Enhanced biohydrogen production from beverage wastewater: process performance during various hydraulic retention times and their microbial insights. RSC Adv 2016. [DOI: 10.1039/c5ra18815f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study demonstrates the feasibility of continuous hydrogen production from beverage industrial wastewater (BW) in a continuously-stirred tank reactor (CSTR) using enriched mixed microflora (EMC) under mesophilic conditions.
Collapse
Affiliation(s)
| | - Chiu-Yue Lin
- Department of Environmental Engineering and Science
- Feng Chia University
- Taichung 40724
- Taiwan
| |
Collapse
|
23
|
Fermentative hydrogen production using sorghum husk as a biomass feedstock and process optimization. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-015-0172-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Zhang JN, Li YH, Zheng HQ, Fan YT, Hou HW. Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11. BIORESOURCE TECHNOLOGY 2015; 192:60-67. [PMID: 26011692 DOI: 10.1016/j.biortech.2015.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
A mesophilic hydrogen-producing strain, Clostridium sartagoforme FZ11, had been newly isolated from cow dung compost acclimated using microcrystalline cellulose (MCC) for at least 30 rounds in an anaerobic bioreactor, and identified by the 16S rDNA gene sequencing, which could directly utilized various carbon sources, especially cellulosic biomass, to produce hydrogen. The maximum hydrogen yields from MCC (10 g/l) and carboxymethyl cellulose (CMC, 10 g/l) were 77.2 and 64.6 ml/g, separately. Furthermore, some key parameters of affecting hydrogen production from raw corn stalk were also optimized. The maximal hydrogen yield and substrate degradation rate from raw corn stalk were 87.2 ml/g and 41.2% under the optimized conditions with substrate concentration of 15 g/l, phosphate buffer of 0.15 M, urea of 6 g/l and initial pH of 6.47 at 35 °C. The result showed that the strain FZ11 would be an ideal candidate to directly convert cellulosic biomass into bio-hydrogen without substrate pretreatment.
Collapse
Affiliation(s)
- Jing-Nan Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yan-Hong Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China
| | - Hui-Qin Zheng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China; College of Chemistry and Environment, Henan Institute of Education, Zhengzhou 450046, PR China
| | - Yao-Ting Fan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China.
| | - Hong-Wei Hou
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China
| |
Collapse
|
25
|
Adaptation of acidogenic sludge to increasing glycerol concentrations for biohydrogen production. Appl Microbiol Biotechnol 2015; 99:8295-308. [DOI: 10.1007/s00253-015-6832-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/05/2015] [Accepted: 07/09/2015] [Indexed: 12/22/2022]
|
26
|
Seelert T, Ghosh D, Yargeau V. Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles. Appl Microbiol Biotechnol 2015; 99:4107-16. [DOI: 10.1007/s00253-015-6484-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 10/23/2022]
|
27
|
Sato O, Suzuki Y, Sato Y, Sasaki S, Sonoki T. Water-insoluble material from apple pomace makes changes in intracellular NAD⁺/NADH ratio and pyrophosphate content and stimulates fermentative production of hydrogen. J Biosci Bioeng 2014; 119:543-7. [PMID: 25468418 DOI: 10.1016/j.jbiosc.2014.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/30/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
Apple pomace is one of the major agricultural residues in Aomori prefecture, Japan, and it would be useful to develop effective applications for it. As apple pomace contains easily fermentable sugars such as glucose, fructose and sucrose, it can be used as a feedstock for the fermentation of fuels and chemicals. We previously isolated a new hydrogen-producing bacterium, Clostridium beijerinckii HU-1, which could produce H2 at a production rate of 14.5 mmol of H2/L/h in a fed-batch culture at 37 °C, pH 6.0. In this work we found that the HU-1 strain produces H2 at an approximately 20% greater rate when the fermentation medium contains the water-insoluble material from apple pomace. The water-insoluble material from apple pomace caused a metabolic shift that stimulated H2 production. HU-1 showed a decrease of lactate production, which consumes NADH, accompanied by an increase of the intracellular pyrophosphate content, which is an inhibitor of lactate dehydrogenase. The intracellular NAD(+)/NADH ratios of HU-1 during H2 fermentation were maintained in a more reductive state than those observed without the addition of the water insoluble material. To correct the abnormal intracellular redox balance, caused by the repression of lactate production, H2 production with NADH oxidation must be stimulated.
Collapse
Affiliation(s)
- Osamu Sato
- Graduate School of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Yuma Suzuki
- Graduate School of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Yuki Sato
- Graduate School of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Shinsuke Sasaki
- Sanbongi High School of Agriculture, Towada, Aomori 034-8578, Japan
| | - Tomonori Sonoki
- Graduate School of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
28
|
Wang AJ, Cao GL, Liu WZ. Biohydrogen production from anaerobic fermentation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 128:143-63. [PMID: 22089826 DOI: 10.1007/10_2011_123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Significant progress has been achieved in China for biohydrogen production from organic wastes, particularly wastewater and agricultural residues, which are abundantly available in China. This progress is reviewed with a focus on hydrogen-producing bacteria, fermentation processes, and bioreactor configurations. Although dark fermentation is more efficient for hydrogen production, by-products generated during the fermentation not only compromise hydrogen production yield but also inhibit the bacteria. Two strategies, combination of dark fermentation and photofermentation and coupling of dark fermentation with a microbial electrolysis cell, are expected to address this issue and improve hydrogen production as well as substrate utilization, which are also discussed. Finally, challenges and perspectives for biohydrogen production are highlighted.
Collapse
Affiliation(s)
- Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China,
| | | | | |
Collapse
|
29
|
Avci A, Kiliç NK, Dönmez G, Dönmez S. Evaluation of hydrogen production by clostridium strains on beet molasses. ENVIRONMENTAL TECHNOLOGY 2014; 35:278-285. [PMID: 24600866 DOI: 10.1080/09593330.2013.826251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Clostridium acetobutylicum DSM 792, C. acetobutylicum DSM 1731 and two newly isolated bacteria defined as the members of genus Clostridium - based on the 16S rRNA analysis and biochemical traits - were characterized with regard to their hydrogen production in media containing increasing beet molasses concentrations. The highest hydrogen yield was observed for C. acetobutylicum DSM 792 with a yield of 2.8 mol H2 mol-1 hexose in medium including 60 g L-1 molasses. This bacterium also produced the maximum amount of hydrogen (5908.8 mL L-1) at the same molasses concentration. A slightly lower hydrogen yield was measured for C. acetobutylicum DSM 1731 (2.5 mol H2 mol-1 hexose) when grown on 40 g L-1 molasses. The new isolates Clostridium roseum C and Clostridium saccharoperbutylacetonicum PF produced hydrogen with yields of 2.0 mol H2 mol-1 hexose at 40 and 60 g L-1 molasses and 2.1 mol H2 mol-1 hexose at 40 gL-1 molasses, respectively.
Collapse
Affiliation(s)
- Ayşe Avci
- Department of Food Engineering, Sakarya University, 54187 Sakarya, Turkey.
| | | | - Gönöl Dönmez
- Department of Biology, Ankara University, 06100 Beşevler, Ankara, Turkey
| | - Sedat Dönmez
- Department of Food Engineering, Ankara University, 06110 Ditkapi, Ankara, Turkey
| |
Collapse
|
30
|
Goyal Y, Kumar M, Gayen K. Metabolic engineering for enhanced hydrogen production: a review. Can J Microbiol 2013; 59:59-78. [DOI: 10.1139/cjm-2012-0494] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrogen gas exhibits potential as a sustainable fuel for the future. Therefore, many attempts have been made with the aim of producing high yields of hydrogen gas through renewable biological routes. Engineering of strains to enhance the production of hydrogen gas has been an active area of research for the past 2 decades. This includes overexpression of hydrogen-producing genes (native and heterologous), knockout of competitive pathways, creation of a new productive pathway, and creation of dual systems. Interestingly, genetic mutations in 2 different strains of the same species may not yield similar results. Similarly, 2 different studies on hydrogen productivities may differ largely for the same mutation and on the same species. Consequently, here we analyzed the effect of various genetic modifications on several species, considering a wide range of published data on hydrogen biosynthesis. This article includes a comprehensive metabolic engineering analysis of hydrogen-producing organisms, namely Escherichia coli, Clostridium, and Enterobacter species, and in addition, a short discussion on thermophilic and halophilic organisms. Also, apart from single-culture utilization, dual systems of various organisms and associated developments have been discussed, which are considered potential future targets for economical hydrogen production. Additionally, an indirect contribution towards hydrogen production has been reviewed for associated species.
Collapse
Affiliation(s)
- Yogesh Goyal
- Department of Chemical Engineering, Indian Institute of Technology, Gandhinagar, VGEC Complex, Chandkheda, Ahmedabad 382424 (Gujarat), India
| | - Manish Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Gandhinagar, VGEC Complex, Chandkheda, Ahmedabad 382424 (Gujarat), India
| | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology Agartala, Barjala, Jirania, West Tripura-799055, Tripura, India
| |
Collapse
|
31
|
Rittmann S, Herwig C. A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Fact 2012; 11:115. [PMID: 22925149 PMCID: PMC3443015 DOI: 10.1186/1475-2859-11-115] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/03/2012] [Indexed: 01/25/2023] Open
Abstract
Biohydrogen production (BHP) can be achieved by direct or indirect biophotolysis, photo-fermentation and dark fermentation, whereof only the latter does not require the input of light energy. Our motivation to compile this review was to quantify and comprehensively report strains and process performance of dark fermentative BHP. This review summarizes the work done on pure and defined co-culture dark fermentative BHP since the year 1901. Qualitative growth characteristics and quantitative normalized results of H2 production for more than 2000 conditions are presented in a normalized and therefore comparable format to the scientific community.Statistically based evidence shows that thermophilic strains comprise high substrate conversion efficiency, but mesophilic strains achieve high volumetric productivity. Moreover, microbes of Thermoanaerobacterales (Family III) have to be preferred when aiming to achieve high substrate conversion efficiency in comparison to the families Clostridiaceae and Enterobacteriaceae. The limited number of results available on dark fermentative BHP from fed-batch cultivations indicates the yet underestimated potential of this bioprocessing application. A Design of Experiments strategy should be preferred for efficient bioprocess development and optimization of BHP aiming at improving medium, cultivation conditions and revealing inhibitory effects. This will enable comparing and optimizing strains and processes independent of initial conditions and scale.
Collapse
Affiliation(s)
- Simon Rittmann
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorferstraße 1a, Vienna University of Technology, Vienna, 1060, Austria
| | - Christoph Herwig
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorferstraße 1a, Vienna University of Technology, Vienna, 1060, Austria
| |
Collapse
|