1
|
Liu P, Chen L, Hamoud YA, Zheng J, Chang T, Ali J, Huang H, Shaghaleh H. Ameliorative effect of poly-γ-glutamic acid biopreparation on coastal saline soil. Heliyon 2024; 10:e36762. [PMID: 39263153 PMCID: PMC11388776 DOI: 10.1016/j.heliyon.2024.e36762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
To investigate the effect of poly-γ-glutamic acid (γ-PGA) biopreparation on ameliorating coastal saline soil, three treatments were established: soil salt washed treatment (CK), soil salt washed with added γ-PGA (PGA), soil salt washed with added γ-PGA biopreparation (PGAB). This study determined the effects of γ-PGA on coastal saline soil by analyzing soil aggregate, soil evaporation, soil vertical water and salt distribution, and soil cation content, soil pH, soil nutrient content and soil microorganism quantity. Results showed that γ-PGA had an ameliorative effect on saline soil, with the PGAB treatment exhibiting the most pronounced ameliorative effect compared to CK. Adding PGAB reduced soil evaporation by 30.45 %, soil salt content by 27.91 %, meanwhile increasing plant height by 33.86 %, plant fresh weight by 98.54 %, soil aggregate diameter by 6.68 times, soil water content by 26.47 % (P < 0.05). Additionally, soil total nitrogen was increased by 50.0 % in PGAB treatment, and available nitrogen and phosphorus contents were increased by 1.68 times and 85.83 % (P < 0.05), respectively. Populations of soil-culturable bacteria and fungi of PGAB treatment increased by 65.96 % and 1.23 times, respectively (P < 0.05). After salt-washing process, adding PGAB improved soil physicochemical properties, which altered the ecological environment of rhizosphere soil and promoted plant growth. The results can provide a practical approach for ameliorating coastal saline soils.
Collapse
Affiliation(s)
- Pei Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Lihua Chen
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Yousef Alhaj Hamoud
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Jinhai Zheng
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing, 210098, China
| | - Tingting Chang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Jawad Ali
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - He Huang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Hiba Shaghaleh
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
2
|
Elbanna K, Alsulami FS, Neyaz LA, Abulreesh HH. Poly (γ) glutamic acid: a unique microbial biopolymer with diverse commercial applicability. Front Microbiol 2024; 15:1348411. [PMID: 38414762 PMCID: PMC10897055 DOI: 10.3389/fmicb.2024.1348411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Microbial biopolymers have emerged as promising solutions for environmental pollution-related human health issues. Poly-γ-glutamic acid (γ-PGA), a natural anionic polymeric compound, is composed of highly viscous homo-polyamide of D and L-glutamic acid units. The extracellular water solubility of PGA biopolymer facilitates its complete biodegradation and makes it safe for humans. The unique properties have enabled its applications in healthcare, pharmaceuticals, water treatment, foods, and other domains. It is applied as a thickener, taste-masking agent, stabilizer, texture modifier, moisturizer, bitterness-reducing agent, probiotics cryoprotectant, and protein crystallization agent in food industries. γ-PGA is employed as a biological adhesive, drug carrier, and non-viral vector for safe gene delivery in tissue engineering, pharmaceuticals, and medicine. It is also used as a moisturizer to improve the quality of hair care and skincare cosmetic products. In agriculture, it serves as an ideal stabilizer, environment-friendly fertilizer synergist, plant-growth promoter, metal biosorbent in soil washing, and animal feed additive to reduce body fat and enhance egg-shell strength.
Collapse
Affiliation(s)
- Khaled Elbanna
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Fatimah S Alsulami
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Leena A Neyaz
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussein H Abulreesh
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Wang F, Chen Y, Zheng J, Yang C, Li L, Li R, Shi M, Li Z. Preparation of potential organic fertilizer rich in γ-polyglutamic acid via microbial fermentation using brewer's spent grain as basic substrate. BIORESOURCE TECHNOLOGY 2024; 394:130216. [PMID: 38122994 DOI: 10.1016/j.biortech.2023.130216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Brewer's spent grain (BSG) is a main byproduct of the beer industry. BSG is rich in a variety of nutrients, and the search for its effective, high-value utilization is ongoing. Environmental probiotic factor γ-PGA was produced by fermenting Bacillus subtilis with BSG substrate and the fermenting grain components were analyzed. The γ-PGA yield reached 31.58 ± 0.21 g/kg of BSG. Gas chromatography-mass spectrometry and non-targeted metabolomics analyses revealed 73 new volatile substances in the fermenting grains. Furthermore, 2,376 metabolites were upregulated after fermentation and several components were beneficial for plant growth and development (such as ectoine, acetyl eugenol, L-phenylalanine, niacin, isoprene, pantothenic acid, dopamine, glycine, proline, jasmonic acid, etc). These results show that it is possible to synthesize adequate amounts of γ-PGA for use as a functional fertilizer.
Collapse
Affiliation(s)
- Fengqing Wang
- College of Biotechnology, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Yanmei Chen
- College of Biotechnology, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd., Yibin, Sichuan 644000, China
| | - Can Yang
- College of Biotechnology, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Li Li
- College of Biotechnology, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Rong Li
- College of Biotechnology, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Meilin Shi
- College of Biotechnology, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Zhongxuan Li
- College of Biotechnology, Sichuan University of Science and Engineering, Yibin 644000, China.
| |
Collapse
|
4
|
Cai M, Han Y, Zheng X, Xue B, Zhang X, Mahmut Z, Wang Y, Dong B, Zhang C, Gao D, Sun J. Synthesis of Poly-γ-Glutamic Acid and Its Application in Biomedical Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 17:15. [PMID: 38203869 PMCID: PMC10779536 DOI: 10.3390/ma17010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Poly-γ-glutamic acid (γ-PGA) is a natural polymer composed of glutamic acid monomer and it has garnered substantial attention in both the fields of material science and biomedicine. Its remarkable cell compatibility, degradability, and other advantageous characteristics have made it a vital component in the medical field. In this comprehensive review, we delve into the production methods, primary application forms, and medical applications of γ-PGA, drawing from numerous prior studies. Among the four production methods for PGA, microbial fermentation currently stands as the most widely employed. This method has seen various optimization strategies, which we summarize here. From drug delivery systems to tissue engineering and wound healing, γ-PGA's versatility and unique properties have facilitated its successful integration into diverse medical applications, underlining its potential to enhance healthcare outcomes. The objective of this review is to establish a foundational knowledge base for further research in this field.
Collapse
Affiliation(s)
- Minjian Cai
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Yumin Han
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xianhong Zheng
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Baigong Xue
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xinyao Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Zulpya Mahmut
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Yuda Wang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| | - Chunmei Zhang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Donghui Gao
- Department of Anesthesiology and Operating Room, School and Hospital of Stomatology, Jilin University, Changchun 130012, China
| | - Jiao Sun
- Department of Cell Biology and Medical Genetics, College of Basic Medical Science, Jilin University, Changchun 130021, China
| |
Collapse
|
5
|
Nair P, Navale GR, Dharne MS. Poly-gamma-glutamic acid biopolymer: a sleeping giant with diverse applications and unique opportunities for commercialization. BIOMASS CONVERSION AND BIOREFINERY 2023; 13:4555-4573. [PMID: 33824848 PMCID: PMC8016157 DOI: 10.1007/s13399-021-01467-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/06/2023]
Abstract
Poly-gamma-glutamic acid (γ-PGA) is a biodegradable, non-toxic, ecofriendly, and non-immunogenic biopolymer. Its phenomenal properties have gained immense attention in the field of regenerative medicine, the food industry, wastewater treatment, and even in 3D printing bio-ink. The γ-PGA has the potential to replace synthetic non-degradable counterparts, but the main obstacle is the high production cost and lower productivity. Extensive research has been carried out to reduce the production cost by using different waste; however, it is unable to match the commercialization needs. This review focuses on the biosynthetic mechanism of γ-PGA, its production using the synthetic medium as well as different wastes by L-glutamic acid-dependent and independent microbial strains. Furthermore, various metabolic engineering strategies and the recovery processes for γ-PGA and their possible applications are discussed. Finally, highlights on the challenges and unique approaches to reduce the production cost and to increase the productivity for commercialization of γ-PGA are also summarized.
Collapse
Affiliation(s)
- Pranav Nair
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Govinda R. Navale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| | - Mahesh S. Dharne
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, 411008 India
| |
Collapse
|
6
|
Wang M, Rong C. Poly(ε-L-lysine) and poly(L-diaminopropionic acid) co-produced from spent mushroom substrate fermentation: potential use as food preservatives. Bioengineered 2022; 13:5892-5902. [PMID: 35188864 PMCID: PMC8973980 DOI: 10.1080/21655979.2022.2040876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Poly(ε-L-lysine) and poly(L-diaminopropionic acid) are valuable homopoly (amino acids) with antimicrobial properties and mainly produced in submerged fermentation. In this study, we investigated their co-production using waste biomass and spent mushroom substrate in solid-state fermentation. Simultaneous production of poly(L-diaminopropionic acid) and poly(ε-L-lysine) was achieved in a single fermentation process using pearl oyster mushroom residues as substrate, with the supplement of glycerol and corn steep liquor. After optimization of the fermentation parameters, the maximum yield of poly(ε-L-lysine) and poly(L-diaminopropionic acid) reached 51.4 mg/g substrate and 25.4 mg/g substrate, respectively. The optimal fermentation conditions were 70% initial moisture content, pH of 6.5, 30°C and an inoculum size of 14%. Furthermore, the fermentation time was reduced from 8 days to 6 days using repeated-batch solid-state fermentation. Finally, the antimicrobial effects of poly(L-diaminopropionic acid) and poly(ε-L-lysine) were evaluated in freshly pressed grape juice, which indicated tremendous potential of this mixture in its use as biological preservative.
Collapse
Affiliation(s)
- Mingxuan Wang
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, Yangpu District, China
| | - Chunchi Rong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing,Gulou, China
| |
Collapse
|
7
|
Efficient production of poly-γ-glutamic acid by Bacillus velezensis via solid-state fermentation and its application. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
YAN D, LIN Y, QIU J, LIN L, YANG C, GAO X. Correlation analysis between soluble sugars of soybean and mucus drawing length of fermented natto. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.91522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Jing QIU
- South China Agricultural University, China
| | | | - Cunyi YANG
- South China Agricultural University, China
| | | |
Collapse
|
9
|
Ji G, Xu L, Lyu Q, Liu Y, Gong X, Li X, Yan Z. Poly-γ-glutamic acid production by simultaneous saccharification and fermentation using corn straw and its fertilizer synergistic effect evaluation. Bioprocess Biosyst Eng 2021; 44:2181-2191. [PMID: 34086133 DOI: 10.1007/s00449-021-02593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Agricultural wastes rich in lignocellulosic biomass have been used in the production of poly-γ-glutamic acid (γ-PGA) through separate hydrolysis and fermentation (SHF), but this process is complicated and generates a lot of wastes. In order to find a simpler and greener way to produce γ-PGA using agricultural wastes, this study attempted to establish simultaneous saccharification and fermentation (SSF) with citric acid-pretreated corn straw. The possibility of Bacillus amyloliquefaciens JX-6 using corn straw as substrate to synthesize γ-PGA was validated, and the results showed that increasing the proportion of glucose in the substrate could improve the γ-PGA yield. Based on these preliminary results, the corn straw was pretreated using citric acid. Then, the liquid fraction (xylan-rich) was used for cultivation of seed culture, and the solid fraction (glucan-rich) was used as the substrate for SSF. In a 10-L fermenter, the maximum cumulative γ-PGA concentration in batch and fed-batch SSF were 5.08 ± 0.78 g/L and 10.78 ± 0.32 g/L, respectively. Moreover, the product from SSF without γ-PGA extraction was used as a fertilizer synergist, increasing the yield of pepper by 13.46% (P < 0.05). Our study greatly simplified the production steps of γ-PGA, and each step achieved zero emission as far as possible. The SSF process for γ-PGA production provided a simple and green way for lignocellulose biorefinery and sustainable cultivation in agriculture.
Collapse
Affiliation(s)
- Gaosheng Ji
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lishan Xu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Xuefeng Gong
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xudong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
10
|
Abdelgalil SA, Soliman NA, Abo-Zaid GA, Abdel-Fattah YR. Dynamic consolidated bioprocessing for innovative lab-scale production of bacterial alkaline phosphatase from Bacillus paralicheniformis strain APSO. Sci Rep 2021; 11:6071. [PMID: 33727590 PMCID: PMC7966758 DOI: 10.1038/s41598-021-85207-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/25/2021] [Indexed: 11/15/2022] Open
Abstract
To meet the present and forecasted market demand, bacterial alkaline phosphatase (ALP) production must be increased through innovative and efficient production strategies. Using sugarcane molasses and biogenic apatite as low-cost and easily available raw materials, this work demonstrates the scalability of ALP production from a newfound Bacillus paralicheniformis strain APSO isolated from a black liquor sample. Mathematical experimental designs including sequential Plackett–Burman followed by rotatable central composite designs were employed to select and optimize the concentrations of the statistically significant media components, which were determined to be molasses, (NH4)2NO3, and KCl. Batch cultivation in a 7-L stirred-tank bioreactor under uncontrolled pH conditions using the optimized medium resulted in a significant increase in both the volumetric and specific productivities of ALP; the alkaline phosphatase throughput 6650.9 U L−1, and µ = 0.0943 h−1; respectively, were obtained after 8 h that, ameliorated more than 20.96, 70.12 and 94 folds compared to basal media, PBD, and RCCD; respectively. However, neither the increased cell growth nor enhanced productivity of ALP was present under the pH-controlled batch cultivation. Overall, this work presents novel strategies for the statistical optimization and scaling up of bacterial ALP production using biogenic apatite.
Collapse
Affiliation(s)
- Soad A Abdelgalil
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, Alexandria, Egypt. .,New Borg El-Arab City, Universities and Research Institutes Zone, PostAlexandria, 21934, Egypt.
| | - Nadia A Soliman
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, Alexandria, Egypt
| | - Gaber A Abo-Zaid
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, Alexandria, Egypt
| | - Yasser R Abdel-Fattah
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technological Applications, Alexandria, Egypt
| |
Collapse
|
11
|
Production of poly-γ-glutamic acid (γ-PGA) from xylose-glucose mixtures by Bacillus amyloliquefaciens C1. 3 Biotech 2021; 11:100. [PMID: 33520585 DOI: 10.1007/s13205-021-02661-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/13/2021] [Indexed: 01/07/2023] Open
Abstract
Due to the promising applications, the demand to enhance poly-γ-glutamic acid (γ-PGA) production while decreasing the cost has increased in the past decade. Here, xylose/glucose mixture and corncob hydrolysate (CCH) was evaluated as alternatives for γ-PGA production by Bacillus amyloliquefaciens C1. Although both have been validated to support cell growth, glucose and xylose were not simutaneously consumed and exhibited a diauxic growth pattern due to carbon catabolite repression (CCR) in B. amyloliquefaciens C1, while the enhanced transcription of araE alleviated the xylose transport bottleneck across a cellular membrane. Additionally, the xyl operon (xylA and xylB), which was responsible for xylose metabolism, was strongly induced by xylose at the transcriptional level. When cultured in a mixed medium, xylR was sharply induced to 3.39-folds during the first 8-h while reduced to the base level similar to that in xylose medium. Finally, pre-treated CCH mainly contained a mixture of glucose and xylose was employed for γ-PGA fermentation, which obtained a final concentration of 6.56 ± 0.27 g/L. Although the glucose utilization rate (84.91 ± 1.81%) was lower than that with chemical substrates, the xylose utilization rate (43.41 ± 2.14%) and the sodium glutamate conversion rate (77.22%) of CCH were acceptable. Our study provided a promising approach for the green production of γ-PGA from lignocellulosic biomass and circumvent excessive non-food usage of glucose.
Collapse
|
12
|
Jiang X, Cui Z, Wang L, Xu H, Zhang Y. Production of bioactive peptides from corn gluten meal by solid-state fermentation with Bacillus subtilis MTCC5480 and evaluation of its antioxidant capacity in vivo. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109767] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Fang J, Huan C, Liu Y, Xu L, Yan Z. Bioconversion of agricultural waste into poly-γ-glutamic acid in solid-state bioreactors at different scales. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:939-948. [PMID: 31855694 DOI: 10.1016/j.wasman.2019.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
With the purpose of developing a novel approach of agricultural waste treatment and overcoming bottlenecks for upscaling solid-state fermentation processes, the type of aerated, continuously stirred solid-state bioreactors were used for the production of γ-PGA by Bacillus amyloliquefaciens JX-6. Using corn stalk and soybean meal, the most common agricultural waste in China, as solid substrates, the maximum production of γ-PGA was 116.88 ± 5.05 g/kg and 102.48 ± 3.30 g/kg in 50 L and 150 L bioreactors, respectively. Production of γ-PGA in 50 L bioreactor was higher than in 150 L bioreactor, demonstrating that a reduction in γ-PGA production occurred as the fermentation system enlarged. An analysis of the interactions among fermentation parameters (temperature, moisture, and pH), γ-PGA production, solid substrates and bacterial communities indicated that different bioreactor capacities caused changes in fermentation parameters and bacterial communities, which in turn affected substrate utilization and γ-PGA production. Overall, obtaining considerable amounts of γ-PGA under non-sterilized fermentation expressed that JX-6 has excellent abilities to adapt to these substrates and conditions. Bioconversion of agricultural waste into γ-PGA in scale-up fermentation was successfully conducted by creating a more stable and suitable fermentation environment in bioreactors.
Collapse
Affiliation(s)
- Junnan Fang
- University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - ChenChen Huan
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yang Liu
- University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Lishang Xu
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Zhiying Yan
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
14
|
Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Sci Rep 2020; 10:314. [PMID: 31941935 PMCID: PMC6962342 DOI: 10.1038/s41598-019-57210-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/22/2019] [Indexed: 12/31/2022] Open
Abstract
Heavy metal pollution is one of the most serious environmental and human health risk problem associated with industrial progress. The present study was conducted with the goal of isolation and characterization of metal-resistant lactic acid bacteria (LAB) from the Alexandrian Mediterranean Seacoast, Egypt, with their possible exploitation in metal remediation. Lactobacillus plantarum MF042018 exhibited high degree of resistance, up to 500 and 100 ppm, to both nickel and chromium, respectively, with multiple antibiotic resistance (MAR) index above 0.5. In an attempt to improve chromium removal by L. plantarum MF042018, Plackett-Burman followed by Box-Behnken statistical designs were applied. An initial Cr2+ concentration of 100 ppm and inoculum size of 3% presented the best conditions for the accumulation of chromium by L. plantarum MF042018. The study was also navigated to assess the biosorption capacity of L. plantarum MF042018, the maximum uptake capacity (q) of both Cd2+ and Pb2+ was recorded at pH 2.0 and a temperature of 22 °C after 1 hr. The biosorption process of Cd2+ and Pb2+ was well explained by the Langmuir isotherm model better than the Freundlich isotherm. Furthermore, the results revealed that the use of L. plantarum MF042018 is an effective tool for the treatment of hazardous metal-polluted battery-manufacturing effluent. Therefore, the present study implies that L. plantarum MF042018 can be applied as a promising biosorbent for the removal of heavy metals from industrial wasterwaters.
Collapse
|
15
|
Jiang K, Tang B, Wang Q, Xu Z, Sun L, Ma J, Li S, Xu H, Lei P. The bio-processing of soybean dregs by solid state fermentation using a poly γ-glutamic acid producing strain and its effect as feed additive. BIORESOURCE TECHNOLOGY 2019; 291:121841. [PMID: 31349173 DOI: 10.1016/j.biortech.2019.121841] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Soybean dregs are restricted as feed additives because they contain anti-nutrient factors. Herein, soybean dreg was bio-transformed by solid-state fermentation (SSF) using a poly γ-glutamic acid (γ-PGA) producing stain Bacillus amyloliquefaciens NX-2S. The maximum γ-PGA production of 65.79 g/kg was reached in a 5 L fermentation system while the conditions are 70% initial moisture of soybean dregs with addition of molasses meal, 12% inoculum size, 30 °C fermentation temperature, initial pH of 8, and 60 h fermentation time. Meanwhile, continuous batch fermentation was proved feasible. After SSF, the anti-nutritional factors such as trypsin inhibitor, phytic acid and tannin were reduced by 98.7%, 97.8%, and 63.2%, respectively. Compared with unfermented soybean dregs, adding fermented soybean dregs to feed increased the average weight gain of rats by 15.6% and reduced the ratio of feed to meat by 11.3%. Therefore, this study provided a feasible strategy for processing soybean dregs as feed additive.
Collapse
Affiliation(s)
- Kang Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Bao Tang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Qian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Junjie Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
16
|
Coherent Aspects of Multifaceted Eco-friendly Biopolymer - Polyglutamic Acid from the Microbes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Kim J, Lee JM, Jang WJ, Park HD, Kim Y, Kim C, Kong I. Efficient production of poly γ‐
d
‐glutamic acid from the bloom‐forming green macroalgae,
Ulva
sp., by
Bacillus
sp. SJ‐10. Biotechnol Bioeng 2019; 116:1594-1603. [DOI: 10.1002/bit.26966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/12/2019] [Accepted: 03/14/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Jang‐Ho Kim
- Department of Biotechnology, College of Fisheries SciencePukyong National UniversityBusan Republic of Korea
| | - Jong Min Lee
- Industrial Biomaterials Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Daejeon Korea
| | - Won Je Jang
- Department of Biotechnology, College of Fisheries SciencePukyong National UniversityBusan Republic of Korea
| | - Hae Dae Park
- Department of Biotechnology, College of Fisheries SciencePukyong National UniversityBusan Republic of Korea
| | - Young‐Ok Kim
- Biotechnology Research DivisionNational Institute of Fisheries ScienceBusan Republic of Korea
| | - Chang‐Hoon Kim
- Department of Marine Biomaterials & AquaculturePukyong National UniversityBusan Republic of Korea
| | - In‐Soo Kong
- Department of Biotechnology, College of Fisheries SciencePukyong National UniversityBusan Republic of Korea
| |
Collapse
|
18
|
Li B, Yan ZY, Liu XN, Zhou J, Wu XY, Wei P, Jia HH, Yong XY. Increased fermentative adenosine production by gene-targeted Bacillus subtilis mutation. J Biotechnol 2019; 298:1-4. [PMID: 30974118 DOI: 10.1016/j.jbiotec.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/14/2019] [Accepted: 04/06/2019] [Indexed: 11/17/2022]
Abstract
Adenosine, which is produced mainly by microbial fermentation, plays an important role in the therapy of cardiovascular disease and has been widely used as an antiarrhythmic agent. In this study, guanosine 5'-monophosphate (GMP) synthetase gene (guaA) was inactivated by gene-target manipulation to increase the metabolic flux from inosine 5'-monophosphate (IMP) to adenosine in B. subtilis A509. The resulted mutant M3-3 showed an increased adenosine production from 7.40 to 10.45 g/L, which was further enhanced to a maximum of 14.39 g/L by central composite design. As the synthesis of succinyladenosine monophosphate (sAMP) from IMP catalysed by adenylosuccinate synthetase (encoded by purA gene) is the rate-limiting step in adenosine synthesis, the up-regulated transcription level of purA was the potential underlying mechanism for the increased adenosine production. This work demonstrated a practical strategy for breeding B. subtilis strains for industrial nucleoside production.
Collapse
Affiliation(s)
- Biao Li
- College of Biotechnology and Pharmaceutical Engineering, Bioenergy Research Institute, Nanjing Tech University, Nanjing, 211816, China
| | - Zhi-Ying Yan
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China
| | - Xiao-Na Liu
- College of Biotechnology and Pharmaceutical Engineering, Bioenergy Research Institute, Nanjing Tech University, Nanjing, 211816, China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Bioenergy Research Institute, Nanjing Tech University, Nanjing, 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, China; Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing, 211816, China
| | - Xia-Yuan Wu
- College of Biotechnology and Pharmaceutical Engineering, Bioenergy Research Institute, Nanjing Tech University, Nanjing, 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, China; Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing, 211816, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Bioenergy Research Institute, Nanjing Tech University, Nanjing, 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, China; Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing, 211816, China
| | - Hong-Hua Jia
- College of Biotechnology and Pharmaceutical Engineering, Bioenergy Research Institute, Nanjing Tech University, Nanjing, 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, China; Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing, 211816, China
| | - Xiao-Yu Yong
- College of Biotechnology and Pharmaceutical Engineering, Bioenergy Research Institute, Nanjing Tech University, Nanjing, 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, China; Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing, 211816, China.
| |
Collapse
|
19
|
Abu Tawila ZMM, Ismail S, Abu Amr SS, Abou Elkhair EK. A novel efficient bioflocculant QZ-7 for the removal of heavy metals from industrial wastewater. RSC Adv 2019; 9:27825-27834. [PMID: 35530503 PMCID: PMC9070865 DOI: 10.1039/c9ra04683f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/31/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, a novel bioflocculant QZ-7 was produced from Bacillus salmalaya 139SI for industrial wastewater treatment. Biochemical analysis, FTIR, scanning electron microscopy-energy dispersive X-ray spectroscopy, and thermogravimetric analysis were performed. A synthetic wastewater sample was used to validate the performance of the prepared OZ-7 for the adsorption efficiency of As, Zn2+ Pb2+, Cu2+, and Cd2+ under optimal experimental conditions such as initial metal concentrations, pH, contact time (h) and QZ-7 adsorbent dosage (mg mL−1). The maximum removal efficiency for Zn2+ (81.3%), As (78.6%), Pb2+ (77.9%), Cu2+ (76.1%), and Cd2+ (68.7%) was achieved using an optimal bioflocculant dosage of 60 mg L−1 at 2 h shaking time, 100 rpm and pH 7. Furthermore, the obtained optimum experimental conditions were validated using real industrial wastewater and the removal efficiencies of 89.8%, 77.4% and 58.4% were obtained for As, Zn2+ and Cu2+, respectively. The results revealed that the prepared bioflocculant QZ-7 has the capability to be used for the removal of heavy metals from industrial wastewater. In this study, a novel bioflocculant was produced using Bacillus salmalaya 139SI for industrial waste water treatment.![]()
Collapse
Affiliation(s)
- Zayed M. M. Abu Tawila
- Institute of Biological Science
- Faculty of Science
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Salmah Ismail
- Institute of Biological Science
- Faculty of Science
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Salem S. Abu Amr
- Malaysian Institute of Chemical & Bioengineering Technology
- Universiti Kuala Lumpur, (UniKL, MICET)
- Melaka
- Malaysia
| | | |
Collapse
|
20
|
Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin. Sci Rep 2018; 8:12755. [PMID: 30143738 PMCID: PMC6109164 DOI: 10.1038/s41598-018-31082-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023] Open
Abstract
Ubiquitous presence of cypermethrin as a contaminant in surface stream and soil necessitates to develop potential bioremediation methods to degrade and eliminate this pollutant from the environment. A cypermethrin utilizing bacterial strain (MIC, 450 ppm) was isolated from the soil of pesticide contaminated agriculture field and characterized by using polyphasic approach. On molecular basis bacterial isolate showed 98% homology with Bacillus subtilis strain 1D. Under optimized growth conditions, bacteria showed 95% degradation of cypermethrin after 15 days and the end products of cypermethrin biodegradation under aerobic conditions were cyclododecylamine, phenol, 3-(2,2-dichloroethenyl 2,2-dimethyl cyclopropane carboxylate,1-decanol,chloroacetic acid, acetic acid, cyclopentan palmitoleic acid, and decanoic acid. Amplification of esterase (700 bp) and laccase (1200 bp) genes was confirmed by PCR which showed a possible role of these enzymes in biodegradation of cypermethrin. In the presence of cypermethrin Km value(s) of both the enzymes was low than the control. A nobel cypermethrin degradation pathway followed by B. subtilis was proposed on the basis of characterization of biodegraded products of cypermethrin using GC-MS. Cypermethrin biodegradation ability of Bacillus subtilis strain 1D without producing any toxic end product reveals the potential of this organism in cleaning of pesticide contaminated soil and water.
Collapse
|
21
|
Isolation of endophytic fungi from Dioscorea zingiberensis C. H. Wright and application for diosgenin production by solid-state fermentation. Appl Microbiol Biotechnol 2018; 102:5519-5532. [PMID: 29725718 DOI: 10.1007/s00253-018-9030-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 12/13/2022]
Abstract
In this study, endophytic fungi were isolated from Dioscorea zingiberensis C.H. Wright (DZW), and a novel clean process to prepare diosgenin from DZW was developed. A total of 123 strains of endophytic fungi were isolated from different plant tissues of DZW. Among them, the strain Fusarium sp. (CPCC 400709) showed the best activity of hydrolyzing steroidal saponins in DZW into diosgenin. Thus, this strain was used to prepare diosgenin from DZW by solid-state fermentation. The fermentation parameters were optimized using response surface methodology, and a high yield of diosgenin (2.16%) was obtained at 14.5% ammonium sulfate, an inoculum size of 12.3%, and 22 days of fermentation. Furthermore, the highest diosgenin yield (2.79%) was obtained by co-fermentation with Fusarium sp. (CPCC 400709) and Curvularia lunata (CPCC 400737), which was 98.9% of that obtained by β-glucosidase pretreated acid hydrolysis (2.82%). This process is acid-free and wastewater-free, and shows promise as an effective and clean way to prepare diosgenin for use in industrial applications from DZW.
Collapse
|
22
|
Xu T, Zhan S, Yi M, Chi B, Xu H, Mao C. Degradation performance of polyglutamic acid and its application of calcium supplement. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tingting Xu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry; Nanjing Tech University; Nanjing 211816 China
| | - Shuyue Zhan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 China
| | - Meihui Yi
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry; Nanjing Tech University; Nanjing 211816 China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry; Nanjing Tech University; Nanjing 211816 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 China
| |
Collapse
|
23
|
Enhanced production of exopolysaccharides using industrial grade starch as sole carbon source. Bioprocess Biosyst Eng 2018; 41:811-817. [PMID: 29500660 DOI: 10.1007/s00449-018-1915-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
Abstract
Industrial grade soluble corn starch was used directly and effectively as the fermentation substrate for microbial exopolysaccharides production. Bacillus subtilis mutant strain NJ308 grew with untreated starch raw material as the sole carbon source. The real-time PCR results demonstrated that up-regulated genes encoding N-acetylglucosaminyltransferase, mannosyltransferase, and N-acetylglucosamine-1-phosphate uridyltransferase were the key elements of B. subtilis mutant strain NJ308 for exopolysaccharides production from industrial grade starch. Subsequently, the culture conditions for B. subtilis NJ308 were optimized using Plackett-Burman design and central composite design methods, and the related key genes in the synthesis pathway of exopolysaccharides from the starch raw material were analyzed by real-time PCR. The maximum exopolysaccharides titration (3.41 g/L) was obtained when the initial starch concentration was 45 g/L. This corresponds to volumetric productivity values of 71.04 mg/L h.
Collapse
|
24
|
Soccol CR, Costa ESFD, Letti LAJ, Karp SG, Woiciechowski AL, Vandenberghe LPDS. Recent developments and innovations in solid state fermentation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.biori.2017.01.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Gomaa EZ. Cryoprotection of probiotic bacteria with poly-γ-glutamic acid produced by Bacillus subtilis and Bacillus licheniformis. J Genet Eng Biotechnol 2016; 14:269-279. [PMID: 30647625 PMCID: PMC6299871 DOI: 10.1016/j.jgeb.2016.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 09/20/2016] [Accepted: 10/17/2016] [Indexed: 11/24/2022]
Abstract
Poly-γ-glutamic acid (γ-PGA) is a naturally occurring biopolymer made up of repeating units of glutamic acid and can be potentially used for multiple applications. This study compared the production of γ-PGA by Bacillus subtilis and Bacillus licheniformis in GS and E media. The highest γ-PGA production was achieved using initial glycerol concentration of 40 and 80 g/l, ammonium chloride as the nitrogen source, 20 g/l glutamic acid at pH 6.5 for 72 h using E medium. On characterization, it was observed that glutamic acid was the sole component of the purified material. It contained a mixture of Na-γ-PGA and H+-γ-PGA. The survival of probiotics during freeze drying was improved by combining them with γ-PGA polymer. For Lactobacilli, 10% γ-PGA protected the cells significantly than 10% sucrose during freeze drying. γ-PGA protection was shown to improve the viability of probiotic bacteria in orange juice for 40 days. No considerable change was observed in the concentrations of citric acid, malic acid and ascorbic acid when probiotic bacteria and γ-PGA were introduced into orange juice and hence, it could be used as a non-dairy delivery platform for these bacteria.
Collapse
Affiliation(s)
- Eman Zakaria Gomaa
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
26
|
Dong JW, Cai L, Li XJ, Duan RT, Shu Y, Chen FY, Wang JP, Zhou H, Ding ZT. Production of a new tetracyclic triterpene sulfate metabolite sambacide by solid-state cultivated Fusarium sambucinum B10.2 using potato as substrate. BIORESOURCE TECHNOLOGY 2016; 218:1266-1270. [PMID: 27406717 DOI: 10.1016/j.biortech.2016.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
The aim of this work is to explore integracide analogues from secondary metabolites of microorganisms. A new tetracyclic triterpene sulfate was produced by solid-state fermentation (SSF) with Fusarium sambucinum B10.2. The tetracyclic triterpene sulfate was identified as (3S,5R,10S,11S,12S,13R,17R,20R)-4,4-dimethylergosta-8,14,24-triene-3,11,12-triol-12-acetate, 3-sulfate on the basis of HRESIMS, NMR and electronic circular dichroism (ECD) spectra and named sambacide (1). The antibacterial and antifungal assays of sambacide (1) showed significant antibacterial activities against Staphylococcus aureus and Escherichia coli. The fermentation conditions including culture media, fermentation temperature and time, were optimized. And potato was selected as the fermentation substrate, 28°C was used as the fermentation temperature, and 20-days fermentation time was determined for F. sambucinum-SSF to produce sambacide (1) with a high yield of 19.04±0.82g/kg. This paper provides an efficient approach to produce the antibacterial and antifungal agent sambacide (1) in a very high yield.
Collapse
Affiliation(s)
- Jian-Wei Dong
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Le Cai
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xue-Jiao Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Rong-Ting Duan
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yan Shu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Feng-Yun Chen
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jia-Peng Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Hao Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zhong-Tao Ding
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
27
|
Luo Z, Guo Y, Liu J, Qiu H, Zhao M, Zou W, Li S. Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:134. [PMID: 27366207 PMCID: PMC4928254 DOI: 10.1186/s13068-016-0537-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/31/2016] [Indexed: 05/22/2023]
Abstract
Poly-γ-glutamic acid (γ-PGA) is a naturally occurring biopolymer made from repeating units of l-glutamic acid, d-glutamic acid, or both. Since some bacteria are capable of vigorous γ-PGA biosynthesis from renewable biomass, γ-PGA is considered a promising bio-based chemical and is already widely used in the food, medical, and wastewater industries due to its biodegradable, non-toxic, and non-immunogenic properties. In this review, we consider the properties, biosynthetic pathway, production strategies, and applications of γ-PGA. Microbial biosynthesis of γ-PGA and the molecular mechanisms regulating production are covered in particular detail. Genetic engineering and optimization of the growth medium, process control, and downstream processing have proved to be effective strategies for lowering the cost of production, as well as manipulating the molecular mass and conformational/enantiomeric properties that facilitate screening of competitive γ-PGA producers. Finally, future prospects of microbial γ-PGA production are discussed in light of recent progress, challenges, and trends in this field.
Collapse
Affiliation(s)
- Zhiting Luo
- />College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Yuan Guo
- />National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, 530004 China
| | - Jidong Liu
- />College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Hua Qiu
- />College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Mouming Zhao
- />College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Wei Zou
- />College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000 Sichuan China
| | - Shubo Li
- />College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| |
Collapse
|
28
|
Raman NM, Shah PH, Mohan M, Ramasamy S. Improved production of melanin from Aspergillus fumigatus AFGRD105 by optimization of media factors. AMB Express 2015; 5:72. [PMID: 26597959 PMCID: PMC4656259 DOI: 10.1186/s13568-015-0161-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/11/2015] [Indexed: 11/23/2022] Open
Abstract
Melanins are indolic polymers produced by many genera included among plants, animals and microorganisms and targeted mainly for their wide range of applications in cosmetics, agriculture and medicine. An approach to analyse the cumulative effect of parameters for enhanced melanin production was carried out using response surface methodology. In this present study, optimization of media and process parameters for melanin production from Aspergillus fumigatus AFGRD105 (GenBank: JX041523; NFCCI accession number: 3826) was carried out by an initial univariate approach followed by statistical response surface methodology. The univariate approach was used to standardise the parameters that can be used for the 12-run Plackett–Burman design that is used for screening for critical parameters. Further optimization of parameters was analysed using Box–Behnken design. The optimum conditions observed were temperature, moisture and sodium dihydrogen phosphate concentration. The yield of every run of both designs were confirmed to be melanin by laboratory tests of analysis in the presence of acids, base and water. This is the first report confirming an increase in melanin production A. fumigatus AFGRD105 without the addition of costly additives.
Collapse
|
29
|
Sugumaran K, Ponnusami V. Statistical modeling of pullulan production and its application in pullulan acetate nanoparticles synthesis. Int J Biol Macromol 2015; 81:867-76. [DOI: 10.1016/j.ijbiomac.2015.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
|
30
|
Tang B, Lei P, Xu Z, Jiang Y, Xu Z, Liang J, Feng X, Xu H. Highly efficient rice straw utilization for poly-(γ-glutamic acid) production by Bacillus subtilis NX-2. BIORESOURCE TECHNOLOGY 2015; 193:370-6. [PMID: 26143572 DOI: 10.1016/j.biortech.2015.05.110] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 05/08/2023]
Abstract
Lignocellulosic biomass has been identified as an economic and environmental feedstock for future biotechnological production. Here, for the first time, poly-(γ-glutamic acid) (PGA) production by Bacillus subtilis NX-2 using rice straw is investigated. Based on two-stage hydrolysis and characteristic consumption of xylose and glucose by B. subtilis NX-2, a co-fermentation strategy was designed to better accumulate PGA in a 7.5L fermentor by two feeding methods. The maximum cumulative respective PGA production and PGA productivity were 73.0 ± 0.5 g L(-1) and 0.81 g L(-1) h(-1) by the continuous feeding method, with carbon source cost was saved by 84.2% and 42.5% compared with glucose and cane molasse, respectively. These results suggest that rice straw, a type of abundant, low-cost, non-food lignocellulosic feedstock, may be feasibly and efficiently utilized for industrial-scale production of PGA.
Collapse
Affiliation(s)
- Bao Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yongxiang Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Jinfeng Liang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
31
|
Tang B, Xu H, Xu Z, Xu C, Xu Z, Lei P, Qiu Y, Liang J, Feng X. Conversion of agroindustrial residues for high poly(γ-glutamic acid) production by Bacillus subtilis NX-2 via solid-state fermentation. BIORESOURCE TECHNOLOGY 2015; 181:351-354. [PMID: 25670398 DOI: 10.1016/j.biortech.2015.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
Poly(γ-glutamic acid) (γ-PGA) production by Bacillus subtilis NX-2 was carried out through solid-state fermentation with dry mushroom residues (DMR) and monosodium glutamate production residues (MGPR; a substitute of glutamate) for the first time. Dry shiitake mushroom residue (DSMR) was found to be the most suitable solid substrate among these DMRs; the optimal DSMR-to-MGPR ratio was optimized as 12:8. To increase γ-PGA production, industrial waste glycerol was added as a carbon source supplement to the solid-state medium. As a result, γ-PGA production increased by 34.8%. The batch fermentation obtained an outcome of 115.6 g kg(-1) γ-PGA and 39.5×10(8) colony forming units g(-1) cells. Furthermore, a satisfactory yield of 107.7 g kg(-1) γ-PGA was achieved by compost experiment on a scale of 50 kg in open air, indicating that economically large-scale γ-PGA production was feasible. Therefore, this study provided a novel method to produce γ-PGA from abundant and low-cost agroindustrial residues.
Collapse
Affiliation(s)
- Bao Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Cen Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Jinfeng Liang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
32
|
Huang Y, Sun L, Zhao J, Huang R, Li R, Shen Q. Utilization of different waste proteins to create a novel PGPR-containing bio-organic fertilizer. Sci Rep 2015; 5:7766. [PMID: 25586328 PMCID: PMC4293618 DOI: 10.1038/srep07766] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/15/2014] [Indexed: 11/09/2022] Open
Abstract
High-quality bio-organic fertilizers (BIOs) cannot be produced without the addition of some proteins, while many waste proteins are haphazardly disposed, causing serious environmental pollution. In this study, several waste proteins were used as additives to assist with the reproduction of the functional microbe (Bacillus amyloliquefaciens SQR9) inoculated into matured composts to produce BIOs. An optimized composition of solid-state fermentation (SSF) raw materials was predicted by response surface methodology and experimental validation. The results showed that 7.61% (w/w, DW, the same below) rapeseed meal, 8.85% expanded feather meal, 6.47% dewatered blue algal sludge and 77.07% chicken compost resulted in maximum biomass of strain SQR-9 and the maximum amount of lipopeptides 7 days after SSF. Spectroscopy experiments showed that the inner material structural changes in the novel SSF differed from the control and the novel BIO had higher dissolved organic matter. This study offers a high value-added utilization of waste proteins for producing economical but high-quality BIO.
Collapse
Affiliation(s)
- Yan Huang
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing. 210095, China
| | - Li Sun
- National Enginnering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing. 210095, China
| | - Jianshu Zhao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing. 210095, China
| | - Rong Huang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing. 210095, China
| | - Rong Li
- 1] Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing. 210095, China [2] Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing. 210095, China
| | - Qirong Shen
- 1] Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing. 210095, China [2] National Enginnering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing. 210095, China
| |
Collapse
|
33
|
Shen HB, Yong XY, Chen YL, Liao ZH, Si RW, Zhou J, Wang SY, Yong YC, OuYang PK, Zheng T. Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells. BIORESOURCE TECHNOLOGY 2014; 167:490-494. [PMID: 25011080 DOI: 10.1016/j.biortech.2014.05.093] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 06/03/2023]
Abstract
Improvement on electron shuttle-mediated extracellular electron transfer (EET) is of great potential to enhance the power output of MFCs. In this study, sophorolipid was added to enhance the performance of Pseudomonas aeruginosa-inoculated MFC by improving the electron shuttle-mediated EET. Upon sophorolipid addition, the current density and power density increased ∼ 1.7 times and ∼ 2.6 times, respectively. In accordance, significant enhancement on pyocyanin production (the electron shuttle) and membrane permeability were observed. Furthermore, the conditions for sophorolipid addition were optimized to achieve maximum pyocyanin production (14.47 ± 0.23 μg/mL), and 4 times higher power output was obtained compared to the control. The results substantiated that enhanced membrane permeability and pyocyanin production by sophorolipid, which promoted the electron shuttle-mediated EET, underlies the improvement of the energy output in the P. aeruginosa-inoculated MFC. It suggested that addition of biosurfactant could be a promising way to enhance the energy generation in MFCs.
Collapse
Affiliation(s)
- Hai-Bo Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 210009, China; Bioenergy Research Institute, Nanjing TECH University, Nanjing 210009, China
| | - Xiao-Yu Yong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 210009, China; Bioenergy Research Institute, Nanjing TECH University, Nanjing 210009, China
| | - Yi-Lu Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 210009, China
| | - Zhi-Hong Liao
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China
| | - Rong-Wei Si
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 210009, China; Bioenergy Research Institute, Nanjing TECH University, Nanjing 210009, China
| | - Shu-Ya Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 210009, China; Bioenergy Research Institute, Nanjing TECH University, Nanjing 210009, China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China.
| | - Ping-Kai OuYang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 210009, China; Bioenergy Research Institute, Nanjing TECH University, Nanjing 210009, China
| | - Tao Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 210009, China; Bioenergy Research Institute, Nanjing TECH University, Nanjing 210009, China.
| |
Collapse
|
34
|
Huang Y, Li R, Liu H, Wang B, Zhang C, Shen Q. Novel resource utilization of refloated algal sludge to improve the quality of organic fertilizer. ENVIRONMENTAL TECHNOLOGY 2014; 35:1658-1667. [PMID: 24956756 DOI: 10.1080/09593330.2013.878397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Without further management, large amounts of refloated algal sludge from Taihu Lake to retrieve nitrogen and phosphorus resources may result in serious secondary environmental pollution. The possibility of utilization of algal sludge to improve the quality of organic fertilizer was investigated in this study. Variations of physicochemical properties, germination index (GI) and microcystin (MC) content were analysed during the composting process. The results showed that the addition of algal sludge improved the contents of nutrients, common free amino acids and total common amino acids in the novel organic fertilizer. Rapid degradation rates of MC-LR and MC-RR, a high GI value and more abundance of culturable protease-producing bacteria were observed during the composting process added with algal sludge. Growth experiments showed that the novel organic fertilizer efficiently promoted plant growth. This study provides a novel resource recovery method to reclaim the Taihu Lake algal sludge and highlights a novel method to produce a high-quality organic fertilizer.
Collapse
|
35
|
Zhang RL, Sun JD, Luo J, Xu S, Liu XY. Preparation of photo-sensitive poly(γ-glutamic acid) nanoparticles and application for immobilizing hemoglobin on electrode. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3259-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Ghaffari-Moghaddam M, Yekke-Ghasemi Z, Khajeh M, Rakhshanipour M, Yasin Y. Application of response surface methodology in enzymatic synthesis: A review. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1068162014030054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Zhang RL, Xu S, Luo J, Shi DJ, Liu C, Liu XY. One-pot green synthesis of nanohybrid structures: gold nanoparticles in poly(γ-glutamic acid) copolymer nanoparticles. RSC Adv 2014. [DOI: 10.1039/c4ra01094a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
38
|
Yong X, Zhang R, Zhang N, Chen Y, Huang X, Zhao J, Shen Q. Development of a specific real-time PCR assay targeting the poly-γ-glutamic acid synthesis gene, pgsB, for the quantification of Bacillus amyloliquefaciens in solid-state fermentation. BIORESOURCE TECHNOLOGY 2013; 129:477-484. [PMID: 23266849 DOI: 10.1016/j.biortech.2012.11.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/17/2012] [Accepted: 11/20/2012] [Indexed: 06/01/2023]
Abstract
A TaqMan real-time PCR procedure was developed for specific detection and quantification of strains belonging to Bacillus amyloliquefaciens group. The primer pair pgsB726-f/pgsB791-r and the pgsB-probe were designed from one of the poly-γ-glutamic acid synthesis gene (pgsB) of B. amyloliquefaciens. The detection limit was approximately between 10(2)-10(3) cells/mL. A linear correlation between the log10 input pMD-pgsB plasmid DNA copies and the threshold cycle values were observed with a magnitude of linearity in the range of 9.415×10(3)-10(7) copies/mL for the standard curve, which exhibited a slope of -3.35 and an R2 value of 99.8%. Results of validation of this method with artificially contaminated and natural solid-state fermentation samples showed that it was suitable for specific and sensitive detection and quantification for the target strains in solid-state fermentation samples. This could be more useful to understand the fermentation starting strain and the final microbiological properties of fermentation products.
Collapse
Affiliation(s)
- Xiaoyu Yong
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS One 2012; 7:e47205. [PMID: 23056611 PMCID: PMC3466218 DOI: 10.1371/journal.pone.0047205] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/10/2012] [Indexed: 12/02/2022] Open
Abstract
Intensive use of chlorpyrifos has resulted in its ubiquitous presence as a contaminant in surface streams and soils. It is thus critically essential to develop bioremediation methods to degrade and eliminate this pollutant from environments. We present here that a new fungal strain Hu-01 with high chlorpyrifos-degradation activity was isolated and identified as Cladosporium cladosporioides based on the morphology and 5.8S rDNA gene analysis. Strain Hu-01 utilized 50 mg·L−1 of chlorpyrifos as the sole carbon of source, and tolerated high concentration of chlorpyrifos up to 500 mg·L−1. The optimum degradation conditions were determined to be 26.8°C and pH 6.5 based on the response surface methodology (RSM). Under these conditions, strain Hu-01 completely metabolized the supplemented chlorpyrifos (50 mg·L−1) within 5 d. During the biodegradation process, transient accumulation of 3,5,6-trichloro-2-pyridinol (TCP) was observed. However, this intermediate product did not accumulate in the medium and disappeared quickly. No persistent accumulative metabolite was detected by gas chromatopraphy-mass spectrometry (GC-MS) analysis at the end of experiment. Furthermore, degradation kinetics of chlorpyrifos and TCP followed the first-order model. Compared to the non-inoculated controls, the half-lives (t1/2) of chlorpyrifos and TCP significantly reduced by 688.0 and 986.9 h with the inoculum, respectively. The isolate harbors the metabolic pathway for the complete detoxification of chlorpyrifos and its hydrolysis product TCP, thus suggesting the fungus may be a promising candidate for bioremediation of chlorpyrifos-contaminated water, soil or crop.
Collapse
Affiliation(s)
- Shaohua Chen
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Chenglan Liu
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Chuyan Peng
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Hongmei Liu
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Meiying Hu
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Guohua Zhong
- Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
40
|
Huo Z, Zhang N, Xu Z, Li S, Zhang Q, Qiu M, Yong X, Huang Q, Zhang R, Shen QR. Optimization of survival and spore formation of Paenibacillus polymyxa SQR-21 during bioorganic fertilizer storage. BIORESOURCE TECHNOLOGY 2012; 108:190-195. [PMID: 22264433 DOI: 10.1016/j.biortech.2011.12.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/29/2011] [Accepted: 12/27/2011] [Indexed: 05/31/2023]
Abstract
The effects of storage temperature (20, 30 and 40 °C), inoculum type (pure spores, an equal mix of spores and vegetative cells and pure vegetative cells) and water content (20%, 30% and 40%) on the survival and spore formation of the biocontrol agent, Paenibacillus polymyxa SQR-21, in a bioorganic fertilizer were modeled in a 3×3×3 factorial design. Bacterial and spore populations were monitored by plate count and fluorescence in situ hybridization (FISH). Temperature significantly affected survival of inoculants after storage for 60 days. Populations were 1.48 (plate counting) or 1.71 (FISH) times greater when stored at 20 °C compared to 40 °C. Inoculation of the fertilizer with pure spores led to the highest spore formation percentage (67.6% for plate counting, 94.2% for FISH). This study provides useful information for preservation of bioorganic fertilizer.
Collapse
Affiliation(s)
- Zhenhua Huo
- Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|