1
|
Pal S, Hait A, Mandal S, Roy A, Sar P, Kazy SK. Crude oil degrading efficiency of formulated consortium of bacterial strains isolated from petroleum-contaminated sludge. 3 Biotech 2024; 14:220. [PMID: 39247458 PMCID: PMC11377402 DOI: 10.1007/s13205-024-04066-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Crude oil contamination has been widely recognized as a major environmental issue due to its various adverse effects. The use of inhabitant microorganisms (native to the contaminated sites) to detoxify/remove pollutants owing to their diverse metabolic capabilities is an evolving method for the removal/degradation of petroleum industry contaminants. The present study deals with the exploitation of native resident bacteria from crude oil contaminated site (oil exploration field) for bioremediation procedures. Fifteen (out of forty-four) bioremediation-relevant aerobic bacterial strains, belonging to the genera of Bacillus, Stenotrophomonas, Pseudomonas, Paenibacillus, Rhizobium, Burkholderia, and Franconibacter, isolated from crude oil containing sludge, have been selected for the present bioremediation study. Crude oil bioremediation performance of the selected bacterial consortium was assessed using microcosm-based studies. Stimulation of the microbial consortium with nitrogen or phosphorous led to the degradation of 60-70% of total petroleum hydrocarbon (TPH) in 0.25% and 0.5% crude oil experimental sets. CO2 evolution, indicative of crude oil mineralization, was evident with the highest evolution being 28.6 mg mL-1. Ecotoxicity of treated crude oil-containing media was assessed using plant seed germination assay, in which most of the 0.25% and 0.5% treated crude oil sets gave positive results thereby suggesting a reduction in crude oil toxicity.
Collapse
Affiliation(s)
- Siddhartha Pal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | - Arpita Hait
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | - Sunanda Mandal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | - Ajoy Roy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | - Pinaki Sar
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Sufia K Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| |
Collapse
|
2
|
Wang J, Wang Q, Tang YJ, Fu HM, Fang F, Guo JS, Yan P, Chen YP. Unraveling the structure and function of bacterioferritin in Candidatus Kuenenia stuttgartiensis: Iron storage sites maintain cellular iron homeostasis. WATER RESEARCH 2023; 238:120016. [PMID: 37146397 DOI: 10.1016/j.watres.2023.120016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Anammox bacteria rely heavily on iron and have many iron storage sites. However, the biological significance of these iron storage sites has not been clearly defined. In this study, we explored the properties and location of iron storage sites to better understand their cellular function. To do this, the Candidatus Kuenenia stuttgartiensis iron storage protein, bacterioferritin (K.S Bfr), was successfully expressed and purified. In vitro, correctly assembled globulins were observed by transmission electron microscopy. The self-assembled K.S Bfr has active redox and can bind Fe2+ and mineralize it in the protein cavity. In vivo, engineered bacteria with K.S Bfr showed good adaptability to Fe2+, with a survival rate of 78.9% when exposed to 5 mM Fe2+, compared with only 66.0% for wild-type bacteria lacking K.S Bfr. A potential iron regulatory strategy similar to that of Anammox was identified in transcriptomic analysis of engineered bacteria. This system may be controlled by the iron uptake regulator Furto transport Fe2+ via FeoB and store excess Fe2+ in K.S Bfr to maintain cellular homeostasis. K.S Bfr has superior iron storage capacity both intracellularly and in vitro. The discovery of K.S Bfr reveals the storage location of iron-rich nanoparticles, increases our understanding of the adaptability of iron-dependent bacteria to Fe2+, and suggests possible iron regulation strategies in Anammox bacteria.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Que Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Yu-Jiao Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
3
|
Rejiniemon TS, R L, Alodaini HA, Hatamleh AA, Sathya R, Kuppusamy P, Al-Dosary MA, Kalaiyarasi M. Biodegradation of naphthalene by biocatalysts isolated from the contaminated environment under optimal conditions. CHEMOSPHERE 2022; 305:135274. [PMID: 35690172 DOI: 10.1016/j.chemosphere.2022.135274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/25/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pollution occurs in freshwater and marine environment by anthropogenic activities. Moreover, analysis of the PAHs-degradation by the indigenous bacterial strains is limited, compared with other degraders. In this study, naphthalene (NAP) biodegrading bacteria were screened by enrichment culture method. Three bacterial strains were obtained for NAP degradation and identified as Bacillus cereus CK1, Pseudomonas aeruginosa KD4 and Enterobacter aerogenes SR6. The amount of hydrogen, carbon, sulphur and nitrogen of wastewater were analyzed. Total bacterial count increased at increasing incubation time (6-60 days) and moderately decreased at higher NAP concentrations. The bacterial population increased after 48 days at 250 ppm NAP (519 ± 15.3 MPM/mL) concentration and this level increased at 500 ppm NAP concentration (541 ± 12.5 MPM/mL). NAP was degraded by bacterial consortium within 36 h-99% at 30 °C. PAHs degrading bacteria were grown optimally at 4% inoculum concentrations. Bacterial consortium was able to degrade 98% NAP at pH 7.0 after 36 h incubation and degradation potential was improved (100%) after 34 h (pH 8.0). Also at pH 9.0, 100% biodegradation was registered after 36 h incubation. When the agitation speed enhanced from 50 ppm to 150 ppm, increased bacteria growth and increased NAP degradation within 42 h incubation. Among the nutrient sources, beef extract, peptone and glucose supplemented medium supported complete degradation of PAHs within 30 h, whereas peptone supported 94.3% degradation at this time. Glucose supplemented medium showed only 2.8% NAP degradation after 6 h incubation and reached maximum (100%) within 42 h incubation. Bacterial consortium can be used to reduce NAP under optimal process conditions and this method can be used for the removal of various hydrocarbon-compounds.
Collapse
Affiliation(s)
- T S Rejiniemon
- Department of Botany and Biotechnology, AJ College of Science and Technology, Thonnakal, Trivandrum, India
| | - Lekshmi R
- Department of Botany and Biotechnology, Milad-E-Sherif Memorial (MSM) College, Kayamkulam, Kerala, India
| | - Hissah Abdulrahman Alodaini
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rengasamy Sathya
- Department of Microbiology, Centre for Research and Development, PRIST University, Tamil Nadu, 613 403, India
| | - Palaniselvam Kuppusamy
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Munirah Abdullah Al-Dosary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - M Kalaiyarasi
- Vyasa Arts and Science College for Women, Tirunelveli, Tamilnadu, India.
| |
Collapse
|
4
|
Mustafa YA, Mohammed SJ, Ridha MJM. Polyaromatic hydrocarbons biodegradation using mix culture of microorganisms from sewage waste sludge: application of artificial neural network modelling. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:405-418. [PMID: 35669802 PMCID: PMC9163246 DOI: 10.1007/s40201-022-00787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/01/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE In this study, we aimed to examine the tolerance of mixed culture of microorganisms isolated from sewage waste sludge to degrade high concentrations of polyaromatic hydrocarbons, naphthalene, and phenanthrene. The performance of the artificial neural network (ANN) model to predict and simulate the experimental biodegradation results was investigated. METHODS The mixed culture of microorganisms was isolated from sewage waste sludge and adopted to biodegrade naphthalene and phenanthrene at different concentrations (100-1000mg/L). Sewage waste sludge obtained from wastewater treatment plants. A three-layer feed-forward network with a sigmoid transfer function (logsig) at the hidden layer, a linear transfer function (purelin) at the output layer, and a backpropagation training algorithm was used to set the ANN model. RESULTS The results of this study show that naphthalene at concentrations of 100, 300, 700, and 1000 mg/L was depleted after incubation with the mixed culture for 6, 8, 14, and 16 days, respectively. For phenanthrene, depletion of 100, 300, 600, and 1000 mg/L was achieved after 8, 11, 16, and 19 days of incubation, respectively. A high correlation coefficient of 99.5% between the predicted and the experimental results were obtained by using the AAN model. CONCLUSION The results indicated that the mixed culture of microorganisms from sewage waste sludge could effectively consume naphthalene and phenanthrene as carbon and energy sources. Also, the ANN model could efficiently predict the experimental results for biodegradation treatment.
Collapse
Affiliation(s)
- Yasmen A. Mustafa
- Department of Economics of Oil and Gas, University of Imam Jaafar Al-Sadiq, Baghdad, Iraq
| | - Sinan J. Mohammed
- Department of Economics of Oil and Gas, University of Imam Jaafar Al-Sadiq, Baghdad, Iraq
| | - Mohanad J. M. Ridha
- Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
5
|
Zare N, Hassanshahian M, Thangavelu L, Jabar NAA, Abed Jawad M. Screening and Identification of Naphthalene-Degrading Bacteria from the Coastal Regions of Makran Sea. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2053173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nahal Zare
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Hassanshahian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | | | | |
Collapse
|
6
|
Joshi G, Goswami P, Verma P, Prakash G, Simon P, Vinithkumar NV, Dharani G. Unraveling the plastic degradation potentials of the plastisphere-associated marine bacterial consortium as a key player for the low-density polyethylene degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128005. [PMID: 34986568 DOI: 10.1016/j.jhazmat.2021.128005] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/22/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
The omnipresent accumulation and non-degradable nature of plastics in the environment are posing an ever-increasing ecological threat. In this study, a total of 97 bacteria were isolated from macroplastic debris collected from the coastal environments of Andaman Island. The isolates were screened for LDPE degradation potential and were identified based on phenotypic, biochemical, and molecular characterization. 16S rDNA-based identification revealed that three-three isolates of each belong to the genus Oceanimonas and Vibrio, two were closely related to the genus Paenibacillus whereas, one-one was associated with the genus Shewanella, Rheinheimera, and Bacillus, respectively. A bacterial consortium was formulated using the top four isolates based on their individual LDPE degradation potentials. A significant increase (p < 0.05) in the mean LDPE degradation (47.07 ± 6.67% weight-loss) and change in thickness was observed after 120 days of incubation. FTIR spectrum, 13C NMR, and TG-DSC analyses demonstrated changes in the LDPE sheets' functional groups, crystallinity, and in thermal properties after 120 days of incubation. The SEM and AFM images confirmed bacterial attachments, an increase in surface roughness and deformities on LDPE sheets. This study reports a bacterial consortium that can efficiently degrade the plastics and can be used in providing eco-friendly mitigation of plastic waste.
Collapse
Affiliation(s)
- Gajendra Joshi
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Port Blair 744103, Andaman and Nicobar Islands, India.
| | - Prasun Goswami
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Pankaj Verma
- Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Chennai 600100, India
| | - Gopika Prakash
- Department of Marine Microbiology, School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies (KUFOS), Cochin, Kerala, India
| | - Priya Simon
- Department of Marine Microbiology, School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies (KUFOS), Cochin, Kerala, India
| | - Nambali Valsalan Vinithkumar
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Gopal Dharani
- Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Chennai 600100, India
| |
Collapse
|
7
|
Hazaimeh MD, Ahmed ES. Bioremediation perspectives and progress in petroleum pollution in the marine environment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54238-54259. [PMID: 34387817 DOI: 10.1007/s11356-021-15598-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The marine environment is often affected by petroleum hydrocarbon pollution due to industrial activities and petroleum accidents. This pollution has recalcitrant and persistent compounds that pose a high risk to the ecological system and human health. For this reason, the world claims to seek to clean up these pollutants. Bioremediation is an attractive approach for removing petroleum pollution. It is considered a low-cost and highly effective approach with fewer side effects compared to chemical and physical techniques. This depends on the metabolic capability of microorganisms involved in the degradation of hydrocarbons through enzymatic reactions. Bioremediation activities mostly depend on environmental conditions such as temperature, pH, salinity, pressure, and nutrition availability. Understanding the effects of environmental conditions on microbial hydrocarbon degraders and microbial interactions with hydrocarbon compounds could be assessed for the successful degradation of petroleum pollution. The current review provides a critical view of petroleum pollution in seawater, the bioavailability of petroleum compounds, the contribution of microorganisms in petroleum degradation, and the mechanisms of degradation under aerobic and anaerobic conditions. We consider different biodegradation approaches such as biostimulation, bioaugmentation, and phytoremediation.
Collapse
Affiliation(s)
- Mohammad Daher Hazaimeh
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah-11952, Saudi Arabia.
| | - Enas S Ahmed
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah-11952, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
8
|
Tirkey SR, Ram S, Mishra S. Naphthalene degradation studies using Pseudomonas sp. strain SA3 from Alang-Sosiya ship breaking yard, Gujarat. Heliyon 2021; 7:e06334. [PMID: 33869819 PMCID: PMC8035486 DOI: 10.1016/j.heliyon.2021.e06334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) remediation has received considerable attention due to their significant health concern and environmental pollution. However, PAHs contaminated sites also contain indigenous microbes that can potentially degrade naphthalene. Therefore, this study aimed to isolate, characterise and optimise process parameters for efficient naphthalene degradation. A total of 50 naphthalene degrading bacteria were isolated from Alang-Sosiya ship breaking yard, Bhavnagar, Gujarat and screened for their naphthalene degrading capacity. The selected isolate, Pseudomonas sp. strain SA3 was found to degrade 98.74 ± 0.00% naphthalene at a concentration of 500 ppm after 96 h. Further, optimisation of environmental parameters using one factor at a time approach using different inoculum sizes (v/v), pH, salinity, temperature, carbon and nitrogen source greatly accelerated the degradation process attaining 98.6 ± 0.46% naphthalene degradation after 72 h. The optimised parameters for maximum naphthalene degradation were pH 8, 0.1% peptone as nitrogen source, 8% salinity and 1% (v/v) inoculum size.
Collapse
Affiliation(s)
- Sushma Rani Tirkey
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Applied Phycology & Biotechnology Division, CSIR- Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
| | - Shristi Ram
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Applied Phycology & Biotechnology Division, CSIR- Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
| | - Sandhya Mishra
- Applied Phycology & Biotechnology Division, CSIR- Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
| |
Collapse
|
9
|
Patel K, Patel M. Improving bioremediation process of petroleum wastewater using biosurfactants producing Stenotrophomonas sp. S1VKR-26 and assessment of phytotoxicity. BIORESOURCE TECHNOLOGY 2020; 315:123861. [PMID: 32702582 DOI: 10.1016/j.biortech.2020.123861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Primarily, this study aims to evaluate the biosurfactant production capability of Stenotrophomonas sp. S1VKR-26, profiling of its bioremediation ability to remediate petroleum refinery wastewater in a lab-scale bioreactor and assessment of phytotoxicity of bioremediated petroleum wastewater. As a result, strain S1VKR-26 was found to produce 5.15 g L-1 biosurfactant, CMC of 30 mg L-1 and reduced the surface tension from 60.3 to 30.5 mN m-1. Different PAHs like naphthalene (93%), phenanthrene (86%), fluoranthene (92%), and pyrene (98.3%), total petroleum hydrocarbons (72.33%) and phenolic compounds (93.06%) were significantly remediated from the wastewater after the treatment of strain S1VKR-26. Moreover, S1VKR-26 strain treated 1:1 diluted petroleum wastewater have higher germination (100%), vigor (486), and seedling (4.86 cm) compared to untreated wastewater. Therefore, the treatment of petroleum refinery wastewater with strain S1VKR-26 could be more effective in the sense of environmental safety and irrigation for crop production in agriculture.
Collapse
Affiliation(s)
- Kartik Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India
| | - Mitesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India.
| |
Collapse
|
10
|
Xu B, Xue R, Zhou J, Wen X, Shi Z, Chen M, Xin F, Zhang W, Dong W, Jiang M. Characterization of Acetamiprid Biodegradation by the Microbial Consortium ACE-3 Enriched From Contaminated Soil. Front Microbiol 2020; 11:1429. [PMID: 32733403 PMCID: PMC7360688 DOI: 10.3389/fmicb.2020.01429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022] Open
Abstract
Microbial consortia are ubiquitous in nature and exhibit several attractive features such as sophisticated metabolic capabilities and strong environmental robustness. This study aimed to decipher the metabolic and ecological characteristics of synergistic interactions in acetamiprid-degrading consortia, suggesting an optimal scheme for bioremediation of organic pollutants. The microbial consortium ACE-3 with excellent acetamiprid-degrading ability was enriched from the soil of an acetamiprid-contaminated site and characterized using high-throughput sequencing (HTS). Consortium ACE-3 was able to completely degrade 50 mg⋅L–1 acetamiprid in 144 h, and was metabolically active at a wide range of pH values (6.0–8.0) and temperatures (20–42°C). Furthermore, plausible metabolic routes of acetamiprid biodegradation by the consortium were proposed based on the identification of intermediate metabolites (Compounds I, II, III and IV). The findings indicated that the consortium ACE-3 has promising potential for the removal and detoxification of pesticides because it produces downstream metabolites (Compounds I and II) that are less toxic to mammals and insects than acetamiprid. Finally, Illumina HTS revealed that β Proteobacteria were the dominant group, accounting for 85.61% of all sequences at the class level. Among the more than 50 genera identified in consortium ACE-3, Sphingobium, Acinetobacter, Afipia, Stenotrophomonas, and Microbacterium were dominant, respectively accounting for 3.07, 10.01, 24.45, and 49.12% of the total population.
Collapse
Affiliation(s)
- Bin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Rui Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xin Wen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Zhoukun Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Minjiao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| |
Collapse
|
11
|
Ibrar M, Zhang H. Construction of a hydrocarbon-degrading consortium and characterization of two new lipopeptides biosurfactants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136400. [PMID: 31982734 DOI: 10.1016/j.scitotenv.2019.136400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/13/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Apparent solubility and bioavailability of hydrophobic compounds are the major problems in the bioremediation process, which could be overcome by the bacteria capable of biosurfactant production and concurrent hydrocarbon degradation. In this work, we constructed an artificial bacterial consortium containing Lysinibacillus, Paenibacillus, Gordonia and Cupriavidus spp. from glyceryl tributyrate enriched bacteria collected from the non-contaminated site. The consortium was capable of using common raw materials (olive oil, paraffin oil, and glycerol) and polyaromatic hydrocarbons pollutants (naphthalene and anthracene) as the sole carbon source with simultaneous biosurfactant production. Two new lipopeptide isoforms, containing heptapeptide and lipid moieties, were structurally elucidated by LC-MS/MS, FTIR, NMR and molecular networking analysis. Our findings indicate that hydrocarbons degradation and biosurfactant production is an intrinsic property of non-contaminated soil community. Interestingly, we observed the hyper chemotactic activity of Lysinibacillus strains towards glyceryl tributyrate, which has not been reported before. The study may deepen our understanding of microbial strains and consortium with the potential to be used for bioremediation of hydrocarbons contaminated environments.
Collapse
Affiliation(s)
- Muhammad Ibrar
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, PR China; Key Laboratory of Molecular Biophysics, Ministry of education, Wuhan, Hubei, PR China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, PR China; Key Laboratory of Molecular Biophysics, Ministry of education, Wuhan, Hubei, PR China.
| |
Collapse
|
12
|
Petsas AS, Vagi MC. Trends in the Bioremediation of Pharmaceuticals and Other Organic Contaminants Using Native or Genetically Modified Microbial Strains: A Review. Curr Pharm Biotechnol 2019; 20:787-824. [DOI: 10.2174/1389201020666190527113903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 01/28/2023]
Abstract
Nowadays, numerous synthetic and semisynthetic chemicals are extensively produced and consequently used worldwide for many different purposes, such as pharmaceuticals, pesticides, hydrocarbons with aromatic rings (known as polycyclic aromatic hydrocarbons, PAHs), multi-substituted biphenyls with halogens (such as polychlorinated biphenyls, PCBs), and many other toxic and persistent chemical species. The presence of the aforementioned xenobiotic substances not only in various environmental matrices (water, air, and soil), but also in biological tissues (organisms) as well as in several compartments of raw or processed food (of fruit, vegetal, and animal origin), has raised global scientific concerns regarding their potential toxicity towards non target organisms including humans. Additionally, the ability of those persistent organic pollutants to be magnified via food consumption (food chain) has become a crucial threat to human health. Microbial degradation is considered an important route influencing the fate of those toxicants in each matrix. The technique of bioremediation, either with microorganisms (native or genetically modified) which are applied directly (in a reactor or in situ), or with cell extracts or purified enzymes preparations, is reported as a low cost and potential detoxification technology for the removal of toxic chemicals. The sources and toxic impacts of target groups of chemicals are briefly presented in the present study, whereas the bioremediation applications for the removal of pharmaceuticals and other organic contaminants using microbial strains are critically reviewed. All the recently published data concerning the genes encoding the relevant enzymes that catalyze the degradation reactions, the mechanisms of reactions and parameters that influence the bioremediation process are discussed. Finally, research needs and future trends in the direction of decontamination are high-lightened.
Collapse
Affiliation(s)
- Andreas S. Petsas
- Laboratory of Environmental Quality and Geospatial Applications, Department of Marine Sciences, School of Environment, University of the Aegean, Lesvos, Greece
| | - Maria C. Vagi
- Laboratory of Environmental Quality and Geospatial Applications, Department of Marine Sciences, School of Environment, University of the Aegean, Lesvos, Greece
| |
Collapse
|
13
|
Muangchinda C, Rungsihiranrut A, Prombutara P, Soonglerdsongpha S, Pinyakong O. 16S metagenomic analysis reveals adaptability of a mixed-PAH-degrading consortium isolated from crude oil-contaminated seawater to changing environmental conditions. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:119-127. [PMID: 29870896 DOI: 10.1016/j.jhazmat.2018.05.062] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/10/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
A bacterial consortium, named SWO, was enriched from crude oil-contaminated seawater from Phrao Bay in Rayong Province, Thailand, after a large oil spill in 2013. The bacterial consortium degraded a polycyclic aromatic hydrocarbon (PAH) mixture consisting of phenanthrene, anthracene, fluoranthene, and pyrene (50 mg L-1 each) by approximately 73%, 69%, 52%, and 48%, respectively, within 21 days. This consortium exhibited excellent adaptation to a wide range of environmental conditions. It could degrade a mixture of four PAHs under a range of pH values (4.0-9.0), temperatures (25 °C-37 °C), and salinities (0-10 g L-1 with NaCl). In addition, this consortium degraded 20-30% of benzo[a]pyrene and perylene (10 mg L-1 each), high molecular weight PAHs, in the presence of other PAHs within 35 days, and degraded 40% of 2% (v/v) crude oil within 20 days. The 16S rRNA gene amplicon sequencing analysis demonstrated that Pseudomonas and Methylophaga were the dominant genera of consortium SWO in almost all treatments, while Pseudidiomarina, Thalassospira and Alcanivorax were predominant under higher salt concentrations. Moreover, Pseudomonas and Alcanivorax were dominant in the crude oil-degradation treatment. Our results suggest that the consortium SWO maintained its biodegradation ability by altering the bacterial community profile upon encountering changes in the environmental conditions.
Collapse
Affiliation(s)
- Chanokporn Muangchinda
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Thailand
| | - Adisan Rungsihiranrut
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Thailand
| | - Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Thailand
| | - Suwat Soonglerdsongpha
- Environmental Technology Research Department, PTT Research and Technology Institute, PTT Public Company Limited, Ayutthaya, Thailand
| | - Onruthai Pinyakong
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Thailand; Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Thailand.
| |
Collapse
|
14
|
Vaidya S, Devpura N, Jain K, Madamwar D. Degradation of Chrysene by Enriched Bacterial Consortium. Front Microbiol 2018; 9:1333. [PMID: 30013520 PMCID: PMC6036299 DOI: 10.3389/fmicb.2018.01333] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/31/2018] [Indexed: 11/23/2022] Open
Abstract
Chrysene is a high molecular weight (HMW), polycyclic aromatic hydrocarbon (PAH) known for its recalcitrance and carcinogenic properties and sparsely soluble (0.003 mg/L) in aqueous medium. Due to these refractory properties, bioavailability of chrysene is very low and therefore is persistence in the environment escaping the metabolism by microorganisms. However, few bacterial and fungal strains are reported to degrade chrysene, but with lower efficiency, requiring additional/extraneous carbon sources (co-substrates) for it’s complete mineralization. In this study, development, enrichment and characterization of bacterial consortium ASDC, consisting of Rhodococcus sp., ASDC1; Bacillus sp. ASDC2; and Burkholderia sp. ASDC3 were reported. Chrysene was utilized as a sole source of carbon and energy by the consortium, having maximum degradation rate of 1.5 mg/L/day and maximum growth rate of 0.125/h, under optimized conditions of pH 7.0, 37°C under aeration of 150 rpm on gyrating shaking. Chrysene degradation was unaffected in presence of other PAHs like pyrene, fluoranthene, naphthalene, phenanthrene, benzene, toluene and xylene, individually as well as in mixture. The results revealed that peptone, ammonium nitrate, sodium succinate have enhanced the chrysene degradation rate during first 24 h of experimentation, which was later on inhibited with increase in incubation time. The chrysene degradation was inhibited by mercury even at lower concentration (1 mM). The results also revealed that SDS has enhanced its degradation by 5.2-fold for initial 24 h of growth, but with increasing in the incubation period, it decreases by 1.2-fold on 7th day of experimentation. The HPLC studies suggested that chrysene was degraded through phthalic acid pathway by the consortium ASDC and the stoichiometric measurements indicated the complete mineralization of chrysene. The flask scale results were validated at simulated microcosm models, where enriched consortium ASDC exhibited maximum degradation (96%) in polluted, non-sterile soil sediment, indicating that consortial strains along with indigenous metabolism showed synergistic metabolism for degradation of chrysene. Thus, the above study revealed the useful enrichment of bacterial community for synergistic degradation of PAHs (chrysene) which could be further exploited for in situ remediation of PAH contaminated sites.
Collapse
Affiliation(s)
- Sagar Vaidya
- Environmental Genomics and Proteomics Lab, UGC Centre of Advanced Study, Post Graduate Department of Biosciences, Sardar Patel University, Anand, India
| | - Neelam Devpura
- Environmental Genomics and Proteomics Lab, UGC Centre of Advanced Study, Post Graduate Department of Biosciences, Sardar Patel University, Anand, India
| | - Kunal Jain
- Environmental Genomics and Proteomics Lab, UGC Centre of Advanced Study, Post Graduate Department of Biosciences, Sardar Patel University, Anand, India
| | - Datta Madamwar
- Environmental Genomics and Proteomics Lab, UGC Centre of Advanced Study, Post Graduate Department of Biosciences, Sardar Patel University, Anand, India
| |
Collapse
|
15
|
Patel AB, Mahala K, Jain K, Madamwar D. Development of mixed bacterial cultures DAK11 capable for degrading mixture of polycyclic aromatic hydrocarbons (PAHs). BIORESOURCE TECHNOLOGY 2018; 253:288-296. [PMID: 29353758 DOI: 10.1016/j.biortech.2018.01.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 05/23/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and persistent pollutants having mutagenic and carcinogenic properties. Microbial metabolism is an alternative approach for removal of PAHs from polluted environment. Mixed bacterial cultures DAK11 capable for degrading mixture of PAHs was developed from long term polluted marine sediments. DAK11 was able to degrade 500 mg/L of mixture of four PAHs and their degradation efficiency was enhanced by supplementing commercially available NPK fertilizer (0.1%, w/v). Anionic surfactant SDS has enhanced the degradation of PAHs, but DAK11 growth was inhibited in presence of cationic surfactant CTAB. Heavy metals have decreased the rate of degradation, while it was completely inhibited in the presence of Zn2+ and CrO42- (1mM). DAK11 was able to degrade PAHs in the presence of mono-aromatic hydrocarbons, lubricant oil and diesel. Lower molecular weight aromatic and aliphatic compounds were identified using GC-MS during metabolism of mixture of PHAs.
Collapse
Affiliation(s)
- Avani Bharatkumar Patel
- Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, 388315 Anand, Gujarat, India
| | - Krutika Mahala
- Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, 388315 Anand, Gujarat, India
| | - Kunal Jain
- Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, 388315 Anand, Gujarat, India
| | - Datta Madamwar
- Department of Biosciences, UGC Center of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, 388315 Anand, Gujarat, India.
| |
Collapse
|
16
|
Devault DA, Beilvert B, Winterton P. Ship breaking or scuttling? A review of environmental, economic and forensic issues for decision support. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25741-25774. [PMID: 27424206 DOI: 10.1007/s11356-016-6925-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
In a globalized world, the world trade fleet plays a pivotal role in limiting transport costs. But, the management of obsolete ships is an acute problem, with most Ship Recycling Facilities (SRF) situated in developing countries. They are renowned for their controversial work and safety conditions and their environmental impact. Paradoxically, dismantlement is paid for by the shipowners in accordance with international conventions therefore it is more profitable for them to sell off ships destined for scrapping. Scuttling, the alternative to scrapping, is assessed in the present review to compare the cost/benefit ratios of the two approaches. Although scrapping provides employment and raw materials - but with environmental, health and safety costs - scuttling provides fisheries and diving tourism opportunities but needs appropriate management to avoid organic and metal pollution, introduction of invasive species and exacerbation of coastal erosion. It is also limited by appropriate bottom depth, ship type and number. The present review inventories the environmental, health, safety, economic, and forensic aspects of each alternative.
Collapse
Affiliation(s)
- Damien A Devault
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, Agroparistech, Université Paris-Saclay, Paris, France.
- Laboratoire Matériaux et Molécules en Milieu Agressif, UA - UMR ECOFOG,DSI, Campus Universitaire de Schoelcher, 97275, Schoelcher, Martinique, France.
| | - Briac Beilvert
- CDMO, Université de Nantes, Chemin la Censive du Tertre, BP 81307, 44313, Nantes cedex 3, France
| | - Peter Winterton
- Département Langues et Gestion, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 09, France
| |
Collapse
|
17
|
Rochman FF, Sheremet A, Tamas I, Saidi-Mehrabad A, Kim JJ, Dong X, Sensen CW, Gieg LM, Dunfield PF. Benzene and Naphthalene Degrading Bacterial Communities in an Oil Sands Tailings Pond. Front Microbiol 2017; 8:1845. [PMID: 29033909 PMCID: PMC5627004 DOI: 10.3389/fmicb.2017.01845] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/08/2017] [Indexed: 11/13/2022] Open
Abstract
Oil sands process-affected water (OSPW), produced by surface-mining of oil sands in Canada, is alkaline and contains high concentrations of salts, metals, naphthenic acids, and polycyclic aromatic compounds (PAHs). Residual hydrocarbon biodegradation occurs naturally, but little is known about the hydrocarbon-degrading microbial communities present in OSPW. In this study, aerobic oxidation of benzene and naphthalene in the surface layer of an oil sands tailings pond were measured. The potential oxidation rates were 4.3 μmol L-1 OSPW d-1 for benzene and 21.4 μmol L-1 OSPW d-1 for naphthalene. To identify benzene and naphthalene-degrading microbial communities, metagenomics was combined with stable isotope probing (SIP), high-throughput sequencing of 16S rRNA gene amplicons, and isolation of microbial strains. SIP using 13C-benzene and 13C-naphthalene detected strains of the genera Methyloversatilis and Zavarzinia as the main benzene degraders, while strains belonging to the family Chromatiaceae and the genus Thauera were the main naphthalene degraders. Metagenomic analysis revealed a diversity of genes encoding oxygenases active against aromatic compounds. Although these genes apparently belonged to many phylogenetically diverse taxa, only a few of these taxa were predominant in the SIP experiments. This suggested that many members of the community are adapted to consuming other aromatic compounds, or are active only under specific conditions. 16S rRNA gene sequence datasets have been submitted to the Sequence Read Archive (SRA) under accession number SRP109130. The Gold Study and Project submission ID number in Joint Genome Institute IMG/M for the metagenome is Gs0047444 and Gp0055765.
Collapse
Affiliation(s)
- Fauziah F Rochman
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Andriy Sheremet
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ivica Tamas
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Alireza Saidi-Mehrabad
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joong-Jae Kim
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Xiaoli Dong
- Department of Biochemistry and Molecular Biology in the Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Christoph W Sensen
- Department of Biochemistry and Molecular Biology in the Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Huang H, Tao X, Jiang Y, Khan A, Wu Q, Yu X, Wu D, Chen Y, Ling Z, Liu P, Li X. The naphthalene catabolic protein NahG plays a key role in hexavalent chromium reduction in Pseudomonas brassicacearum LZ-4. Sci Rep 2017; 7:9670. [PMID: 28852154 PMCID: PMC5575117 DOI: 10.1038/s41598-017-10469-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
Soil contamination by PAH and heavy metals is a growing problem. Here, we showed that a new isolate, Pseudomonas brassicacearum strain LZ-4, can simultaneously degrade 98% of 6 mM naphthalene and reduce 92.4% of 500 μM hexavalent chromium [Cr (VI)] within 68 h. A draft genome sequence of strain LZ-4 (6,219,082 bp) revealed all the genes in the naphthalene catabolic pathway and some known Cr (VI) reductases. Interestingly, genes encoding naphthalene pathway components were upregulated in the presence of Cr (VI), and Cr (VI) reduction was elevated in the presence of naphthalene. We cloned and expressed these naphthalene catabolic genes and tested for Cr (VI) reduction, and found that NahG reduced 79% of 100 μM Cr (VI) in 5 minutes. Additionally, an nahG deletion mutant lost 52% of its Cr (VI) reduction ability compared to that of the wild-type strain. As nahG encodes a salicylate hydroxylase with flavin adenine dinucleotide (FAD) as a cofactor for electron transfer, Cr (VI) could obtain electrons from NADH through NahG-associated FAD. To the best of our knowledge, this is the first report of a protein involved in a PAH-degradation pathway that can reduce heavy metals, which provides new insights into heavy metal-PAH contamination remediation.
Collapse
Affiliation(s)
- Haiying Huang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P.R. China
| | - Xuanyu Tao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P.R. China
| | - Yiming Jiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P.R. China
| | - Aman Khan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P.R. China
| | - Qi Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P.R. China
| | - Xuan Yu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P.R. China
| | - Dan Wu
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Yong Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P.R. China
| | - Zhenmin Ling
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P.R. China
| | - Pu Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P.R. China
| | - Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, P.R. China.
| |
Collapse
|
19
|
Reddy MV, Yajima Y, Choi D, Chang YC. Biodegradation of toxic organic compounds using a newly isolated Bacillus sp. CYR2. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0117-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Hydrocarbon degradation capacity and population dynamics of a microbial consortium obtained using a sequencing batch reactor in the presence of molasses. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0499-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Metabolism of pyrene through phthalic acid pathway by enriched bacterial consortium composed of Pseudomonas, Burkholderia, and Rhodococcus (PBR). 3 Biotech 2017; 7:29. [PMID: 28401465 PMCID: PMC5388654 DOI: 10.1007/s13205-017-0598-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/02/2017] [Indexed: 11/19/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly recalcitrant compounds due to their high hydrophobicity and tendency to partition in organic phase of soils. Pyrene is a high-molecular weight PAH, which has human health concerns. In the present study, a bacterial consortium, PBR, was developed from a long-term polluted site, viz., Amlakhadi, Ankleshwar, Gujarat, for effective degradation of pyrene. The consortium effectively metabolized pyrene as a sole source of carbon and energy. The consortium comprised three bacterial species, Pseudomonas sp. ASDP1, Burkholderia sp. ASDP2, and Rhodococcus sp. ASDP3. The maximum growth rate of consortium was 0.060/h and the maximum pyrene degradation rate was 16 mg/l/day. The organic and inorganic nutrients along with different surfactants did not affect pyrene degradation, but degradation rate moderately increased in the presence of sodium succinate. The significant characteristic of the consortium was that it possessed an ability to degrade six other hydrocarbons, both independently and simultaneously at 37 °C, in BHM (pH 7.0) under shaking conditions (150 rpm) and it showed resistance towards mercury at 10 mM concentration. Phthalic acid as one of the intermediates during pyrene degradation was detected through high-performance liquid chromatography (HPLC). The efficiency of consortium for pyrene degradation was validated in simulated microcosms’ study, which indicated that 99% of pyrene was metabolized by the consortium under ambient conditions.
Collapse
|
22
|
Dong W, Liu K, Wang F, Xin F, Zhang W, Zhang M, Wu H, Ma J, Jiang M. The metabolic pathway of metamifop degradation by consortium ME-1 and its bacterial community structure. Biodegradation 2017; 28:181-194. [PMID: 28265780 DOI: 10.1007/s10532-017-9787-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
Abstract
Metamifop is universally used in agriculture as a post-emergence aryloxyphenoxy propionate herbicide (AOPP), however its microbial degradation mechanism remains unclear. Consortium ME-1 isolated from AOPP-contaminated soil can degrade metamifop completely after 6 days and utilize it as the carbon source for bacterial growth. Meanwhile, consortium ME-1 possessed the ability to degrade metamifop stably under a wide range of pH (6.0-10.0) or temperature (20-42 °C). HPLC-MS analysis shows that N-(2-fluorophenyl)-2-(4-hydroxyphenoxy)-N-methyl propionamide, 2-(4-hydroxyphenoxy)-propionic acid, 6-chloro-2-benzoxazolinone and N-methyl-2-fluoroaniline, were detected and identified as four intermediate metabolites. Based on the metabolites identified, a putative metabolic pathway of metamifop was proposed for the first time. In addition, the consortium ME-1 was also able to transform or degrade other AOPP such as fenoxaprop-p-ethyl, clodinafop-propargyl, quizalofop-p-ethyl and cyhalofop-butyl. Moreover, the community structure of ME-1 with lower microbial diversity compared with the initial soil sample was investigated by high throughput sequencing. β-Proteobacteria and Sphingobacteria were the largest class with sequence percentages of 46.6% and 27.55% at the class level. In addition, 50 genera were classified in consortium ME-1, of which Methylobacillus, Sphingobacterium, Bordetella and Flavobacterium were the dominant genera with sequence percentages of 25.79, 25.61, 14.68 and 9.55%, respectively.
Collapse
Affiliation(s)
- Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Kuan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Wenming Zhang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
23
|
Liu SH, Zeng GM, Niu QY, Liu Y, Zhou L, Jiang LH, Tan XF, Xu P, Zhang C, Cheng M. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. BIORESOURCE TECHNOLOGY 2017; 224:25-33. [PMID: 27916498 DOI: 10.1016/j.biortech.2016.11.095] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 05/22/2023]
Abstract
In recent years, knowledge in regard to bioremediation of combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by bacteria and fungi has been widely developed. This paper reviews the species of bacteria and fungi which can tackle with various types of PAHs and heavy metals entering into environment simultaneously or successively. Microbial activity, pollutants bioavailability and environmental factors (e.g. pH, temperature, low molecular weight organic acids and humic acids) can all affect the bioremediation of PAHs and heavy metals. Moreover, this paper summarizes the remediation mechanisms of PAHs and heavy metals by microbes via elucidating the interaction mechanisms of heavy metals with heavy metals, PAHs/PAHs metabolites with PAHs and PAHs with heavy metals. Based on the above reviews, this paper also discusses the potential research needs for this field.
Collapse
Affiliation(s)
- Shao-Heng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guang-Ming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qiu-Ya Niu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lu Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lu-Hua Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiao-Fei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
24
|
Gupte A, Tripathi A, Patel H, Rudakiya D, Gupte S. Bioremediation of Polycyclic Aromatic Hydrocarbon (PAHs): A Perspective. ACTA ACUST UNITED AC 2016. [DOI: 10.2174/1874070701610010363] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrocarbon pollution is a perennial problem not only in India but throughout the globe. A plethora of microorganisms have been reported to be efficient degraders of these recalcitrant pollutants. One of the major concerns of environmental problem is the presence of hydrocarbons due to the various anthropogenic activities. PAHs are ubiquitous in naturei.e.present in soil, water and air. Presence of PAHs in environment creates problem as their presence have deleterious effect on human and animals. They also have the ability to cause the tumors in human and animals. Some of the microorganisms are capable of transforming and degrading these PAHs and remove them from the environment. The present review describes about the sources, structure, fate and toxicity of PAHs as well as different bioremediation techniques involved in the removing of contaminants from the environment which are efficient and cost-effective. The conventional approaches used for removal of PAH are not only environment friendly but also are able to reduce the risk to human and ecosystem.
Collapse
|
25
|
Skariyachan S, Manjunatha V, Sultana S, Jois C, Bai V, Vasist KS. Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18307-19. [PMID: 27278068 DOI: 10.1007/s11356-016-7000-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/27/2016] [Indexed: 05/26/2023]
Abstract
This study aimed to formulate novel microbial consortia isolated from plastic garbage processing areas and thereby devise an eco-friendly approach for enhanced degradation of low-density polyethylene (LDPE). The LDPE degrading bacteria were screened and microbiologically characterized. The best isolates were formulated as bacterial consortia, and degradation efficiency was compared with the consortia formulated using known isolates obtained from the Microbial Culture Collection Centre (MTCC). The degradation products were analyzed by FTIR, GC-FID, tensile strength, and SEM. The bacterial consortia were characterized by 16S ribosomal DNA (rDNA) sequencing. The formulated bacterial consortia demonstrated 81 ± 4 and 38 ± 3 % of weight reduction for LDPE strips and LDPE pellets, respectively, over a period of 120 days. However, the consortia formulated by MTCC strains demonstrated 49 ± 4 and 20 ± 2 % of weight reduction for LDPE strips and pellets, respectively, for the same period. Furthermore, the three isolates in its individual application exhibited 70 ± 4, 68 ± 4, and 64 ± 4 % weight reduction for LDPE strips and 21 ± 2, 28 ± 2, 24 ± 2 % weight reduction for LDPE pellets over a period of 120 days (p < 0.05). The end product analysis showed structural changes and formation of bacterial film on degraded LDPE strips. The 16S rDNA characterization of bacterial consortia revealed that these organisms were novel strains and designated as Enterobacter sp. bengaluru-btdsce01, Enterobacter sp. bengaluru-btdsce02, and Pantoea sp. bengaluru-btdsce03. The current study thus suggests that industrial scale-up of these microbial consortia probably provides better insights for waste management of LDPE and similar types of plastic garbage.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- R&D Centre, Department of Biotechnology Engineering, Dayananda Sagar Institutions, Bangalore, 560 078, India.
- Visvesvaraya Technological University, Belagavi, Karnataka, India.
| | - Vishal Manjunatha
- R&D Centre, Department of Biotechnology Engineering, Dayananda Sagar Institutions, Bangalore, 560 078, India
- Visvesvaraya Technological University, Belagavi, Karnataka, India
| | - Subiya Sultana
- R&D Centre, Department of Biotechnology Engineering, Dayananda Sagar Institutions, Bangalore, 560 078, India
- Visvesvaraya Technological University, Belagavi, Karnataka, India
| | - Chandana Jois
- R&D Centre, Department of Biotechnology Engineering, Dayananda Sagar Institutions, Bangalore, 560 078, India
- Visvesvaraya Technological University, Belagavi, Karnataka, India
| | - Vidya Bai
- R&D Centre, Department of Biotechnology Engineering, Dayananda Sagar Institutions, Bangalore, 560 078, India
- Visvesvaraya Technological University, Belagavi, Karnataka, India
| | - Kiran S Vasist
- R&D Centre, Department of Biotechnology Engineering, Dayananda Sagar Institutions, Bangalore, 560 078, India
- Visvesvaraya Technological University, Belagavi, Karnataka, India
| |
Collapse
|
26
|
Huang H, Wu K, Khan A, Jiang Y, Ling Z, Liu P, Chen Y, Tao X, Li X. A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium. BIORESOURCE TECHNOLOGY 2016; 207:370-8. [PMID: 26901089 DOI: 10.1016/j.biortech.2016.02.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 05/02/2023]
Abstract
Combined pollutants with polycyclic aromatic hydrocarbons (PAHs) and heavy metals have been identified as toxic and unmanageable contaminates. In this work, Pseudomonas gessardii strain LZ-E isolated from wastewater discharge site of a petrochemical company degrades naphthalene and reduces Cr(VI) simultaneously. 95% of 10mgL(-1) Cr(VI) was reduced to Cr(III) while 77% of 800mgL(-1) naphthalene was degraded when strain LZ-E was incubated in BH medium for 48h. Furthermore, naphthalene promotes Cr(VI) reduction in strain LZ-E as catechol and phthalic acid produced in naphthalene degradation are able to reduce Cr(VI) abiotically. An aerated bioreactor system was setup to test strain LZ-E's remediation ability. Strain LZ-E continuously remediated naphthalene and Cr(VI) at rates of 15mgL(-1)h(-1) and 0.20mgL(-1)h(-1) of 800mgL(-1) naphthalene and 10mgL(-1) Cr(VI) addition with eight batches in 16days. In summary, strain LZ-E is a potential applicant for combined pollution remediation.
Collapse
Affiliation(s)
- Haiying Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Kejia Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Yiming Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Pu Liu
- Department of Development Biology Sciences, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Yong Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Xuanyu Tao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
27
|
Patel V, Munot H, Shah V, Shouche YS, Madamwar D. Taxonomic profiling of bacterial community structure from coastal sediment of Alang-Sosiya shipbreaking yard near Bhavnagar, India. MARINE POLLUTION BULLETIN 2015; 101:736-745. [PMID: 26475023 DOI: 10.1016/j.marpolbul.2015.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/14/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
The Alang-Sosiya shipbreaking yard (ASSBY) is considered the largest of its kind in the world, and a major source of anthropogenic pollutants. The aim of this study was to investigate the impact of shipbreaking activities on the bacterial community structure with a combination of culture-dependent and culture-independent approaches. In the culture-dependent approach, 200 bacterial cultures were isolated and analyzed by molecular fingerprinting and 16S ribosomal RNA (r-RNA) gene sequencing, as well as being studied for degradation of polycyclic aromatic hydrocarbons (PAHs). In the culture-independent approach, operational taxonomic units (OTUs) were related to eight major phyla, of which Betaproteobacteria (especially Acidovorax) was predominantly found in the polluted sediments of ASSBY and Gammaproteobacteria in the pristine sediment sample. The statistical approaches showed a significant difference in the bacterial community structure between the pristine and polluted sediments. To the best of our knowledge, this is the first study investigating the effect of shipbreaking activity on the bacterial community structure of the coastal sediment at ASSBY.
Collapse
Affiliation(s)
- Vilas Patel
- Environmental Genomics and Proteomics Lab, BRD School of Biosciences, Vadtal Road, Satellite Campus, Post Box No. 39, Sardar Patel University, Vallabh Vidyanagar 388 120, Anand, Gujarat, India.
| | - Hitendra Munot
- Molecular Biology Unit, National Center for Cell Science, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - Varun Shah
- Environmental Genomics and Proteomics Lab, BRD School of Biosciences, Vadtal Road, Satellite Campus, Post Box No. 39, Sardar Patel University, Vallabh Vidyanagar 388 120, Anand, Gujarat, India
| | - Yogesh S Shouche
- Molecular Biology Unit, National Center for Cell Science, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - Datta Madamwar
- Environmental Genomics and Proteomics Lab, BRD School of Biosciences, Vadtal Road, Satellite Campus, Post Box No. 39, Sardar Patel University, Vallabh Vidyanagar 388 120, Anand, Gujarat, India.
| |
Collapse
|
28
|
Patel JG, Nirmal Kumar J, Kumar RN, Khan SR. Enhancement of pyrene degradation efficacy of Synechocystis sp., by construction of an artificial microalgal-bacterial consortium. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/23312009.2015.1064193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jignasa G. Patel
- P.G. Department of Environmental Science and Technology, Institute of Science and Technology for Advanced Studies and Research, Vallabh Vidya Nagar 388 120, Gujarat, India
| | - J.I. Nirmal Kumar
- P.G. Department of Environmental Science and Technology, Institute of Science and Technology for Advanced Studies and Research, Vallabh Vidya Nagar 388 120, Gujarat, India
| | - Rita N. Kumar
- Department of Biological and Environmental Sciences, Natubhai V. Patel College of Pure and Applied Sciences, Vallabh Vidya Nagar 388 120, Gujarat, India
| | - Shamiyan R. Khan
- P.G. Department of Environmental Science and Technology, Institute of Science and Technology for Advanced Studies and Research, Vallabh Vidya Nagar 388 120, Gujarat, India
| |
Collapse
|
29
|
Qu Y, Zhang Z, Ma Q, Shen E, Shen W, Wang J, Cong L, Li D, Liu Z, Li H, Zhou J. Biotransformation of indole and its derivatives by a newly isolated Enterobacter sp. M9Z. Appl Biochem Biotechnol 2015; 175:3468-78. [PMID: 25725798 DOI: 10.1007/s12010-015-1518-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/21/2015] [Indexed: 11/25/2022]
Abstract
In this study, a novel bacterial strain M9Z with the ability of producing indigoids from indole and its derivatives was isolated from activated sludge and identified as Enterobacter sp. according to 16S ribosomal RNA (rRNA) sequence analysis. UV-vis spectrometry and high-performance liquid chromatography-mass spectrometry analysis indicated that the products produced from indole, 5-methylindole, 7-methylindole, and 5-methoxyindole were indigo with different substituent groups, and the possible biotransformation pathways of indole derivatives, i.e., indole(s)-cis-indole-2,3-dihydrodiol(s)-indoxyl(s)-indigoids, were proposed. The conditions of indole transformation and indigo biosynthesis by strain M9Z were optimized, and the maximal indigo yield (68.1 mg/L) was obtained when using 150 mg/L indole, 200 mg/L naphthalene, and 5 g/L yeast extract. The transformation rates of 5-methylindole, 7-methylindole, and 5-methoxyindole by strain M9Z were all close to 100 % under certain conditions, making strain M9Z an efficient indigoid producer. This is the first study of indole biotransformation and indigoid biosynthesis by genus Enterobacter.
Collapse
Affiliation(s)
- Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dave BP, Ghevariya CM, Bhatt JK, Dudhagara DR, Rajpara RK. Enhanced biodegradation of total polycyclic aromatic hydrocarbons (TPAHs) by marine halotolerant Achromobacter xylosoxidans using Triton X-100 and β-cyclodextrin--a microcosm approach. MARINE POLLUTION BULLETIN 2014; 79:123-129. [PMID: 24382467 DOI: 10.1016/j.marpolbul.2013.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/19/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
Ability of Achromobacter xylosoxidans, a chrysene degrading marine halotolerant bacterium to degrade polycyclic aromatic hydrocarbons (PAHs) using a cost effective laboratory microcosm approach, was investigated. Effect of variables as chrysene, glucose as a co-substrate, Triton X-100 as a non-ionic surfactant and β-cyclodextrin as a PAHs solubilizer was examined on degradation of low molecular weight (LMW) and high molecular weight (HMW) PAHs. A total of eleven PAHs detected from polluted saline soil were found to be degraded. Glucose, in combination with Triton X-100 and β-cyclodextrin resulted in 2.8 and 1.4-fold increase in degradation of LMW PAHs and 7.59 and 2.23-fold increase in degradation of HMW PAHs, respectively. Enhanced biodegradation of total PAHs (TPAHs) by amendments with Triton X-100 and β-cyclodextrin using Achromobacter xylosoxidans can prove to be promising approach for in situ bioremediation of marine sites contaminated with PAHs.
Collapse
Affiliation(s)
- Bharti P Dave
- Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India.
| | - Chirag M Ghevariya
- Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Jwalant K Bhatt
- Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Dushyant R Dudhagara
- Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Rahul K Rajpara
- Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| |
Collapse
|
31
|
Boon E, Meehan CJ, Whidden C, Wong DHJ, Langille MGI, Beiko RG. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev 2014; 38:90-118. [PMID: 23909933 PMCID: PMC4298764 DOI: 10.1111/1574-6976.12035] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/02/2013] [Accepted: 07/10/2013] [Indexed: 12/17/2022] Open
Abstract
A central challenge in microbial community ecology is the delineation of appropriate units of biodiversity, which can be taxonomic, phylogenetic, or functional in nature. The term 'community' is applied ambiguously; in some cases, the term refers simply to a set of observed entities, while in other cases, it requires that these entities interact with one another. Microorganisms can rapidly gain and lose genes, potentially decoupling community roles from taxonomic and phylogenetic groupings. Trait-based approaches offer a useful alternative, but many traits can be defined based on gene functions, metabolic modules, and genomic properties, and the optimal set of traits to choose is often not obvious. An analysis that considers taxon assignment and traits in concert may be ideal, with the strengths of each approach offsetting the weaknesses of the other. Individual genes also merit consideration as entities in an ecological analysis, with characteristics such as diversity, turnover, and interactions modeled using genes rather than organisms as entities. We identify some promising avenues of research that are likely to yield a deeper understanding of microbial communities that shift from observation-based questions of 'Who is there?' and 'What are they doing?' to the mechanistically driven question of 'How will they respond?'
Collapse
Affiliation(s)
- Eva Boon
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Patel V, Patel J, Madamwar D. Biodegradation of phenanthrene in bioaugmented microcosm by consortium ASP developed from coastal sediment of Alang-Sosiya ship breaking yard. MARINE POLLUTION BULLETIN 2013; 74:199-207. [PMID: 23906474 DOI: 10.1016/j.marpolbul.2013.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/11/2013] [Accepted: 07/01/2013] [Indexed: 06/02/2023]
Abstract
A phenanthrene-degrading bacterial consortium (ASP) was developed using sediment from the Alang-Sosiya shipbreaking yard at Gujarat, India. 16S rRNA gene-based molecular analyses revealed that the bacterial consortium consisted of six bacterial strains: Bacillus sp. ASP1, Pseudomonas sp. ASP2, Stenotrophomonas maltophilia strain ASP3, Staphylococcus sp. ASP4, Geobacillus sp. ASP5 and Alcaligenes sp. ASP6. The consortium was able to degrade 300 ppm of phenanthrene and 1000 ppm of naphthalene within 120 h and 48 h, respectively. Tween 80 showed a positive effect on phenanthrene degradation. The consortium was able to consume maximum phenanthrene at the rate of 46 mg/h/l and degrade phenanthrene in the presence of other petroleum hydrocarbons. A microcosm study was conducted to test the consortium's bioremediation potential. Phenanthrene degradation increased from 61% to 94% in sediment bioaugmented with the consortium. Simultaneously, bacterial counts and dehydrogenase activities also increased in the bioaugmented sediment. These results suggest that microbial consortium bioaugmentation may be a promising technology for bioremediation.
Collapse
Affiliation(s)
- Vilas Patel
- BRD School of Biosciences, Sardar Patel Maidan, Vadtal Road, Satellite complex, Post Box No. 39, Sardar Patel University, Vallabh Vidyanagar 388 120, Gujarat, India.
| | | | | |
Collapse
|
33
|
Ma J, Xu L, Jia L. Characterization of pyrene degradation by Pseudomonas sp. strain Jpyr-1 isolated from active sewage sludge. BIORESOURCE TECHNOLOGY 2013; 140:15-21. [PMID: 23669098 DOI: 10.1016/j.biortech.2013.03.184] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 05/02/2023]
Abstract
Using pyrene as a sole carbon, a new polycyclic aromatic hydrocarbons (PAHs)-degrading bacterial strain was isolated from the active sewage sludge. This strain was identified as Pseudomonas sp. Jpyr-1 by 16S rRNA gene sequence analysis. The maximum degradation rate of pyrene was 3.07 mg L(-1)h(-1) in 48 h incubation with initial pyrene concentration of 200 mg L(-1). Moreover, in binary system consisting of pyrene and another PAH, the enzyme system of Jpyr-1 showed a preference toward pyrene. Furthermore, competitive inhibition of pyrene degradation by other PAH compounds occurred in the binary system. Jpyr-1 could also rapidly degrade other PAHs, such as benzanthracene, chrysene and benzo[a]pyrene. Moreover, several metabolites were detected during pyrene degradation which indicated that Jpyr-1 degraded pyrene through the o-phthalate pathway. Taken together, these results indicated that Pseudomonas sp. Jpyr-1 was a new PAHs-degrading strain that might be useful in the bioremediation of sites contaminated with PAHs.
Collapse
Affiliation(s)
- Jing Ma
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116023, China
| | | | | |
Collapse
|
34
|
He Z, Xiao H, Tang L, Min H, Lu Z. Biodegradation of di-n-butyl phthalate by a stable bacterial consortium, HD-1, enriched from activated sludge. BIORESOURCE TECHNOLOGY 2013; 128:526-532. [PMID: 23201908 DOI: 10.1016/j.biortech.2012.10.107] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/05/2012] [Accepted: 10/07/2012] [Indexed: 05/26/2023]
Abstract
HD-1, a stable microbial consortium capable of mineralizing di-n-butyl phthalate (DBP), was developed from activated sludge. The dominant microorganisms in the consortium, Gordonia sp., Burkholderia sp. and Achromobacter sp., were identified by denaturing gradient gel electrophoresis (DGGE). The consortium could mineralize approximately 90% of 1200 mg/L DBP after 48 h of cultivation. The optimal DBP degradation conditions were 25-30 °C and pH 8.0-9.0. The addition of yeast (0.5 g/L), sodium acetate (0.5 g/L, 1.0 g/L), Brij 35 (0.2%, 0.5%, 1.0%), or Triton X-100 (0.2%) enhanced DBP degradation. The DBP degradation rate was influenced by the presence of dimethyl phthalate (DMP) and diethyl phthalate (DEP). Only one main intermediate, phthalic acid, could be monitored by gas chromatography-mass spectrometry (GC-MS) during the degradation process. The HD-1 consortium also utilized phenol, o-dihydroxybenzene as the sole carbon and energy source. The results indicate the consortium may represent a promising application for DBP bioremediation.
Collapse
Affiliation(s)
- Zhixing He
- College of Life Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
35
|
Interspecific interactions in mixed microbial cultures in a biodegradation perspective. Appl Microbiol Biotechnol 2012; 95:861-70. [PMID: 22733114 DOI: 10.1007/s00253-012-4234-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 01/08/2023]
Abstract
In recent works, microbial consortia consisting of various bacteria and fungi exhibited a biodegradation performance superior to single microbial strains. A highly efficient biodegradation of synthetic dyes, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other organic pollutants can be achieved by mixed microbial cultures that combine degradative enzyme activities inherent to individual consortium members. This review summarizes biodegradation results obtained with defined microbial cocultures and real microbial consortia. The necessity of using a proper strategy for the microbial consortium development and optimization was clearly demonstrated. Molecular genetic and proteomic techniques have revolutionized the study of microbial communities, and techniques such as the denaturing gradient gel electrophoresis, rRNA sequencing, and metaproteomics have been used to identify consortium members and to study microbial population dynamics. These analyses could help to further enhance and optimize the natural activities of mixed microbial cultures.
Collapse
|