1
|
Wang B, Wu Y, Li Q, Wu X, Kang X, Zhang L, Lyu M, Wang S. The Screening and Identification of a Dextranase-Secreting Marine Actinmycete Saccharomonospora sp. K1 and Study of Its Enzymatic Characteristics. Mar Drugs 2024; 22:69. [PMID: 38393040 PMCID: PMC10890608 DOI: 10.3390/md22020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, an actinomycete was isolated from sea mud. The strain K1 was identified as Saccharomonospora sp. by 16S rDNA. The optimal enzyme production temperature, initial pH, time, and concentration of the inducer of this actinomycete strain K1 were 37 °C, pH 8.5, 72 h, and 2% dextran T20 of medium, respectively. Dextranase from strain K1 exhibited maximum activity at 8.5 pH and 50 °C. The molecular weight of the enzyme was <10 kDa. The metal ions Sr2+ and K+ enhanced its activity, whereas Fe3+ and Co2+ had an opposite effect. In addition, high-performance liquid chromatography showed that dextran was mainly hydrolyzed to isomaltoheptose and isomaltopentaose. Also, it could effectively remove biofilms of Streptococcus mutans. Furthermore, it could be used to prepare porous sweet potato starch. This is the first time a dextranase-producing actinomycete strain was screened from marine samples.
Collapse
Affiliation(s)
- Boyan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
| | - Yizhuo Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiang Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xudong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinxin Kang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (B.W.); (Y.W.); (Q.L.); (X.W.); (L.Z.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
2
|
Boualis H, Wu X, Wang B, Li Q, Liu M, Zhang L, Lyu M, Wang S. Dextranase Production Using Marine Microbacterium sp. XD05 and Its Application. Mar Drugs 2023; 21:528. [PMID: 37888463 PMCID: PMC10607964 DOI: 10.3390/md21100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Dextranase, also known as glucanase, is a hydrolase enzyme that cleaves α-1,6 glycosidic bonds. In this study, a dextranase-producing strain was isolated from water samples of the Qingdao Sea and identified as Microbacterium sp. This strain was further evaluated for growth conditions, enzyme-producing conditions, enzymatic properties, and hydrolysates. Yeast extract and sodium chloride were found to be the most suitable carbon and nitrogen sources for strain growth, while sucrose and ammonium sodium were found to be suitable carbon and nitrogen sources for fermentation. The optimal pH was 7.5, with a culture temperature of 40 °C and a culture time of 48 h. Dextranase produced by strain XD05 showed good thermal stability at 40 °C by retaining more than 70% relative enzyme activity. The pH stability of the enzyme was better under a weak alkaline condition (pH 6.0-8.0). The addition of NH4+ increased dextranase activity, while Co2+ and Mn2+ had slight inhibitory effects on dextranase activity. In addition, high-performance liquid chromatography showed that dextran is mainly hydrolyzed to maltoheptanose, maltohexanose, maltopentose, and maltootriose. Moreover, it can form corn porous starch. Dextranase can be used in various fields, such as food, medicine, chemical industry, cosmetics, and agriculture.
Collapse
Affiliation(s)
- Hind Boualis
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xudong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Boyan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiang Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingwang Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
3
|
Mir B, Yang J, Li Z, Wang L, Ali V, Hu X, Zhang H. Review on recent advances in the properties, production and applications of microbial dextranases. World J Microbiol Biotechnol 2023; 39:242. [PMID: 37400664 DOI: 10.1007/s11274-023-03691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Dextranase is a type of hydrolase that is responsible for catalyzing the breakdown of high-molecular-weight dextran into low-molecular-weight polysaccharides. This process is called dextranolysis. A select group of bacteria and fungi, including yeasts and likely certain complex eukaryotes, produce dextranase enzymes as extracellular enzymes that are released into the environment. These enzymes join dextran's α-1,6 glycosidic bonds to make glucose, exodextranases, or isomalto-oligosaccharides (endodextranases). Dextranase is an enzyme that has a wide variety of applications, some of which include the sugar business, the production of human plasma replacements, the treatment of dental plaque and its protection, and the creation of human plasma replacements. Because of this, the quantity of studies carried out on worldwide has steadily increased over the course of the past couple of decades. The major focus of this study is on the most current advancements in the production, administration, and properties of microbial dextranases. This will be done throughout the entirety of the review.
Collapse
Affiliation(s)
- Baiza Mir
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jingwen Yang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Zhiwei Li
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lei Wang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Vilayat Ali
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xueqin Hu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hongbin Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
4
|
Wei Z, Chen J, Xu L, Liu N, Yang J, Wang S. Improving the thermostability of GH49 dextranase AoDex by site-directed mutagenesis. AMB Express 2023; 13:7. [PMID: 36656394 PMCID: PMC9852402 DOI: 10.1186/s13568-023-01513-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023] Open
Abstract
As an indispensable enzyme for the hydrolysis of dextran, dextranase has been widely used in the fields of food and medicine. It should be noted that the weak thermostability of dextranase has become a restricted factor for industrial applications. This study aims to improve the thermostability of dextranase AoDex in glycoside hydrolase (GH) family 49 that derived from Arthrobacter oxydans KQ11. Some mutants were predicted and constructed based on B-factor analysis, PoPMuSiC and HotMuSiC algorithms, and four mutants exhibited higher heat resistance. Compared with the wild-type, mutant S357P showed the best improved thermostability with a 5.4-fold increase of half-life at 60 °C, and a 2.1-fold increase of half-life at 65 °C. Furthermore, S357V displayed the most obvious increase in enzymatic activity and thermostability simultaneously. Structural modeling analysis indicated that the improved thermostability of mutants might be attributed to the introduction of proline and hydrophobic effects, which generated the rigid optimization of the structural conformation. These results illustrated that it was effective to improve the thermostability of dextranase AoDex by rational design and site-directed mutagenesis. The thermostable mutant of dextranase AoDex has potential application value, and it can also provide references for engineering other thermostable dextranases of the GH49 family.
Collapse
Affiliation(s)
- Zhen Wei
- grid.443480.f0000 0004 1800 0658Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005 China ,grid.443480.f0000 0004 1800 0658Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, 222005 China
| | - Jinling Chen
- grid.443480.f0000 0004 1800 0658School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, 222005 China
| | - Linxiang Xu
- grid.443480.f0000 0004 1800 0658Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005 China ,grid.443480.f0000 0004 1800 0658Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, 222005 China
| | - Nannan Liu
- grid.443480.f0000 0004 1800 0658Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005 China ,grid.443480.f0000 0004 1800 0658Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, 222005 China
| | - Jie Yang
- grid.443480.f0000 0004 1800 0658Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005 China ,grid.443480.f0000 0004 1800 0658School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, 222005 China
| | - Shujun Wang
- grid.443480.f0000 0004 1800 0658Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005 China ,grid.443480.f0000 0004 1800 0658School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, 222005 China
| |
Collapse
|
5
|
Zhang Z, Wang S, Wei L, Liao Y, Li D, Wu G, Wang W. Efficient removal of dextran in sugar juice by immobilized α-dextranase from Chaetomium gracile. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Dextran problem restricts the development of the sugar industry. Although the enzymatic treatment based on α-dextranase from Chaetomium gracile (α-dextranase (CG)) has been effective in solving this issue, the lack of immobilization products hinder its industrial applications. This research described a novel and suitable method to immobilize α-dextranase (CG). The purified α-dextranase (CG) was immobilized via cross-linking using modified chitosan as carriers. In addition, this study used a deep eutectic solvent that greatly improved the enzymatic properties of immobilized α-dextranase (CG). α-dextranase (CG) was immobilized by adding deep eutectic solvent (DES-IM-α-dextranase (CG)) showed better temperature tolerance and storage properties than free and ordinary immobilized counterparts. It can eliminate dextran by 59.71% in mixed sugarcane juice and 38.71% in clarified sugarcane juice. The achieved results were considerably better than those obtained using free and other immobilized enzymes. Altogether, these findings confirmed that DES-IM-α-dextranase (CG) displayed great potential in solving the dextran problem.
Collapse
Affiliation(s)
- Zedong Zhang
- College of Food Science and Engineering , Jiangxi Agricultural University , Nanchang , 330045 , P. R. China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi , Jiangxi Agricultural University , Nanchang 330045 , China
| | - Sheng Wang
- College of Food Science and Engineering , Jiangxi Agricultural University , Nanchang , 330045 , P. R. China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi , Jiangxi Agricultural University , Nanchang 330045 , China
| | - Longhan Wei
- College of Food Science and Engineering , Jiangxi Agricultural University , Nanchang , 330045 , P. R. China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi , Jiangxi Agricultural University , Nanchang 330045 , China
| | - Yanfang Liao
- College of Food Science and Engineering , Jiangxi Agricultural University , Nanchang , 330045 , P. R. China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi , Jiangxi Agricultural University , Nanchang 330045 , China
| | - Dongming Li
- College of Food Science and Engineering , Jiangxi Agricultural University , Nanchang , 330045 , P. R. China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi , Jiangxi Agricultural University , Nanchang 330045 , China
| | - Guoqiang Wu
- College of Food Science and Engineering , Jiangxi Agricultural University , Nanchang , 330045 , P. R. China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi , Jiangxi Agricultural University , Nanchang 330045 , China
| | - Wenjun Wang
- College of Food Science and Engineering , Jiangxi Agricultural University , Nanchang , 330045 , P. R. China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi , Jiangxi Agricultural University , Nanchang 330045 , China
| |
Collapse
|
6
|
Xu L, Zhang Y, Liu N, Wei Z, Wang Z, Wang Y, Wang S. Purification and characterization of cold-adapted and salt-tolerant dextranase from Cellulosimicrobium sp. THN1 and its potential application for treatment of dental plaque. Front Microbiol 2022; 13:1012957. [PMID: 36439846 PMCID: PMC9691899 DOI: 10.3389/fmicb.2022.1012957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/17/2022] [Indexed: 10/28/2023] Open
Abstract
The cold-adapted and/or salt-tolerant enzymes from marine microorganisms were confirmed to be meritorious tools to enhance the efficiency of biocatalysis in industrial biotechnology. We purified and characterized a dextranase CeDex from the marine bacterium Cellulosimicrobium sp. THN1. CeDex acted in alkaline pHs (7.5-8.5) and a broad temperature range (10-50°C) with sufficient pH stability and thermostability. Remarkably, CeDex retained approximately 40% of its maximal activities at 4°C and increased its activity to 150% in 4 M NaCl, displaying prominently cold adaptation and salt tolerance. Moreover, CeDex was greatly stimulated by Mg2+, Na+, Ba2+, Ca2+ and Sr2+, and sugarcane juice always contains K+, Ca2+, Mg2+ and Na+, so CeDex will be suitable for removing dextran in the sugar industry. The main hydrolysate of CeDex was isomaltotriose, accompanied by isomaltotetraose, long-chain IOMs, and a small amount of isomaltose. The amino acid sequence of CeDex was identified from the THN1 genomic sequence by Nano LC-MS/MS and classified into the GH49 family. Notably, CeDex could prevent the formation of Streptococcus mutans biofilm and disassemble existing biofilms at 10 U/ml concentration and would have great potential to defeat biofilm-related dental caries.
Collapse
Affiliation(s)
- Linxiang Xu
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
| | - Yan Zhang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Nannan Liu
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
| | - Zhen Wei
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
| | - Zhen Wang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shujun Wang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
7
|
Liu N, Li P, Dong X, Lan Y, Xu L, Wei Z, Wang S. Purification, Characterization, and Hydrolysate Analysis of Dextranase From Arthrobacter oxydans G6-4B. Front Bioeng Biotechnol 2022; 9:813079. [PMID: 35223821 PMCID: PMC8867256 DOI: 10.3389/fbioe.2021.813079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022] Open
Abstract
Dextran has aroused increasingly more attention as the primary pollutant in sucrose production and storage. Although enzymatic hydrolysis is more efficient and environmentally friendly than physical methods, the utilization of dextranase in the sugar industry is restricted by the mismatch of reaction conditions and heterogeneity of hydrolysis products. In this research, a dextranase from Arthrobacter oxydans G6-4B was purified and characterized. Through anion exchange chromatography, dextranase was successfully purified up to 32.25-fold with a specific activity of 288.62 U/mg protein and a Mw of 71.12 kDa. The optimum reaction conditions were 55°C and pH 7.5, and it remained relatively stable in the range of pH 7.0-9.0 and below 60°C, while significantly inhibited by metal ions, such as Ni+, Cu2+, Zn2+, Fe3+, and Co2+. Noteworthily, a distinction of previous studies was that the hydrolysates of dextran were basically isomalto-triose (more than 73%) without glucose, and the type of hydrolysates tended to be relatively stable in 30 min; dextranase activity showed a great influence on hydrolysate. In conclusion, given the superior thermal stability and simplicity of hydrolysates, the dextranase in this study presented great potential in the sugar industry to remove dextran and obtain isomalto-triose.
Collapse
Affiliation(s)
- Nannan Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Peiting Li
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Xiujin Dong
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Yusi Lan
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Linxiang Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Zhen Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shujun Wang
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
8
|
Wang X, Zhang Y, Li M, Qin Q, Xie T. Purification and characterization of dextranase from Penicillium cyclopium CICC-4022 and its degradation of dextran. Int J Biol Macromol 2022; 204:627-634. [PMID: 35124020 DOI: 10.1016/j.ijbiomac.2022.01.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 01/19/2022] [Accepted: 01/30/2022] [Indexed: 11/05/2022]
Abstract
A dextranase was purified from Penicillium cyclopium CICC-4022 by ammonium sulfate fractionation and secondary tangential flow filtration, and the enzymatic properties were studied. The purified dextranase was used to regulated the molecular mass and homogeneity of dextran. Weight-average molecular mass (Mw) and polydispersity index (Mw/Mn) of dextran were measured by gel permeation chromatography (GPC) coupled with a triple-detector array (GPC-TDA), which is composed of a multiple-angle light scattering, a viscometer, and a refractive-index detector. The dextranase was purified by 2.24-fold, the recovery rate was 45.84%, the specific activity was 1442.05 U/mg, and the Mw was 77 KDa. Dextranase showed maximum activity at pH of 5.0 and 55 °C. Na+, K+ and NH4+ can effectively improve the dextranase activity, Cu2+ and Pb2+ can strongly inhibit the dextranase activity. Dextranase specifically degraded the α-1,6 glycosidic bonds of dextran. By controlling the dextranase activity, substrate concentration, and time, the specific Mw dextran with good homogeneity was obtained. The structure of dextran was not altered before or after dextranase hydrolysis, but its conformation changed from a spherical chain to a compliant chain. When the Mw of the dextran product was about 5 KDa, it was a compact spherical chain conformation in solution.
Collapse
Affiliation(s)
- Xuejiao Wang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, Guangxi, PR China
| | - Yirui Zhang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, Guangxi, PR China
| | - Mei Li
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, Guangxi, PR China; Key Laboratory of Chemical and Biological Transforming Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, Guangxi, PR China.
| | - Qin Qin
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, Guangxi, PR China; Key Laboratory of Chemical and Biological Transforming Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, Guangxi, PR China
| | - Tao Xie
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, Guangxi, PR China; Key Laboratory of Chemical and Biological Transforming Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, Guangxi, PR China.
| |
Collapse
|
9
|
Singh R, Ren Z, Shi Y, Lin S, Kwon K, Balamurugan S, Rai V, Mante F, Koo H, Daniell H. Affordable oral health care: dental biofilm disruption using chloroplast made enzymes with chewing gum delivery. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2113-2125. [PMID: 34076337 PMCID: PMC8486246 DOI: 10.1111/pbi.13643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 05/09/2023]
Abstract
Current approaches for oral health care rely on procedures that are unaffordable to impoverished populations, whereas aerosolized droplets in the dental clinic and poor oral hygiene may contribute to spread of several infectious diseases including COVID-19, requiring new solutions for dental biofilm/plaque treatment at home. Plant cells have been used to produce monoclonal antibodies or antimicrobial peptides for topical applications to decrease colonization of pathogenic microbes on dental surface. Therefore, we investigated an affordable method for dental biofilm disruption by expressing lipase, dextranase or mutanase in plant cells via the chloroplast genome. Antibiotic resistance gene used to engineer foreign genes into the chloroplast genome were subsequently removed using direct repeats flanking the aadA gene and enzymes were successfully expressed in marker-free lettuce transplastomic lines. Equivalent enzyme units of plant-derived lipase performed better than purified commercial enzymes against biofilms, specifically targeting fungal hyphae formation. Combination of lipase with dextranase and mutanase suppressed biofilm development by degrading the biofilm matrix, with concomitant reduction of bacterial and fungal accumulation. In chewing gum tablets formulated with freeze-dried plant cells, expressed protein was stable up to 3 years at ambient temperature and was efficiently released in a time-dependent manner using a mechanical chewing simulator device. Development of edible plant cells expressing enzymes eliminates the need for purification and cold-chain transportation, providing a potential translatable therapeutic approach. Biofilm disruption through plant enzymes and chewing gum-based delivery offers an effective and affordable dental biofilm control at home particularly for populations with minimal oral care access.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Zhi Ren
- Divisions of Community Oral Health & Pediatric DentistryDepartment of OrthodonticsSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Yao Shi
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shina Lin
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Kwang‐Chul Kwon
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shanmugaraj Balamurugan
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vineeta Rai
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Francis Mante
- Department of Preventive and Restorative DentistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Hyun Koo
- Divisions of Community Oral Health & Pediatric DentistryDepartment of OrthodonticsSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Center for Innovation & Precision DentistrySchool of Dental Medicine and School of Engineering & Applied SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Center for Innovation & Precision DentistrySchool of Dental Medicine and School of Engineering & Applied SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
10
|
Ning Z, Dong D, Tian X, Zu H, Tian X, Lyu M, Wang S. Alkalic dextranase produced by marine bacterium Cellulosimicrobium sp. PX02 and its application. J Basic Microbiol 2021; 61:1002-1015. [PMID: 34528722 DOI: 10.1002/jobm.202100310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 11/08/2022]
Abstract
The enzyme dextranase is widely used in the sugar and food industries, as well as in the medical field. Most land-derived dextranases are produced by fungi and have the disadvantages of long production cycles, low tolerance to environmental conditions, and low safety. The use of marine bacteria to produce dextranases may overcome these problems. In this study, a dextranase-producing bacterium was isolated from the Rizhao seacoast of Shandong, China. The bacterium, denoted as PX02, was identified as Cellulosimicrobium sp. and its growing conditions and the production and properties of its dextranase were investigated. The dextranase had a molecular weight of approximately 40 kDa, maximum activity at 40°C and pH 7.5, with a stability range of up to 45°C and pH 7.0-9.0. High-performance liquid chromatography showed that the dextranase hydrolyzed dextranT20 to isomaltotriose, maltopentaose, and isomaltooligosaccharides. Hydrolysis by dextranase produced excellent antioxidant effects, suggesting its potential use in the health food industry. Investigation of the action of the dextranase on Streptococcus mutans biofilm and scanning electron microscopy showed that it to be effective both for removing and inhibiting the formation of biofilms, suggesting its potential application in the dental industry.
Collapse
Affiliation(s)
- Zhe Ning
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Dongxue Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xiaopeng Tian
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Hangtian Zu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xueqing Tian
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
11
|
Potential application of dextranase produced by Penicillium aculeatum in solid-state fermentation from brewer's spent grain in sugarcane process factories. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Martínez D, Menéndez C, Chacón O, Fuentes AD, Borges D, Sobrino A, Ramírez R, Pérez ER, Hernández L. Removal of bacterial dextran in sugarcane juice by Talaromyces minioluteus dextranase expressed constitutively in Pichia pastoris. J Biotechnol 2021; 333:10-20. [PMID: 33901619 DOI: 10.1016/j.jbiotec.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 11/27/2022]
Abstract
A gene construct encoding the mature region of Talaromyces minioluteus dextranase (EC 3.2.1.11) fused to the Saccharomyces cerevisiae SUC2 signal sequence was expressed in Pichia pastoris under the constitutive glyceraldehyde 3-phosphate dehydrogenase promoter (pGAP). The increase of the transgene dosage from one to two and four copies enhanced proportionally the extracellular yield of the recombinant enzyme (r-TmDEX) without inhibiting cell growth. The volumetric productivity of the four-copy clone in fed batch fermentation (51 h) using molasses as carbon source was 1706 U/L/h. The secreted N-glycosylated r-TmDEX was optimally active at pH 4.5-5.5 and temperature 50-60 °C. The addition of sucrose (600 g/L) as a stabilizer retained intact the r-TmDEX activity after 1-h incubation at 50-60 °C and pH 5.5. Bacterial dextran in deteriorated sugarcane juice was completely removed by applying a crude preparation of secreted r-TmDEX. The high yield of r-TmDEX in methanol-free cultures and the low cost of the fed batch fermentation make the P. pastoris pGAP-based expression system appropriate for the large scale production of dextranase and its use for dextran removal at sugar mills.
Collapse
Affiliation(s)
- Duniesky Martínez
- Laboratorio de Fermentaciones, Centro de Ingeniería Genética y Biotecnología de Sancti Spíritus (CIGBSS), Circunvalante Norte S/N, Olivos 3, Apartado Postal 83, Sancti Spíritus, 60200, Cuba
| | - Carmen Menéndez
- Grupo Tecnología de Enzimas, Dirección de Investigaciones Agropecuarias, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 entre 158 y 190, Apartado Postal 6162, Habana, 10600, Cuba
| | - Osmani Chacón
- Grupo Tecnología de Enzimas, Dirección de Investigaciones Agropecuarias, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 entre 158 y 190, Apartado Postal 6162, Habana, 10600, Cuba
| | - Alejandro D Fuentes
- Grupo Virología de Plantas, Dirección de Investigaciones Agropecuarias, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 entre 158 y 190, Apartado Postal 6162, Habana, 10600, Cuba
| | - Dalia Borges
- Laboratorio de Fermentaciones, Centro de Ingeniería Genética y Biotecnología de Sancti Spíritus (CIGBSS), Circunvalante Norte S/N, Olivos 3, Apartado Postal 83, Sancti Spíritus, 60200, Cuba
| | - Alina Sobrino
- Laboratorio de Fermentaciones, Centro de Ingeniería Genética y Biotecnología de Sancti Spíritus (CIGBSS), Circunvalante Norte S/N, Olivos 3, Apartado Postal 83, Sancti Spíritus, 60200, Cuba
| | - Ricardo Ramírez
- Grupo Tecnología de Enzimas, Dirección de Investigaciones Agropecuarias, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 entre 158 y 190, Apartado Postal 6162, Habana, 10600, Cuba
| | - Enrique R Pérez
- Laboratorio de Fermentaciones, Centro de Ingeniería Genética y Biotecnología de Sancti Spíritus (CIGBSS), Circunvalante Norte S/N, Olivos 3, Apartado Postal 83, Sancti Spíritus, 60200, Cuba
| | - Lázaro Hernández
- Grupo Tecnología de Enzimas, Dirección de Investigaciones Agropecuarias, Centro de Ingeniería Genética y Biotecnología (CIGB), Ave 31 entre 158 y 190, Apartado Postal 6162, Habana, 10600, Cuba.
| |
Collapse
|
13
|
Panigrahi C, Shaikh AEY, Bag BB, Mishra HN, De S. A technological review on processing of sugarcane juice: Spoilage, preservation, storage, and packaging aspects. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Bijaya Bharati Bag
- Department of Agricultural and Food Engineering IIT Kharagpur Kharagpur India
| | - Hari Niwas Mishra
- Department of Agricultural and Food Engineering IIT Kharagpur Kharagpur India
| | - Sirshendu De
- Department of Chemical Engineering IIT Kharagpur Kharagpur India
| |
Collapse
|
14
|
Dong D, Wang X, Deng T, Ning Z, Tian X, Zu H, Ding Y, Wang C, Wang S, Lyu M. A novel dextranase gene from the marine bacterium Bacillus aquimaris S5 and its expression and characteristics. FEMS Microbiol Lett 2021; 368:6105217. [PMID: 33476380 DOI: 10.1093/femsle/fnab007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/18/2021] [Indexed: 01/18/2023] Open
Abstract
Dextranase specifically hydrolyzes dextran and is used to produce functional isomalto-saccharide prebiotics. Moreover, dextranase is used as an additive in mouthwash to remove dental plaque. We cloned and expressed the dextranase gene of the marine bacterium Bacillus aquimaris S5. The length of the BaDex gene was 1788 bp, encoding 573 amino acids. Using bioinformatics to predict and analyze the amino acid sequence of BaDex, we found the isoelectric point and instability coefficient to be 4.55 and 29.22, respectively. The average hydrophilicity (GRAVY) was -0.662. The secondary structure of BaDex consisted of 145 alpha helices, accounting for 25.31% of the protein; 126 extended strands, accounting for 21.99%; and 282 random coils, accounting for 49.21%. The 3D structure of the BaDex protein was predicted and simulated using SWISS-MODEL, and BaDex was classified as a Glycoside Hydrolase Family 66 protein. The optimal temperature and pH for BaDex activity were 40°C and 6.0, respectively. The hydrolysates had excellent antioxidant activity, and 8 U/mL of BaDex could remove 80% of dental plaque in MBRC experiment. This recombinant protein thus has great promise for applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Dongxue Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Xuelian Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Tian Deng
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Zhe Ning
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Xiaopeng Tian
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Hangtian Zu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Yanshuai Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Cang Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Collaborative Innovation Center of Modern Biological Manufacturing, Anhui University, 111 Jiulong Road, Hefei 230039, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, PR China.,Collaborative Innovation Center of Modern Biological Manufacturing, Anhui University, 111 Jiulong Road, Hefei 230039, China
| |
Collapse
|
15
|
Expression, purification and characterization of a cold-adapted dextranase from marine bacteria and its ability to remove dental plaque. Protein Expr Purif 2020; 174:105678. [DOI: 10.1016/j.pep.2020.105678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
|
16
|
Liu X, Deng T, Liu X, Lai X, Feng Y, Lyu M, Wang S. Isomalto-Oligosaccharides Produced by Endodextranase Shewanellasp. GZ-7 From Sugarcane Plants. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20953286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oligosaccharides have important alimental and medical applications. Dextranase has been used to produce isomalto-oligosaccharides (IMOs). In this study, we isolated dextranase-producing bacteria from sugarcane-cultivated soil. Identification of the isolate based on its phenotypical, physiological, and biochemical characteristics, as well as 16S ribosomal deoxyribonucleic acid gene sequencing yielded Shewanella sp. strain GZ-7. The molecular weight of the dextranase produced by this strain was 100-135 kDa. The optimum temperature and pH for dextranase production were 40 °C and 7.5, respectively. The enzyme was found to be stable at the pH range of 6.0-8.0 and the temperature range of 20 °C-40 °C. Thin-layer chromatography and high-performance liquid chromatography of the enzymolysis products of the substrate confirmed the enzyme to be endodextranase. Under the optimal conditions, the ratio of IMOs could reach 91.8% of the hydrolyzate. The final products were found to efficiently scavenge the 2,2-diphenyl-1-picrylhydrazyl, hydroxyl, and superoxide anion radicals. In general, dextranase and hydrolyzates have high potential prospects for application in the future.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, P. R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, P. R. China
| | - Tian Deng
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, P. R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, P. R. China
| | - Xueqin Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, P. R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, P. R. China
| | - Xiaohua Lai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, P. R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, P. R. China
| | - Yanli Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, P. R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, P. R. China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, P. R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, P. R. China
- Collaborative Innovation Center of Modern Biological Manufacturing, Anhui University, Hefei, P. R. China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, P. R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, P. R. China
- Collaborative Innovation Center of Modern Biological Manufacturing, Anhui University, Hefei, P. R. China
| |
Collapse
|
17
|
Son G, Nguyen TTH, Park B, Kwak S, Jin J, Kim YM, Moon YH, Park S, Kim SB, Kim D. Synthesis and characterization of stevioside having low degree polymerized glucosides using dextransucrase and dextranase. Enzyme Microb Technol 2020; 132:109412. [DOI: 10.1016/j.enzmictec.2019.109412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023]
|
18
|
Salwan R, Sharma V. Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiol Res 2020; 231:126374. [DOI: 10.1016/j.micres.2019.126374] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
|
19
|
Lai X, Liu X, Liu X, Deng T, Feng Y, Tian X, Lyu M, Wang AS. The Marine Catenovulum agarivorans MNH15 and Dextranase: Removing Dental Plaque. Mar Drugs 2019; 17:md17100592. [PMID: 31635432 PMCID: PMC6835279 DOI: 10.3390/md17100592] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/03/2022] Open
Abstract
Dextranase, a hydrolase that specifically hydrolyzes α-1,6-glucosidic bonds, has been used in the pharmaceutical, food, and biotechnology industries. In this study, the strain of Catenovulum agarivorans MNH15 was screened from marine samples. When the temperature, initial pH, NaCl concentration, and inducer concentration were 30 °C, 8.0, 5 g/L, and 8 g/L, respectively, it yielded more dextranase. The molecular weight of the dextranase was approximately 110 kDa. The maximum enzyme activity was achieved at 40 °C and a pH of 8.0. The enzyme was stable at 30 °C and a pH of 5–9. The metal ion Sr2+ enhanced its activity, whereas NH4+, Co2+, Cu2+, and Li+ had the opposite effect. The dextranase effectively inhibited the formation of biofilm by Streptococcus mutans. Moreover, sodium fluoride, xylitol, and sodium benzoate, all used in dental care products, had no significant effect on dextranase activity. In addition, high-performance liquid chromatography (HPLC) showed that dextran was mainly hydrolyzed to glucose, maltose, and maltoheptaose. The results indicated that dextranase has high application potential in dental products such as toothpaste and mouthwash.
Collapse
Affiliation(s)
- Xiaohua Lai
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Xin Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Xueqin Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Tian Deng
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yanli Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Xiaopeng Tian
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
- Collaborative Innovation Center of Modern Biological Manufacturing, Anhui University, Hefei 230039, China.
| | - And Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
- Collaborative Innovation Center of Modern Biological Manufacturing, Anhui University, Hefei 230039, China.
| |
Collapse
|
20
|
Liu H, Ren W, Ly M, Li H, Wang S. Characterization of an Alkaline GH49 Dextranase from Marine Bacterium Arthrobacter oxydans KQ11 and Its Application in the Preparation of Isomalto-Oligosaccharide. Mar Drugs 2019; 17:md17080479. [PMID: 31430863 PMCID: PMC6723167 DOI: 10.3390/md17080479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 11/16/2022] Open
Abstract
A GH49 dextranase gene DexKQ was cloned from marine bacteria Arthrobacter oxydans KQ11. It was recombinantly expressed using an Escherichia coli system. Recombinant DexKQ dextranase of 66 kDa exhibited the highest catalytic activity at pH 9.0 and 55 °C. kcat/Km of recombinant DexKQ at the optimum condition reached 3.03 s−1 μM−1, which was six times that of commercial dextranase (0.5 s−1 μM−1). DexKQ possessed a Km value of 67.99 µM against dextran T70 substrate with 70 kDa molecular weight. Thin-layer chromatography (TLC) analysis showed that main hydrolysis end products were isomalto-oligosaccharide (IMO) including isomaltotetraose, isomaltopantose, and isomaltohexaose. When compared with glucose, IMO could significantly improve growth of Bifidobacterium longum and Lactobacillus rhamnosus and inhibit growth of Escherichia coli and Staphylococcus aureus. This is the first report of dextranase from marine bacteria concerning recombinant expression and application in isomalto-oligosaccharide preparation.
Collapse
Affiliation(s)
- Hongfei Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wei Ren
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Modern Bio-Manufacture, Anhui University, Hefei 230039, China
| | - Mingsheng Ly
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haifeng Li
- Medical College, Hangzhou Normal University, Hangzhou 311121, China.
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
21
|
Ren W, Ding Y, Gu L, Yan W, Wang C, Lyu M, Wang C, Wang S. Characterization and mechanism of the effects of Mg-Fe layered double hydroxide nanoparticles on a marine bacterium: new insights from genomic and transcriptional analyses. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:196. [PMID: 31428192 PMCID: PMC6696678 DOI: 10.1186/s13068-019-1528-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Layered double hydroxides (LDHs) have received widespread attention for their potential applications in catalysis, polymer nanocomposites, pharmaceuticals, and sensors. Here, the mechanism underlying the physiological effects of Mg-Fe layered double hydroxide nanoparticles on the marine bacterial species Arthrobacter oxidans KQ11 was investigated. RESULTS Increased yields of marine dextranase (Aodex) were obtained by exposing A. oxidans KQ11 to Mg-Fe layered double hydroxide nanoparticles (Mg-Fe-LDH NPs). Furthermore, the potential effects of Mg-Fe-LDH NPs on bacterial growth and Aodex production were preliminarily investigated. A. oxidans KQ11 growth was not affected by exposure to the Mg-Fe-LDH NPs. In contrast, a U-shaped trend of Aodex production was observed after exposure to NPs at a concentration of 10 μg/L-100 mg/L, which was due to competition between Mg-Fe-LDH NP adsorption on Aodex and the promotion of Aodex expression by the NPs. The mechanism underling the effects of Mg-Fe-LDH NPs on A. oxidans KQ11 was investigated using a combination of physiological characterization, genomics, and transcriptomics. Exposure to 100 mg/L of Mg-Fe-LDH NPs led to NP adsorption onto Aodex, increased expression of Aodex, and generation of a new Shine-Dalgarno sequence (GGGAG) and sRNAs that both influenced the expression of Aodex. Moreover, the expressions of transcripts related to ferric iron metabolic functions were significantly influenced by treatment. CONCLUSIONS These results provide valuable information for further investigation of the A. oxidans KQ11 response to Mg-Fe-LDH NPs and will aid in achieving improved marine dextranase production, and even improve such activities in other marine microorganisms.
Collapse
Affiliation(s)
- Wei Ren
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| | - Yanshuai Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
| | - Lide Gu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
| | - Wanli Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
| | - Cang Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
- Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, 230039 Anhui People’s Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
- Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, 230039 Anhui People’s Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
| |
Collapse
|
22
|
Ren W, Liu L, Gu L, Yan W, Feng YL, Dong D, Wang S, Lyu M, Wang C. Crystal Structure of GH49 Dextranase from Arthrobacter oxidans KQ11: Identification of Catalytic Base and Improvement of Thermostability Using Semirational Design Based on B-Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4355-4366. [PMID: 30919632 DOI: 10.1021/acs.jafc.9b01290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The crystal structure of Dextranase from the marine bacterium Arthrobacter oxidans KQ11 (Aodex) was determined at a resolution of 1.4 Å. The crystal structure of the conserved Aodex fragment (Ala52-Thr638) consisted of an N-terminal domain N and a C-terminal domain C. The N-terminal domain N was identified as a β-sandwich, connected to a right-handed parallel β-helix at the C-terminus. Sequence comparisons, cavity regions, and key residues of the catalytic domain analysis all suggested that the Aodex was an inverting enzyme, and the catalytic acid and base were Asp439 and Asp420, respectively. Asp440 was not a general base in the Aodex catalytic domain, and Asp396 in Dex49A may not be a general base in the catalytic domain. The thermostability of the S357F mutant using semirational design based on B-factors was clearly better than that of wild-type Aodex. This process may promote the aromatic-aromatic interactions that increase the thermostability of mutant Phe357.
Collapse
Affiliation(s)
- Wei Ren
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | | | | | | | | | | | | | | | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|
23
|
Muñoz MAM, Jáuregui Rincón J, Carreón LS, Chávez Vela NA. Dextranase production by recombinant Pichia pastoris under operational volumetric mass transfer coefficient (kLa) and volumetric gassed power input (Pg/V) attainable at commercial large scale. Prep Biochem Biotechnol 2019; 49:606-615. [DOI: 10.1080/10826068.2019.1591992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Miguel Angel Marín Muñoz
- Departamento de Ingeniería Bioquímica, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Juan Jáuregui Rincón
- Departamento de Ingeniería Bioquímica, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Leobardo Serrano Carreón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Norma Angélica Chávez Vela
- Departamento de Ingeniería Bioquímica, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
24
|
Purification, Characterization and Degradation Performance of a Novel Dextranase from Penicillium cyclopium CICC-4022. Int J Mol Sci 2019; 20:ijms20061360. [PMID: 30889875 PMCID: PMC6471568 DOI: 10.3390/ijms20061360] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 11/17/2022] Open
Abstract
A novel dextranase was purified from Penicillium cyclopium CICC-4022 by ammonium sulfate fractional precipitation and gel filtration chromatography. The effects of temperature, pH and some metal ions and chemicals on dextranase activity were investigated. Subsequently, the dextranase was used to produce dextran with specific molecular mass. Weight-average molecular mass (Mw) and the ratio of weight-average molecular mass/number-average molecular mass, or polydispersity index (Mw/Mn), of dextran were measured by multiple-angle laser light scattering (MALS) combined with gel permeation chromatography (GPC). The dextranase was purified to 16.09-fold concentration; the recovery rate was 29.17%; and the specific activity reached 350.29 U/mg. Mw of the dextranase was 66 kDa, which is similar to dextranase obtained from other Penicillium species reported previously. The highest activity was observed at 55 °C and a pH of 5.0. This dextranase was identified as an endodextranase, which specifically degraded the α-1,6 glucosidic bonds of dextran. According to metal ion dependency tests, Li+, Na+ and Fe2+ were observed to effectively improve the enzymatic activity. In particular, Li+ could improve the activity to 116.28%. Furthermore, the dextranase was efficient at degrading dextran and the degradation rate can be well controlled by the dextranase activity, substrate concentration and reaction time. Thus, our results demonstrate the high potential of this dextranase from Penicillium cyclopium CICC-4022 as an efficient enzyme to produce specific clinical dextrans.
Collapse
|
25
|
Liu L, Ding Y, Liu S, Wang S, Fang Y, Lyu M. Dextrans removal from sugarcane juice using dextranase from marine bacterium Arthrobacter oxydans KQ11. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- L. Liu
- College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang 222005, China P.R
| | - Y. Ding
- College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang 222005, China P.R
| | - S. Liu
- College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang 222005, China P.R
| | - S. Wang
- Marine Resources Development Institute of Jiangsu, Lianyungang 222005, China P.R
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang 222005, China P.R
- College of Marine Bioresources and Enviroments, Huaihai Institute of Technology, Lianyungang 222005, China P.R
| | - Y. Fang
- College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang 222005, China P.R
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang 222005, China P.R
| | - M. Lyu
- College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang 222005, China P.R
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang 222005, China P.R
| |
Collapse
|
26
|
Purification, characterization, and biocatalytic potential of a novel dextranase from Chaetomium globosum. Biotechnol Lett 2018; 40:1407-1418. [DOI: 10.1007/s10529-018-2599-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
|
27
|
Streptomyces spp. in the biocatalysis toolbox. Appl Microbiol Biotechnol 2018; 102:3513-3536. [PMID: 29502181 DOI: 10.1007/s00253-018-8884-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
About 20,100 research publications dated 2000-2017 were recovered searching the PubMed and Web of Science databases for Streptomyces, which are the richest known source of bioactive molecules. However, these bacteria with versatile metabolism are powerful suppliers of biocatalytic tools (enzymes) for advanced biotechnological applications such as green chemical transformations and biopharmaceutical and biofuel production. The recent technological advances, especially in DNA sequencing coupled with computational tools for protein functional and structural prediction, and the improved access to microbial diversity enabled the easier access to enzymes and the ability to engineer them to suit a wider range of biotechnological processes. The major driver behind a dramatic increase in the utilization of biocatalysis is sustainable development and the shift toward bioeconomy that will, in accordance to the UN policy agenda "Bioeconomy to 2030," become a global effort in the near future. Streptomyces spp. already play a significant role among industrial microorganisms. The intention of this minireview is to highlight the presence of Streptomyces in the toolbox of biocatalysis and to give an overview of the most important advances in novel biocatalyst discovery and applications. Judging by the steady increase in a number of recent references (228 for the 2000-2017 period), it is clear that biocatalysts from Streptomyces spp. hold promises in terms of valuable properties and applicative industrial potential.
Collapse
|
28
|
Purification and Characterization of a Biofilm-Degradable Dextranase from a Marine Bacterium. Mar Drugs 2018; 16:md16020051. [PMID: 29414837 PMCID: PMC5852479 DOI: 10.3390/md16020051] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 12/03/2022] Open
Abstract
This study evaluated the ability of a dextranase from a marine bacterium Catenovulum sp. (Cadex) to impede formation of Streptococcus mutans biofilms, a primary pathogen of dental caries, one of the most common human infectious diseases. Cadex was purified 29.6-fold and had a specific activity of 2309 U/mg protein and molecular weight of 75 kDa. Cadex showed maximum activity at pH 8.0 and 40 °C and was stable at temperatures under 30 °C and at pH ranging from 5.0 to 11.0. A metal ion and chemical dependency study showed that Mn2+ and Sr2+ exerted positive effects on Cadex, whereas Cu2+, Fe3+, Zn2+, Cd2+, Ni2+, and Co2+ functioned as inhibitors. Several teeth rinsing product reagents, including carboxybenzene, ethanol, sodium fluoride, and xylitol were found to have no effects on Cadex activity. A substrate specificity study showed that Cadex specifically cleaved the α-1,6 glycosidic bond. Thin layer chromatogram and high-performance liquid chromatography indicated that the main hydrolysis products were isomaltoogligosaccharides. Crystal violet staining and scanning electron microscopy showed that Cadex impeded the formation of S. mutans biofilm to some extent. In conclusion, Cadex from a marine bacterium was shown to be an alkaline and cold-adapted endo-type dextranase suitable for development of a novel marine agent for the treatment of dental caries.
Collapse
|
29
|
Wang Y, Wang Q, Song X, Cai J. Improving the stability and reusability of dextranase by immobilization on polyethylenimine modified magnetic particles. NEW J CHEM 2018. [DOI: 10.1039/c8nj00227d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The stability and reusability of dextranase were improved by immobilizing it on polyethylenimine modified magnetic particles.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Pharmacy
- Anhui Medical College
- Hefei
- P. R. China
| | - Qiang Wang
- Department of Pharmacy
- Anhui Medical College
- Hefei
- P. R. China
| | - Xiaoping Song
- Department of Pharmacy
- Anhui Medical College
- Hefei
- P. R. China
| | - Jingjing Cai
- Department of Pharmacy
- Anhui Medical College
- Hefei
- P. R. China
| |
Collapse
|
30
|
Zhang YQ, Li RH, Zhang HB, Wu M, Hu XQ. Purification, characterization, and application of a thermostable dextranase from Talaromyces pinophilus. ACTA ACUST UNITED AC 2017; 44:317-327. [DOI: 10.1007/s10295-016-1886-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 12/14/2016] [Indexed: 11/25/2022]
Abstract
Abstract
Dextranase can hydrolyze dextran to low-molecular-weight polysaccharides, which have important medical applications. In the study, dextranase-producing strains were screened from various soil sources. The strain H6 was identified as Talaromyces pinophilus by a standard ITS rDNA analysis. Crude dextranase was purified by ammonium sulfate fractionation and Sepharose 6B chromatography, which resulted in a 6.69-fold increase in the specific activity and an 11.27% recovery. The enzyme was 58 kDa, lower than most dextranase, with an optimum temperature of 45 °C and an optimum pH of 6.0, and identified as an endodextranase. It was steady over a pH range from 3.0 to 10.0 and had reasonable thermal stability. The dextranase activity was increased by urea, which enhanced its activity to 115.35% and was conducive to clinical dextran production. Therefore, T. pinophilus H6 dextranase could show its superiority in practical applications.
Graphical Abstract
Collapse
Affiliation(s)
- Yu-Qi Zhang
- grid.256896.6 Department of Pharmaceutical Engineering, School of Biological and Medical Engineering Hefei University of Technology 230009 Hefei People’s Republic of China
| | - Ruo-Han Li
- grid.256896.6 Department of Pharmaceutical Engineering, School of Biological and Medical Engineering Hefei University of Technology 230009 Hefei People’s Republic of China
| | - Hong-Bin Zhang
- grid.256896.6 Department of Pharmaceutical Engineering, School of Biological and Medical Engineering Hefei University of Technology 230009 Hefei People’s Republic of China
| | - Min Wu
- grid.256896.6 Department of Pharmaceutical Engineering, School of Biological and Medical Engineering Hefei University of Technology 230009 Hefei People’s Republic of China
| | - Xue-Qin Hu
- grid.256896.6 Department of Pharmaceutical Engineering, School of Biological and Medical Engineering Hefei University of Technology 230009 Hefei People’s Republic of China
| |
Collapse
|
31
|
Kamala K, Sivaperumal P. Biomedical Applications of Enzymes From Marine Actinobacteria. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 80:107-123. [PMID: 28215321 DOI: 10.1016/bs.afnr.2016.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described.
Collapse
Affiliation(s)
- K Kamala
- Center for Environmental Nuclear Research, Directorate of Research, SRM University, Kattankulathur, India.
| | - P Sivaperumal
- Center for Environmental Nuclear Research, Directorate of Research, SRM University, Kattankulathur, India
| |
Collapse
|
32
|
Wang X, Cheng H, Lu M, Fang Y, Jiao Y, Li W, Zhao G, Wang S. Dextranase from Arthrobacter oxydans KQ11-1 inhibits biofilm formation by polysaccharide hydrolysis. BIOFOULING 2016; 32:1223-1233. [PMID: 27762637 DOI: 10.1080/08927014.2016.1239722] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Dental plaque is a biofilm of water-soluble and water-insoluble polysaccharides, produced primarily by Streptococcus mutans. Dextranase can inhibit biofilm formation. Here, a dextranase gene from the marine microorganism Arthrobacter oxydans KQ11-1 is described, and cloned and expressed using E. coli DH5α competent cells. The recombinant enzyme was then purified and its properties were characterized. The optimal temperature and pH were determined to be 60°C and 6.5, respectively. High-performance liquid chromatography data show that the final hydrolysis products were glucose, maltose, maltotriose, and maltotetraose. Thus, dextranase can inhibit the adhesive ability of S. mutans. The minimum biofilm inhibition and reduction concentrations (MBIC50 and MBRC50) of dextranase were 2 U ml-1 and 5 U ml-1, respectively. Scanning electron microscopy and confocal laser scanning microscope (CLSM) observations confirmed that dextranase inhibited biofilm formation and removed previously formed biofilms.
Collapse
Affiliation(s)
- Xiaobei Wang
- a Marine Resources Development Institute of Jiangsu , Lianyungang , PR China
- b Key Laboratory of Marine Biology , Nanjing Agricultural University , Nanjing , Jiangsu , PR China
| | - Huaixu Cheng
- a Marine Resources Development Institute of Jiangsu , Lianyungang , PR China
- c Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening , Huaihai Institute of Technology , Lianyungang , PR China
- d Co-Innovation Center of Jiangsu Marine Bio-industry Technology , Huaihai Institute of Technology , Lianyungang , PR China
| | - Mingsheng Lu
- a Marine Resources Development Institute of Jiangsu , Lianyungang , PR China
- c Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening , Huaihai Institute of Technology , Lianyungang , PR China
- d Co-Innovation Center of Jiangsu Marine Bio-industry Technology , Huaihai Institute of Technology , Lianyungang , PR China
| | - Yaowei Fang
- a Marine Resources Development Institute of Jiangsu , Lianyungang , PR China
- c Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening , Huaihai Institute of Technology , Lianyungang , PR China
- d Co-Innovation Center of Jiangsu Marine Bio-industry Technology , Huaihai Institute of Technology , Lianyungang , PR China
| | - Yuliang Jiao
- a Marine Resources Development Institute of Jiangsu , Lianyungang , PR China
- c Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening , Huaihai Institute of Technology , Lianyungang , PR China
- d Co-Innovation Center of Jiangsu Marine Bio-industry Technology , Huaihai Institute of Technology , Lianyungang , PR China
| | - Weijuan Li
- a Marine Resources Development Institute of Jiangsu , Lianyungang , PR China
| | - Gengmao Zhao
- b Key Laboratory of Marine Biology , Nanjing Agricultural University , Nanjing , Jiangsu , PR China
- d Co-Innovation Center of Jiangsu Marine Bio-industry Technology , Huaihai Institute of Technology , Lianyungang , PR China
| | - Shujun Wang
- a Marine Resources Development Institute of Jiangsu , Lianyungang , PR China
- c Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening , Huaihai Institute of Technology , Lianyungang , PR China
- d Co-Innovation Center of Jiangsu Marine Bio-industry Technology , Huaihai Institute of Technology , Lianyungang , PR China
| |
Collapse
|
33
|
Shivlata L, Satyanarayana T. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications. Front Microbiol 2015; 6:1014. [PMID: 26441937 PMCID: PMC4585250 DOI: 10.3389/fmicb.2015.01014] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications.
Collapse
|
34
|
|