1
|
Zheng Y, Xu F, Gan J, Jin H, Lou J. Impact of operating conditions on N 2O accumulation in Nitrate-DAMO system: Kinetics and microbiological analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122389. [PMID: 39241602 DOI: 10.1016/j.jenvman.2024.122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/09/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Nitrate-dependent anaerobic methane oxidation (Nitrate-DAMO) is a novel and sustainable process that removes both nitrogen and methane. Previously, the metabolic pathway of Nitrate-DAMO has been intensively studied with some results. However, the production and consumption of nitrous oxide (N2O) in the Nitrate-DAMO system were widely disregarded. In this study, a Nitrate-DAMO system was used to investigate the effect of operational parameters (C/N ratio, pH, and temperature) on N2O accumulation, and the optimal operating conditions were determined (C/N = 3, pH = 6.5, and temperature = 20 °C). In this study, an enzyme kinetic model was used to fit the nitrate nitrogen degradation and the nitrous oxide production and elimination under different operating conditions. The thermodynamic model of N2O production and elimination in the system also has been constructed. Multiple linear regression analysis found that pH was the most important factor influencing N2O accumulation. The Metagenomics sequencing results showed that alkaline pH promoted the abundance of Nor genes and denitrifying bacteria, which were significantly and positively correlated with N2O emissions. And alkaline pH also promoted the production of Mdo genes related to the N2O-driven AOM reaction, indicating that part of the N2O was consumed by denitrifying bacteria and the other part was consumed by the N2O-driven AOM reaction. These findings reveal the mechanism of N2O production and consumption in DAMO systems and provide a theoretical basis for reducing N2O production and greenhouse gas emissions in actual operation.
Collapse
Affiliation(s)
- Yiru Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, No. 149, Jiaogong Road, Hangzhou, 310012, China
| | - Fan Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, No. 149, Jiaogong Road, Hangzhou, 310012, China
| | - Jianwen Gan
- Zhejiang Beroot Environmental Protection Technology Co., Ltd., Hangzhou, 310018, China
| | - Hao Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, No. 149, Jiaogong Road, Hangzhou, 310012, China
| | - Juqing Lou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, No. 149, Jiaogong Road, Hangzhou, 310012, China.
| |
Collapse
|
2
|
Basiry D, Kommedal R, Kaster KM. Effect of subinhibitory concentrations on the spreading of the ampicillin resistance gene blaCMY-2 in an activated sludge microcosm. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 39215485 DOI: 10.1080/09593330.2024.2394719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
As the problem of multi-resistant bacteria grows a better understanding of the spread of antibiotic resistance genes is of utmost importance for society. Wastewater treatment plants contain subinhibitory concentrations of antibiotics and are thought to be hotspots for antibiotic resistance gene propagation. Here we evaluate the influence of sub-minimum inhibitory concentrations of antibiotics on the spread of resistance genes within the bacterial community in activated sludge laboratory-scale sequencing batch reactors. The mixed communities were fed two different ampicillin concentrations (500 and 5000 µg/L) and the reactors were run and monitored for 30 days. During the experiment the β-lactamase resistance gene blaCMY-2 was monitored via qPCR and DNA samples were taken to monitor the effect of ampicillin on the microbial community. The relative copy number of blaCMY-2 in the reactor fed with the sub-minimum inhibitory concentration of 500 µg/L ampicillin was spread out over a wider range of values than the control and 5000 µg/L ampicillin reactors indicating more variability of gene number in the 500 µg/L reactor. This result emphasises the problem of sub-minimum inhibitory concentrations of antibiotics in wastewater. High-throughput sequencing showed that continuous exposure to ampicillin caused a shift from a Bacteroidetes to Proteobacteria in the bacterial community. The combined use of qPCR and high-throughput sequencing showed that ampicillin stimulates the spread of resistance genes and leads to the propagation of microbial populations which are resistant to it.
Collapse
Affiliation(s)
- Daniel Basiry
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Roald Kommedal
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Krista Michelle Kaster
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
3
|
Uthra C, Nagaraj K, Wadaan MA, Karuppiah C, Maity P, Baabbad A, Kaliyaperumal R, Venkatachalapathy R, Shah F, Kumar P. Zinc and Copper Oxide Nanoparticles: Pioneering Antibacterial and Antibiofilm Strategies for Environmental Restoration against Antibiotic-Resistant Bacteria. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3444. [PMID: 39063741 PMCID: PMC11278220 DOI: 10.3390/ma17143444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
This study explores the challenge of antimicrobial resistance by investigating the utilization of zinc oxide (ZnO) and copper oxide (Cu2O) nanoparticles (NPs) to combat antibiotic-resistant bacteria in wastewater treatment plants (WWTPs). The synthesized metal oxide NPs underwent thorough characterization through various analytical techniques, confirming their nanoparticulate nature. Electronic absorption and X-ray diffraction (XRD) analyses revealed successful reduction processes and crystalline properties, respectively. Fourier transform infrared spectroscopy (FTIR) results indicated the stabilization of nanoparticles in solution. Scanning electron microscopy (SEM) observations revealed well-defined spherical and flower-like morphologies for the zinc and copper oxide nanoparticles, with sizes approximately ranging from 50 nm to 25 nm Notably, the synthesized nanoparticles exhibited heightened efficacy in impeding biofilm formation, with zinc oxide NPs displaying superior antibacterial activity compared to copper. These findings suggest the promising potential of these nanoparticles in controlling antibiotic-resistant organisms, even following WWTP treatment processes. This research contributes to the ongoing advancements in nanotechnology aimed at combating antibiotic resistance, offering new prospects for the development of effective wastewater treatment strategies.
Collapse
Affiliation(s)
- Chandrabose Uthra
- Department of Microbiology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Karuppiah Nagaraj
- School of Pharmacy, National Forensic Sciences University, 6M56+XP8, Police Bhavan Rd, Sector 9, Gandhinagar 382007, Gujarat, India
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11541, Saudi Arabia
| | - Chelladurai Karuppiah
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 243303, Taiwan
- Center of Molecular Medicine and Dianostics (COMManD), Saveetha Dental College and Hospitals, SIMTS, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Prasenjit Maity
- School of Environmental Technology, National Forensic Sciences University, 6M56+XP8, Police Bhavan Rd, Sector 9, Gandhinagar 382007, Gujarat, India
| | - Almohannad Baabbad
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11541, Saudi Arabia
| | - Raja Kaliyaperumal
- Department of Chemistry, St. Joseph University, Chumoukedima 797115, Nagaland, India
| | - Renuka Venkatachalapathy
- School of Environmental Technology, National Forensic Sciences University, 6M56+XP8, Police Bhavan Rd, Sector 9, Gandhinagar 382007, Gujarat, India
| | - Flora Shah
- School of Pharmacy, National Forensic Sciences University, 6M56+XP8, Police Bhavan Rd, Sector 9, Gandhinagar 382007, Gujarat, India
| | - Puneet Kumar
- School of Pharmacy, National Forensic Sciences University, 6M56+XP8, Police Bhavan Rd, Sector 9, Gandhinagar 382007, Gujarat, India
| |
Collapse
|
4
|
Ning X, Hu J, Yue J, Tang T, Zhang B. Microbial community structure of an anaerobic side-stream coupled anoxic-aerobic membrane bioreactor (AOMBR-ASSR) for an in-situ sludge reduction process. Bioprocess Biosyst Eng 2024; 47:1027-1037. [PMID: 38777954 DOI: 10.1007/s00449-024-03019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
With the anoxic-aerobic membrane bioreactor (AO-MBR, CP) as a reference, high-throughput sequencing technology was used to reveal the characteristics of the microbial community structure in the anaerobic side-stream anoxic-aerobic membrane bioreactor sludge reduction process (AOMBR-ASSR, SRP). After the stable operation of two processes for 120 days, the average removal efficiencies of TN and TP in the effluent of SRP were increased by 5.6% and 29.8%, respectively. The observed sludge yields (Yobs) of the two processes were 0.14 and 0.17 gMLSS/(gCOD), respectively, and the sludge reduction rate of the SRP was 19.5%. Compared to the CP, the microbial richness and diversity index of SRP increased significantly. Chloroflexi, which is responsible for the degradation of organic substances under an anaerobic condition, seemed to be reduced in the SRP. Meanwhile, other phyla that involved in the nitrogen cycle, such as Nitrospirae and Planctomycetes, were found to be more abundant in the SRP than in the CP. A total of 21 identified classes were observed, and primarily hydrolyzed fermented bacteria (Sphingobacteriia, Betaproteobacteria, Actinobacteria and Deltaproteobacteria) and slow-growing microorganisms (Bacilli) were accumulated in the SRP. At the genus level, the inserted anaerobic side-stream reactor favored the hydrolyzed bacteria (Saprospiraceae, Rhodobacter and Candidatus_Competibacter), fermented bacteria (Lactococcus and Trichococcus), and slow-growing microorganisms (Dechloromonas and Haliangium), which play a crucial role in the sludge reduction. Furthermore, the enrichment of bacterial species related to nitrogen (Nitrospir and Azospira) provided the potential for nitrogen removal, while the anaerobic environment of the side-stream reactor promoted the enrichment of phosphorus-accumulating organisms.
Collapse
Affiliation(s)
- Xinqiang Ning
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, China
| | - Jialun Hu
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, China
| | - Jiao Yue
- School of Food and Biotechnology, Xihua University, Chengdu, 610039, China
- Environmental Water Construction Co. Ltd., Chengdu Environment Group, Chengdu, 610000, China
| | - Tang Tang
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, China
| | - Bin Zhang
- School of Food and Biotechnology, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
5
|
Shi S, Wang F, Hu Y, Zhou J, Zhang H, He C. Effects of running time on biological activated carbon filters: water purification performance and microbial community evolution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21509-21523. [PMID: 38393555 DOI: 10.1007/s11356-024-32421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Ozone-biologically activated carbon (BAC) filtration is an advanced treatment process that can be applied to remove recalcitrant organic micro-pollutants in drinking water treatment plants (DWTPs). In this study, we continuously monitored a new and an old BAC filter in a DWTP for 1 year to compare their water purification performance and microbial community evolution. The results revealed that, compared with the new filter, the use of the old BAC filter facilitated a slightly lower rate of dissolved organic carbon (DOC) removal. In the case of the new BAC filter, we recorded general increases in the biomass and microbial diversity of the biofilm with a prolongation of operating time, with the biomass stabilizing after 7 months. For both new and old BAC filters, Proteobacteria and Acidobacteria were the dominant bacterial phyla. At the genus level, the microbial community gradually shifted over the course of operation from a predominance of Herminiimonas and Hydrogenophaga to one predominated by Bradyrhizbium, Bryobacter, Hyphomicrobium, and Pedomicrobium, with Bradyrhizobium being established as the most abundant genus in the old BAC filter. Regarding spatial distribution, we detected reductions in the biomass and number of operational taxonomic units with increasing biofilm depth, whereas there was a corresponding increase in microbial diversity. However, compared with the effects of time, the influence of depth on the composition of the biofilm microbial community was considerably smaller. Furthermore, co-occurrence network analysis revealed that the microbial community network of the new filter after 11 months of operation was the most tightly connected, although its modular coefficient was the lowest of those assessed. We speculate that the positive and negative interactions within the network may be attributable to symbiotic or competitive relationships among species. Moreover, there may have been a significant negative interaction between SWB02 and Acidovorax, plausibly associated with a competition for substrates.
Collapse
Affiliation(s)
- Shuangjia Shi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yulin Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jie Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Haiting Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
6
|
Wang C, Lu B, Chen H, Chen H, Li T, Lu W, Chai X. Strengthen high-loading operation of wastewater treatment plants by composite micron powder carrier: Microscale control of carbon, nitrogen, and sulfur metabolic pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166593. [PMID: 37634713 DOI: 10.1016/j.scitotenv.2023.166593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
The concentration of activated sludge is a crucial factor influencing the capacity and efficiency of sewage wastewater treatment plants (WWTPs). However, high sludge concentrations can lead to sludge loss in the secondary sedimentation tank, resulting in reduced processing capacity, particularly during low-temperature stages and sludge bulking. This study investigated the impact of adding composite micron powder carriers (CMPC) in high-concentration powder carrier biofluidized bed (HPB) technology to the biochemical units of WWTPs on sludge concentration and settling performance. For the traditional activated sludge method (ASM), its hydraulic retention time (HRT) was 8 h, with an average effluent total nitrogen (TN) of 15.14 mg/L. Sludge bulking was prone to occur in low-temperature environments, resulting in a high average sludge volume index (SVI) of 560 mL/g. Conversely, with a CMPC dosage of 4 g/L, the HRT of HPB technology was 4.8 h, and the average effluent TN was 11.40 mg/L, with a removal efficiency of 67.43 %. During operation of HPB technology under high sludge concentration conditions (8 g/L), the average SVI remained at 85 mL/g, indicating excellent settling characteristics. Moreover, in the sequencing batch reactor (SBR), the SVI value of bulking sludge decreased from the original 695 to 111 mL/g by the 9th day of operation with the CMPC dosage of 2 g/L. At the same time, the filamentous bacteria almost disappeared, suggesting that CMPC inhibit the growth of filamentous bacteria. Metagenomic analysis demonstrated that CPMC enhance the utilization of small molecular fatty acids in activated sludge and promote electron transfer between nitrate and nitrite, thereby improving wastewater treatment capacity. Additionally, CMPC enhanced the relative abundance of Saprospiraceae in sludge, which accelerate the degradation of polysaccharides in extracellular polymeric substances, weaken sludge's hydrophilic properties, and improve sludge's settling performance. Overall, these findings suggested that CMPC effectively strengthen the high-loading operation of WWTPs by improving sludge concentration and sedimentation performance.
Collapse
Affiliation(s)
- ChengXian Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hao Chen
- Changsha Urban Research Institute of Construction Science, Changsha 410006, China
| | - Huizhen Chen
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha 410205, China
| | - Tingting Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wei Lu
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
7
|
Welz PJ, Thobejane MP, van Blerk GN. Ammonium oxidizing bacterial populations in South African activated sludge wastewater treatment plants. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10945. [PMID: 37897128 DOI: 10.1002/wer.10945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
This is the first study that describes ammonium oxidizing bacterial populations and correlations of these populations with a range of criteria in activated sludge wastewater treatment plants in South Africa. In this study, not only the influent but also the activated sludge chemistry was comprehensively characterized. Multivariate statistical analyses were used to determine the relative significances of the geographical location (factor: site), wastewater treatment plant process (factor: configuration), seasonality (factor: season), and environmental parameters on the ammonium oxidizing bacterial genera in six municipal activated sludge wastewater treatments plants from two sites (the cities of Cape Town and Ekurhuleni). The geographical location (site) was significant for selection of the ammonium oxidizing genera (Global ANOSIM R value = 0.538, p = 0.001). It was established that the inter-site differences were not climatic in origin, nor related to the composition of the influent, but were rather driven by the activated sludge chemistry. It was found using BEST analysis that the activated sludge ammonia, activated sludge total phosphate, and activated sludge total chemical oxygen demand were the most significant (p < 0.001) drivers for ammonium oxidizing bacterial selection (ANOSIM Global R value 0.419) and were significantly higher in the activated sludge from the City of Cape Town wastewater treatment plants. Nitrosospira was the most abundant ammonium oxidizing bacterial genus, with notably higher relative and estimated actual abundances in the City of Cape Town wastewater treatment plants than the City of Ekurhuleni wastewater treatment plants. The strong selection of Nitrosospira in the City of Cape Town wastewater treatment plants with higher nutrient concentrations strongly suggests that high concentrations of activated sludge ammonia, activated sludge total phosphate, and activated sludge total chemical oxygen demand are key selective drivers for this genus. PRACTITIONER POINTS: First comprehensive study describing ammonium oxidizing bacterial populations in Southern African domestic activated sludge wastewater treatment plants. The geographical location (site) was significant for selection of different ammonium oxidizing genera (Global ANOSIM R value = 0.538, p = 0.001). Inter-site differences driven by the activated sludge chemistry, not climate or influent wastewater composition. Selection of Nitrosospira driven by high concentrations of activated sludge ammonia, total phosphate and total chemical oxygen demand.
Collapse
Affiliation(s)
- Pamela J Welz
- Applied Microbial and Health Biotechnology Institute (AMBHI), Bellville campus, Symphony Way Cape Peninsula University of Technology, Cape Town, South Africa
| | - Mfundisi P Thobejane
- Applied Microbial and Health Biotechnology Institute (AMBHI), Bellville campus, Symphony Way Cape Peninsula University of Technology, Cape Town, South Africa
- Ekurhuleni Water Care Company (ERWAT), Kempton Park, South Africa
| | | |
Collapse
|
8
|
Wang T, Li X, Wang H, Xue G, Zhou M, Ran X, Wang Y. Sulfur autotrophic denitrification as an efficient nitrogen removals method for wastewater treatment towards lower organic requirement: A review. WATER RESEARCH 2023; 245:120569. [PMID: 37683522 DOI: 10.1016/j.watres.2023.120569] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
The sulfur autotrophic denitrification (SADN) process is an organic-free denitrification process that utilizes reduced inorganic sulfur compounds (RISCs) as the electron donor for nitrate reduction. It has been proven to be a cost-effective and environment-friendly approach to achieving carbon neutrality in wastewater treatment plants. However, there is no consensus on whether SADN can become a dominant denitrification process to treat domestic wastewater or industrial wastewater if organic carbon is desired to be saved. Through a comprehensive summary of the SADN process and extensive discussion of state-of-the-art SADN-based technologies, this review provides a systematic overview of the potential of the SADN process as a sustainable alternative for the heterotrophic denitrification (HD) process (organic carbons as electron donor). First, we introduce the mechanism of the SADN process that is different from the HD process, including its transformation pathways based on different RISCs as well as functional bacteria and key enzymes. The SADN process has unique theoretical advantages (e.g., economy and carbon-free, less greenhouse gas emissions, and a great potential for coupling with novel autotrophic processes), even if there are still some potential issues (e.g., S intermediates undesired production, and relatively slow growth rate of sulfur-oxidizing bacteria [SOB]) for wastewater treatment. Then we present the current representative SADN-based technologies, and propose the outlooks for future research in regards to SADN process, including implement of coupling of SADN with other nitrogen removal processes (e.g., HD, and sulfate-dependent anaerobic ammonium oxidation), and formation of SOB-enriched biofilm. This review will provide guidance for the future applications of the SADN process to ensure a robust-performance and chemical-saving denitrification for wastewater treatment.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Li H, Cui Y, Wang F, Li J, Wu D, Fan J. Performance and microbial community analysis on nitrate removal in a bioelectrochemical reactor. PLoS One 2023; 18:e0290660. [PMID: 37708197 PMCID: PMC10501573 DOI: 10.1371/journal.pone.0290660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023] Open
Abstract
In this experiment, we took reflux sludge, sludge from an aeration tank, and soil from roots as microbial inoculating sources for an electrochemical device for denitrification with high-throughput sequencing on cathodic biofilms. The efficiency of nitrate nitrogen removal using different microbial inoculates varied among voltages. The optimal voltages for denitrification of reflux sludge, aeration tank sludge, and root soil were 0.7V, 0.5V, and 0.5V, respectively. Further analysis revealed that the respective voltages had a significant effect upon microbial growth from the respective inoculates. Proteobacteria and Firmicutes were the main denitrifying microbes. With the addition of low current (produced by the applied voltage), the Chao1, Shannon and Simpson indexes of the diversity of microorganisms in soil inoculation sources increased, indicating that low current can increase the diversity and richness of the microorganisms, while the reflux sludge and aeration tank sludge showed different changes. Low-current stimulation decreased microbial diversity to a certain extent. Pseudomonas showed a trend of decline with increasing applied voltage, in which the MEC (microbial electrolysis cell) of rhizosphere soil as inoculates decreased most significantly from 77.05% to 12.58%, while the MEC of Fusibacter showed a significant increase, and the sludge of reflux sludge, aeration tank and rhizosphere soil increased by 31.12%, 18.7% and 34.6%, respectively. The applied voltage also significantly increased the abundance of Azoarcus in communities from the respective inoculates.
Collapse
Affiliation(s)
- Han Li
- School of Environment, Henan Normal University, Xinxiang, Henan, P. R. China
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, P.R. China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan, P. R. China
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, P. R. China
| | - Ying Cui
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, P.R. China
| | - Fei Wang
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, P.R. China
| | - Jinghua Li
- School of Environment, Henan Normal University, Xinxiang, Henan, P. R. China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan, P. R. China
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, P. R. China
| | - Dafu Wu
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, P.R. China
| | - Jing Fan
- School of Environment, Henan Normal University, Xinxiang, Henan, P. R. China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan, P. R. China
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, P. R. China
| |
Collapse
|
10
|
Mensah L, Petrie B, Scrimshaw M, Cartmell E, Fletton M, Campo P. Influence of solids and hydraulic retention times on microbial diversity and removal of estrogens and nonylphenols in a pilot-scale activated sludge plant. Heliyon 2023; 9:e19461. [PMID: 37809578 PMCID: PMC10558614 DOI: 10.1016/j.heliyon.2023.e19461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023] Open
Abstract
The removal of EDCs in activated sludge processes can be enhanced by increasing solid and hydraulic retention times (SRT and HRT); it has been suggested that the improvement in removal is due to changes in microbial community structure (MCS). Though the influence of SRT and HRT on chemical removal and MCS has been studied in isolation, their synergistic impact on MCS and the removal of estrogens and nonylphenols in activated sludge remains unknown. Hence, we investigated how both parameters influence MCS in activated sludge processes and their ulterior effect on EDC removal. In our study, an activated sludge pilot-plant was fed with domestic sewage fortified with 100 and 1000 ng/L nonylphenols or 2 and 15 ng/L estrogens and operated at 3, 10 and 27 d SRT (constant HRT) and at 8, 16 and 24 h HRT (constant SRT). The MCS was assessed by phospholipid fatty acids (PLFA) analysis, and the archaeal and bacterial diversities were determined by 16S rRNA analysis. From the PLFA, the microbial abundance ranked as follows: Gram-negative > fungi > Gram-positive > actinomycetes whilst 16S rRNA analysis revealed Proteobacteria > Bacteroidetes > Others. Both PLFA and 16S rRNA analysis detected changes in MCS as SRT and HRT were increased. An SRT increment from 3 to 10 d resulted in higher estrone (E1) removal from 19 to 93% and nonylphenol-4-exthoxylate (NP4EO) from 44 to 73%. These findings demonstrate that EDC-removal in activated sludge plants can be optimised where longer SRT (>10 d) and HRT (>8 h) are suitable. We have also demonstrated that PLFA can be used for routine monitoring of changes in MCS in activated sludge plants.
Collapse
Affiliation(s)
- Lawson Mensah
- Environmental Science Department, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bruce Petrie
- Robert Gordon University, Garthdee Rd, Garthdee, Aberdeen, AB10 7AQ, UK
| | - Mark Scrimshaw
- Department of Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Elise Cartmell
- Scottish Water, Castle House, 6 Castle Drive, Carnegie Campus, Dunfermline, KY11 8GG, UK
| | | | - Pablo Campo
- Cranfield Water Science Institute, School of Water, Energy & Environment, Cranfield University, MK43 0AL, UK
| |
Collapse
|
11
|
Jiang Y, Chen Y, Wang Y, Chen X, Zhou X, Qing K, Cao W, Zhang Y. Novel insight into the inhibitory effects and mechanisms of Fe(II)-mediated multi-metabolism in anaerobic ammonium oxidation (anammox). WATER RESEARCH 2023; 242:120291. [PMID: 37413747 DOI: 10.1016/j.watres.2023.120291] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/23/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Fe(II) participates in complex Fe-N cycles and effects on the microbial metabolism in the anaerobic ammonium oxidation (anammox) dominated system. In this study, the inhibitory effects and mechanisms of Fe(II)-mediated multi-metabolism in anammox were revealed, and the potential role of Fe(II) in the nitrogen cycle was evaluated. The results showed that the long-term accumulation of high Fe(II) concentrations (70-80 mg/L) led to a hysteretic inhibition of anammox. High Fe(II) concentrations induced the generation of high levels of intracellular ·O2-, whereas the antioxidant capacity was insufficient to eliminate the excess ·O2-, thus causing ferroptosis to anammox cells. In addition, Fe(II) was oxidized via nitrate-dependent anaerobic ferrous-oxidation (NAFO) process, and mineralized to coquimbite and phosphosiderite. They formed crusts on the surface of the sludge, leading to mass transfer obstruction. The results of the microbial analysis showed that the addition of appropriate Fe(II) increased the abundance of Candidatus Kuenenia, and served as a potential electron donor to enrich Denitratisoma, promoting anammox and NAFO coupled with nitrogen removal, while high Fe(II) concentrations reduced the enrichment level. In this study, the understanding of Fe(II)-mediated multi-metabolism in the nitrogen cycle was deepened, providing the basis for the development of Fe(II)-based anammox technologies.
Collapse
Affiliation(s)
- Yushi Jiang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Yuqi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Ying Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xuanfan Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Kexin Qing
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Yanlong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment and Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China.
| |
Collapse
|
12
|
Abd-Ur-Rehman HM, Prodanovic V, Deletic A, Khan SJ, McDonald JA, Zhang K. Removal of hydrophilic, hydrophobic, and charged xenobiotic organic compounds from greywater using green wall media. WATER RESEARCH 2023; 242:120290. [PMID: 37429135 DOI: 10.1016/j.watres.2023.120290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
Green walls offer a novel on-site approach for greywater treatment and reuse in densely build urban environments. However, they need to be engineered for effective removal of a wide range of emerging contaminants such as xenobiotic organic compounds (XOCs), which may be present in greywater due to extensive use of personal care products and household chemicals. This study used laboratory column design and batch experiments to investigate the performance of three lightweight green wall media (coco coir, zeolite, and perlite) and their mixture in three different combinations for the removal of twelve XOCs, covering wide range of hydrophilic, hydrophobic, and charged pollutants in greywater. The experiments were designed to assess the removal of targeted XOCs under different operational condition (i.e., hydraulic loading, infiltration rate, drying) and uncover the dominant mechanisms of their removal. Results showed excellent removal (>90%) of all XOCs in coco coir and media mix columns at the start of the experiment (i.e., fresh media and initial 2 pore volume (PV) of greywater dosing). The removal of highly hydrophobic and positively charged XOCs remained high (>90%) under all operational conditions, while hydrophilic and negatively charged XOCs exhibited significant reduction in removal after 25 PV and 50 PV, possibly due to their low adsorption affinity and electrostatic repulsion from negatively charged media. The effect of infiltration rate on the removal of XOCs was not significant; however, higher removal was achieved after 2-weeks of drying in coco coir and media mix columns. The dominant removal mechanism for most XOCs was found to be adsorption, however, a few hydrophilic XOCs (i.e., acetaminophen and atrazine) exhibited both adsorption and biodegradation removal processes. While findings showed promising prospects of unvegetated media for removing XOCs from greywater, long term studies on vegetated green wall systems are needed to understand any synergetic contribution of plants and media in removing these XOCs.
Collapse
Affiliation(s)
- H M Abd-Ur-Rehman
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - V Prodanovic
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - A Deletic
- School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - S J Khan
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - J A McDonald
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - K Zhang
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Tizazu S, Tesfaye G, Wang A, Guadie A, Andualem B. Microbial diversity, transformation and toxicity of azo dye biodegradation using thermo-alkaliphilic microbial consortia. Heliyon 2023; 9:e16857. [PMID: 37313163 PMCID: PMC10258453 DOI: 10.1016/j.heliyon.2023.e16857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
In this research, the transformation and toxicity of Reactive Red 141 and 239 biodegraded under anaerobic-aerobic conditions as well as metagenomic analysis of Reactive Red 239 degrading microbial consortia collected from Shala Hot spring were investigated. Toxicity of dyes before treatment and after treatment on three plants, fish and microorganisms were done. A halotolerant and thermo-alkaliphilic bacterial consortia decolorizing azo dyes (>98% RR 141 and > 96% RR 239 in 7 h) under optimum conditions of salt concentration (0.5%), temperature (55 °C) and pH (9), were used. Toxicity effect of untreated dyes and treated dyes in Tomato > Beetroot > Cabbage plants, while the effect was Leuconostoc mesenteroides > Lactobacillus plantarum > Escherichia coli in microorganisms. Among fishes, the toxicity effect was highest in Oreochromis niloticus followed by Cyprinus carpio and Clarias gariepinus. The three most dominant phyla that could be in charge of decolorizing RR 239 under anaerobic-aerobic systems were Bacteroidota (22.6-29.0%), Proteobacteria (13.5-29.0%), and Chloroflexi (8.8-23.5%). At class level microbial community structure determination, Bacteroidia (18.9-27.2%), Gammaproteobacteria (11.0-15.8%), Alphaproteobacteria (2.5-5.0%) and Anaerolineae (17.0-21.9%) were dominant classes. The transformation of RR 141 and RR 239 into amine compounds were proposed via high performance liquid chromatography-mass spectroscopy (HPLC/MS) and fourier transform infrared spectroscopy (FT-IR). Overall, dye containing wastewaters treated under anaerobic-aerobic systems using thermo-alkaliphilic microbial consortia were found to be safe to agricultural (fishes and vegetables) purposes.
Collapse
Affiliation(s)
- Samson Tizazu
- Biotechnology Stream, Biology Department, Natural and Computational Sciences' College, Arba Minch University, Arba Minch 21, Ethiopia
| | - Getaneh Tesfaye
- Biotechnology Stream, Biology Department, Natural and Computational Sciences' College, Arba Minch University, Arba Minch 21, Ethiopia
| | - Aijie Wang
- Research Center for Eco-Environmental Sciences' Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Awoke Guadie
- Biotechnology Stream, Biology Department, Natural and Computational Sciences' College, Arba Minch University, Arba Minch 21, Ethiopia
- Research Center for Eco-Environmental Sciences' Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Berhanu Andualem
- Department of Industrial Biotechnology, Institute of Biotechnology, Gondar University, Gondar 196, Ethiopia
| |
Collapse
|
14
|
Wang G, Qiu G, Wei J, Guo Z, Wang W, Liu X, Song Y. Activated carbon enhanced traditional activated sludge process for chemical explosion accident wastewater treatment. ENVIRONMENTAL RESEARCH 2023; 225:115595. [PMID: 36863655 DOI: 10.1016/j.envres.2023.115595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
With the development of industries, explosion accidents occur frequently during production, transportation, usage and storage of hazard chemicals. It remained challenging to efficiently treat the resultant wastewater. As an enhancement of traditional process, the activated carbon-activated sludge (AC-AS) process has a promising potential in treating wastewater with high concentrations of toxic compounds, chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N), etc. In this paper, activated carbon (AC), activated sludge (AS) and AC-AS were used to treat the wastewater produced from an explosion accident in the Xiangshui Chemical Industrial Park. The removal efficiency was assessed by the removal performances of COD, dissolved organic carbon (DOC), NH4+-N, aniline and nitrobenzene. Increased removal efficiency and shortened treatment time were achieved in the AC-AS system. To achieve the same COD, DOC and aniline removal (90%), the AC-AS system saved 30, 38 and 58 h compared with the AS system, respectively. The enhancement mechanism of AC on the AS was explored by metagenomic analysis and three-dimensional excitation-emission-matrix spectra (3DEEMs). More organics, especially aromatic substances were removed in the AC-AS system. These results showed that the addition of AC promoted the microbial activity in pollutant degradation. Bacteria, such as Pyrinomonas, Acidobacteria and Nitrospira and genes, such as hao, pmoA-amoA, pmoB-amoB and pmoC-amoC, were found in the AC-AS reactor, which might have played important roles in the degradation of pollutants. To sum up, AC might have enhanced the growth of aerobic bacteria which further improved the removal efficiency via the combined effects of adsorption and biodegradation. The successful treatment of Xiangshui accident wastewater using the AC-AS demonstrated the potential universal characteristics of the process for the treatment of wastewater with high concentration of organic matter and toxicity. This study is expected to provide reference and guidance for the treatment of similar accident wastewaters.
Collapse
Affiliation(s)
- Guanying Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jian Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhuang Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Weiye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yonghui Song
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
15
|
Wijaya J, Oh S. Machine learning reveals the complex ecological interplay of microbiome in a full-scale membrane bioreactor wastewater treatment plant. ENVIRONMENTAL RESEARCH 2023; 222:115366. [PMID: 36706897 DOI: 10.1016/j.envres.2023.115366] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Membrane bioreactor (MBR) systems are one of the most widely used wastewater treatment processes for various municipal and industrial waste streams. The present study aimed to advance the understanding of ecologically important keystone taxa that play an important role in full-scale MBR systems. A machine-learning (ML) modeling framework based on microbiome data was developed to successfully predict, with an average accuracy of >91.6%, the operational characteristics of three representative full-scale wastewater systems: an MBR, a conventional activated sludge system, and a sequencing batch reactor. ML-based feature-importance analysis identified Ferruginibacter as a keystone organism in the MBR system. The phylogeny and known ecophysiology of members of Ferruginibacter supported their role in metabolizing complex organic polymers (e.g., extracellular polymeric substances) in MBR systems characterized by high concentrations of mixed liquor suspended solids and a high solid retention time. ML regression modeling also revealed temporal patterns of Ferruginibacter in response to water temperature. ML modeling was thus successfully employed in the present study to investigate complex/non-linear relationships between keystone taxa and environmental conditions that cannot be detected using conventional approaches. Overall, our microbiome-data-enabled ML modeling approach represents a methodological advance for identifying keystone taxa and their complex ecological interactions, which has implications for the sustainable and predictive management of MBR systems.
Collapse
Affiliation(s)
- Jonathan Wijaya
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea.
| |
Collapse
|
16
|
Thobejane MP, van Blerk N, Welz PJ. Influence of seasonality, wastewater treatment plant process, geographical location and environmental parameters on bacterial community selection in activated sludge wastewater treatment plants treating municipal sewage in South Africa. ENVIRONMENTAL RESEARCH 2023; 222:115394. [PMID: 36731595 DOI: 10.1016/j.envres.2023.115394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
This is the first comprehensive study that focusses on the correlation between the bacterial community composition and a range of previously identified selective criteria in activated sludge wastewater treatment plants on the African continent. Multivariate statistical analyses were used to determine the relative significance of the geographical location (factor: site), wastewater treatment plant process (factor: configuration), seasonality (factor: season), and environmental parameters on the bacterial communities in nine wastewater treatments plants from two sites in South Africa using terminal restriction fragment length polymorphism as a screening tool to rationalize the number of samples (to 50 samples) for high throughput (Illumina MiSeq) sequencing. Site was the most significant factor (Global ANOSIM R value = 0.91, p = 0.001), and it was established that the inter-site differences were not climatic in origin but related to differences in the composition of the influent and activated sludge. Previous studies that have reported associations between microbial community structure and environmental parameters have measured influent chemistry, and this is the first time, to our knowledge, that the comprehensive chemical character of activated sludge itself has been included in this type of study. It was found using BEST analysis that the activated sludge ammonia, activated sludge total phosphate and influent chemical oxygen demand were the most significant (p < 0.001) drivers for inter-site bacterial community selection (ANOSIM Global R values of 0.862, 0.782 and 0.428, respectively). This link would not have been established with only influent chemical analyses as there was no significant difference (t-test, p > 0.05) in the average influent phosphate concentrations between the 2 sites, but there was a highly significant difference (p < 0.001, t (15.5)>t-crit (2.01)) in the activated sludge total phosphate concentrations (20.8 ± 17.0 and 127.8 ± 40.2 mg/L). This is notable for all future studies on a global level aimed at identifying factors for selection of microbial communities in activated sludge.
Collapse
Affiliation(s)
- Mfundisi P Thobejane
- Applied Microbial and Health Biotechnology Institute (AMBHI), Bellville Campus, Symphony Way Cape Peninsula University of Technology, Cape Town, 7530, South Africa; Ekurhuleni Water Care Company (ERWAT), Hartebeestfontein Office Park, Kempton Park NU, Kempton Park, 1512, South Africa
| | - Nico van Blerk
- Ekurhuleni Water Care Company (ERWAT), Hartebeestfontein Office Park, Kempton Park NU, Kempton Park, 1512, South Africa
| | - Pamela J Welz
- Applied Microbial and Health Biotechnology Institute (AMBHI), Bellville Campus, Symphony Way Cape Peninsula University of Technology, Cape Town, 7530, South Africa.
| |
Collapse
|
17
|
Chen X, Hao K, Zong Y, Guo M, You J, He Q, Zhang D. Effects of ultraviolet radiation on microorganism and nitrogen metabolism in sewage under plateau background. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52209-52226. [PMID: 36823464 DOI: 10.1007/s11356-023-25965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
The experiments were conducted in the Tibetan plateau environment, and the sewage treatment conditions were designed with ultraviolet (UV) irradiation for 5 min, 10 min, 30 min, and 180 min. The Illumina MiSeq high-throughput sequencing technology was used to analyze the microbiological and metabolomic patterns of the plateau sewage treatment at the experimental scale, and then the response mechanisms of microbial and nitrogen metabolism in sewage treatment were explored. The abundance of metabolism at the first level and global and overview maps at the second level were higher in the plateau environment than in other regions. The KEGG pathway shows the effect of UV on nitrogen metabolism and its aptitude to improving or inhibit it. The two main nitrogen removal processes are nitrification and dissimilatory nitrate reduction. This study reveals the response of activated sludge to UV radiation in a plateau environment from microbiological and metabolomic perspectives, providing ideas and perspectives for the study of water treatment system methods, as well as laying a valuable theoretical foundation for the enhancement of plateau sewage treatment capacity.
Collapse
Affiliation(s)
- Xiangyu Chen
- Tibet Agriculture & Animal, Water Conservancy Project & Civil Engineering College, Husbandry University, Linzhi, 860000, People's Republic of China
| | - Kaiyue Hao
- Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China
| | - Yongchen Zong
- Tibet Agriculture & Animal, Water Conservancy Project & Civil Engineering College, Husbandry University, Linzhi, 860000, People's Republic of China.
| | - Mingzhe Guo
- Tibet Agriculture & Animal, Water Conservancy Project & Civil Engineering College, Husbandry University, Linzhi, 860000, People's Republic of China
| | - Junhao You
- Tibet Agriculture & Animal, Water Conservancy Project & Civil Engineering College, Husbandry University, Linzhi, 860000, People's Republic of China
| | - Qiang He
- Tibet Agriculture & Animal, Water Conservancy Project & Civil Engineering College, Husbandry University, Linzhi, 860000, People's Republic of China
| | - Dongyan Zhang
- Tibet Agriculture & Animal, Water Conservancy Project & Civil Engineering College, Husbandry University, Linzhi, 860000, People's Republic of China
| |
Collapse
|
18
|
Zhao N, Cao R, Han J, Wang S, Xu H, Wang J, Huang T, Wen G. The change of amino acids samples under metalimnetic oxygen minimum condition: Characterization and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130591. [PMID: 37055995 DOI: 10.1016/j.jhazmat.2022.130591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 06/19/2023]
Abstract
The metalimnetic oxygen minimum (MOM) is a common anaerobic phenomenon that occur between 5.00 and 40.00 m of reservoirs. Amino acids (AAs) are widely found in water, but their change in MOM remain unclear. In this study, four AAs with different side chain groups were selected to explore the change of their samples and related disinfection by-products formation potential (DBPFPs) under MOM condition. The results showed that the final degradation rate of dissolved organic carbon and dissolved organic nitrogen of four AAs samples were 11.71%-59.87% and 26.50%-100.00% under MOM condition. Aspartic acid samples were the easiest to be degraded, whereas glycine samples were the opposite. While the total fluorescence intensity increased by 6.30%-113.40% for the appearance of tryptophan-like substance. The total DBPFPs of glutamic acid, arginine and aspartic acid samples were finally decreased by 4.73%, 8.00% and 98.88% (glycine sample increased by 2.30 times). Compared with the surface condition, the degradation of AAs samples and the change of DBPFPs were significantly inhibited under MOM condition. In addition, the diversities of bacterial communities were significantly reduced under MOM condition, which was very unfavorable to the degradation of AAs samples, and in turn affected the control of DBPs and deteriorated the water quality.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingru Han
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Shuo Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
19
|
Yuan X, Cui K, Chen Y, Xu W, Li P, He Y. Response of microbial community and biological nitrogen removal to the accumulation of nonylphenol in sequencing batch reactor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-12. [PMID: 36817166 PMCID: PMC9923645 DOI: 10.1007/s13762-023-04825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/23/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The widespread existence of nonylphenol in the environmental rendered from wastewater discharge has become a growing concern for its endocrine disrupting effects on microorganisms. In this study, the performance of nitrifying and denitrifying microbial community in a sequencing batch reactor (SBR) was investigated under different nonylphenol concentrations. The SBR was shown to be less effective in nitrogen removal at higher concentration of nonylphenol. Proteobacteria, Bacteroidetes, and Actinobacteria were characterized by 454 pyrosequencing as the dominant bacteria, nitrogen removal functional bacteria in these three phyla were inhibited by nonylphenol, and Proteobacteria and Actinobacteria were more sensitive to nonylphenol. With the accumulation of nonylphenol, the population of the most abundant denitrifying bacteria (Thauera spp.) and nitrifying bacteria (Nitrosomonas spp.) significantly reduced. Microbial diversity increased due to nonylphenol perturbation, which is indicated by the changes in microbial alpha diversity. Principal component analysis showed high similarity between microbial community in low and high concentration of nonylphenol, and the core genera involved in nitrogen removal had a low correlation with other genera shown in co-occurrence network. Moreover, linear discriminant analysis effect size analysis revealed intergroup differences in microorganisms. The mechanism of accumulated NP on the diversity and metabolism of the microbial community was examined. This paper established a theoretical foundation for the treatment of NP-containing wastewater and provided hints for further research about NP impact on biological nitrogen removal. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13762-023-04825-9.
Collapse
Affiliation(s)
- X. Yuan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 246011 China
| | - K. Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 246011 China
| | - Y. Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 246011 China
| | - W. Xu
- Zhejiang Lab, Hangzhou, 310012 China
| | - P. Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Y. He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
20
|
Kim M, Cui F. Identification of bacterial communities in conventional wastewater treatment sludge to inform inoculation of the anammox process. CHEMOSPHERE 2023; 311:137167. [PMID: 36356812 DOI: 10.1016/j.chemosphere.2022.137167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
This study uses 16 S rRNA gene pyrosequencing for the identification of a vast number of wastewater bacterial communities to investigate the evolution of bacterial communities in the Anammox process. Four lab-scale Anammox reactors inoculated with different conventional wastewater treatment sludge (activated sludge, livestock wastewater treatment sludge, denitrification sludge, and anaerobic digestion sludge) were operated under identical operating conditions for more than 400 days. The phylum Planctomycetes was present in all seeds of conventional sludge with a relative abundance of 1-3%. In particular, the known Anammox bacteria Candidatus Brocadia was found in the seed of the denitrification sludge. The reactor inoculated with denitrification sludge demonstrated the most effective nitrogen removal of ∼80% with successful cultivation of Anammox bacteria. This study found that the performance of the Anammox process is related to the presence of Nitrospira genus (nitrite-oxidizing bacteria) and that symbiotic association with other functional groups can lead to nitrogen removal. The outcomes of this study can provide vital insight into the study of microbial ecology for the cultivation of Anammox bacteria.
Collapse
Affiliation(s)
- Moonil Kim
- Department of Civil and Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido, 426-791, Republic of Korea.
| | - Fenghao Cui
- Center for Creative Convergence Education, Hanyang University, 55 Hanyangdaehak-ro, Ansan City, Kyeonggido, 426-791, Republic of Korea.
| |
Collapse
|
21
|
Yi K, Huang J, Li X, Li S, Pang H, Liu Z, Zhang W, Liu S, Liu C, Shu W. Long-term impacts of polyethylene terephthalate (PET) microplastics in membrane bioreactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116234. [PMID: 36261962 DOI: 10.1016/j.jenvman.2022.116234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Due to the mass production and daily use of plastic products, the potential toxicity of microplastics to the water environment has attracted worldwide attention. In this work, the effect of typical microplastics (PET) on the performance of activated sludge from membrane bioreactors (MBR) was evaluated. The impacts on biological removal efficiency were unconspicuous with continuous dosing of 60 particles/L. However, further investigations revealed that PET particle accumulation caused adverse impacts on settleability and dewaterability. The SVI value increased from 53.3 ml/g MLSS to 69.9 ml/g MLSS and the CST in the PET reactor increased by 22%. Nevertheless, hydrophobicity was reduced by 49.2%. Mechanism studies exposed that the PET microplastics accumulation improved extracellular polymeric substances (EPS) from 116.96 mg/L to 138.70 mg/L and caused cell membrane damage. The abundance and diversity of microbial community reduced in activated sludge in PET reactor compared with control reactor. These phenomena revealed a possible hypothesis that the microplastic particles increased EPS and cytotoxicity of activated sludge. However, the rate of transmembrane pressure (TMP) build-up was significantly mitigated in PET-MBR compared to that in a control-MBR (1.27 folds), which attributes that physical scour of particles may still alleviate membrane contamination in MBR.
Collapse
Affiliation(s)
- Kaixin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China.
| | - Xue Li
- Department of Bioengineering and Environmental Engineering, Changsha University, Changsha, 410003, China.
| | - Suzhou Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Haoliang Pang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Zhexi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Chunhua Liu
- Yixin Environmental Engineering Co., Ltd., Changsha, 410004, Hunan, China
| | - Wenli Shu
- Wenli Biological Resources Development Co., Ltd., Huaihua, Hunan, 418000, China
| |
Collapse
|
22
|
Wei X, Huang Z, Jiang L, Li Y, Zhang X, Leng Y, Jiang C. Charting the landscape of the environmental exposome. IMETA 2022; 1:e50. [PMID: 38867899 PMCID: PMC10989948 DOI: 10.1002/imt2.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/30/2022] [Indexed: 06/14/2024]
Abstract
The exposome depicts the total exposures in the lifetime of an organism. Human exposome comprises exposures from environmental and humanistic sources. Biological, chemical, and physical environmental exposures pose potential health threats, especially to susceptible populations. Although still in its nascent stage, we are beginning to recognize the vast and dynamic nature of the exposome. In this review, we systematically summarize the biological and chemical environmental exposomes in three broad environmental matrices-air, soil, and water; each contains several distinct subcategories, along with a brief introduction to the physical exposome. Disease-related environmental exposures are highlighted, and humans are also a major source of disease-related biological exposures. We further discuss the interactions between biological, chemical, and physical exposomes. Finally, we propose a list of outstanding challenges under the exposome research framework that need to be addressed to move the field forward. Taken together, we present a detailed landscape of environmental exposome to prime researchers to join this exciting new field.
Collapse
Affiliation(s)
- Xin Wei
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Zinuo Huang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Liuyiqi Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Yueer Li
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
| | - Xinyue Zhang
- Department of GeneticsStanford UniversityStanfordCaliforniaUSA
| | - Yuxin Leng
- Department of Intensive Care UnitPeking University Third HospitalBeijingChina
| | - Chao Jiang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouZhejiangChina
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
23
|
Wang JH, Zhao XL, Hu Q, Gao X, Qu B, Cheng Y, Feng D, Shi LF, Chen WH, Shen Y, Chen YP. Effects mechanism of bio-carrier filling rate on rotating biofilms and the reactor performance optimization method. CHEMOSPHERE 2022; 308:136176. [PMID: 36030945 DOI: 10.1016/j.chemosphere.2022.136176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/20/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Benefited from the massive filling bio-carriers, the packed cage rotating biological contactors (RBCs) have better performance and application potentiality in wastewater treatment. Investigating the effects mechanism of bio-carrier filling rate is crucial for such reactors management. In this study, the pollutants removal performance, biofilms physical characteristics, and microbial communities of the biofilms under a series of bio-carrier filling rates were analyzed. The results shown, the pollutant removal rate and amount were quite different under different filling rates, and biofilms structure and microbial composition were the main factors affecting the pollutants removal performance. With the increasing filling rates, the biofilms were more mass increased (dry weight from 0.066 to 0.148 g/per carrier), thicker (from 340.30 to 850.84 μm) and lower dense (from 0.068 to 0.060 g/cm3). The microbial community composition of those biofilms was also quite different at the genus level. The effects mechanism of bio-carrier filling rate can be summarized: the filling rates affect the physical and biological characteristics of biofilms, which will further affect the microenvironment and microbial distribution in biofilms, and then determines the pollutant metabolic rate and metabolic pathway. This study will contribute to design better bio-carrier filling rate according to different wastewater treatment scenario, and promote the performance optimization of packed cage RBCs.
Collapse
Affiliation(s)
- Jian-Hui Wang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing Water & Environment Holdings Group Ltd., Chongqing, 400010, China
| | - Xiao-Long Zhao
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Qing Hu
- Chongqing Water Group Co., Ltd., Chongqing, 400015, China
| | - Xu Gao
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing Water Group Co., Ltd., Chongqing, 400015, China; Chongqing Sino French Environmental Excellence R&D Centre, Chongqing, 400010, China
| | - Bin Qu
- Chongqing Water & Environment Holdings Group Ltd., Chongqing, 400010, China
| | - Yin Cheng
- Chongqing Water & Environment Holdings Group Ltd., Chongqing, 400010, China
| | - Dong Feng
- Chongqing Sino French Environmental Excellence R&D Centre, Chongqing, 400010, China
| | - Long-Fei Shi
- Chongqing Endurance Automation Solutions Co., Ltd, 401120, China
| | - Wen-Hao Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China.
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
24
|
Tizazu S, Tesfaye G, Andualem B, Wang A, Guadie A. Evaluating the potential of thermo-alkaliphilic microbial consortia for azo dye biodegradation under anaerobic-aerobic conditions: Optimization and microbial diversity analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116235. [PMID: 36113293 DOI: 10.1016/j.jenvman.2022.116235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Wastewaters in textile industry are mainly characterized by higher pH, color, salt and chemical oxygen demand (COD) values, which are environmentally undesirable. Among these textile effluent characteristics, color removal is the most challenging task. In this study, the potential of Rift Valley halotolerant and thermo-alkaliphilic microbial consortia (collected from Shala hot spring located in Ethiopia) for azo dye biodegradation under anaerobic-aerobic conditions were evaluated. Optimization and microbial diversity analysis were done using Reactive Red 141. Under optimum conditions of pH (9), temperature (55 °C), salinity (0.5%), and nutrients, microbial consortia can remove >98% color and 92.7 ± 7.3% COD under anaerobic and aerobic conditions, respectively. In addition, the consortia was capable of decolorizing initial dye concentrations of 100-1000 mg/L, and various dye types including Everzol Blue LX, RY 84, RR 239, RB 198 and RY 700. The 16S rRNA gene sequence results showed that Bacteroidetes (25.3%) > Proteobacteria (21.0%) > Chloroflexi (18.5%) > Halobacterota (6.2%) dominant phyla. Based on the findings, non-color effluent adapted Rift Valley halotolerant and thermo-alkaliphilic bacterial consortia can be a potential candidate for bioremediation of textile and other industries characterized by higher salinity, temperature and pH.
Collapse
Affiliation(s)
- Samson Tizazu
- Arba Minch University, College of Natural and Computational Sciences, Department of Biology, Biotechnology Stream, Arba Minch 21, Ethiopia
| | - Getaneh Tesfaye
- Arba Minch University, College of Natural and Computational Sciences, Department of Biology, Biotechnology Stream, Arba Minch 21, Ethiopia
| | - Berhanu Andualem
- Gondar University, Institute of Biotechnology, Department of Industrial Biotechnology, Gondar, 196, Ethiopia
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Awoke Guadie
- Arba Minch University, College of Natural and Computational Sciences, Department of Biology, Biotechnology Stream, Arba Minch 21, Ethiopia; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| |
Collapse
|
25
|
Wang C, Liu Y, Huang M, Xiang W, Wang Z, Wu X, Zan F, Zhou T. A rational strategy of combining Fenton oxidation and biological processes for efficient nitrogen removal in toxic coking wastewater. BIORESOURCE TECHNOLOGY 2022; 363:127897. [PMID: 36075350 DOI: 10.1016/j.biortech.2022.127897] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Effective removal of nitrogen from coking wastewaters is a great challenge, since conventional biological technologies commonly suffer from concentrated bio-toxic components such as phenolic compounds and thiocyanide (SCN-). This study has successfully developed a novel ternary process for efficiently removing nitrogen from a practical coking wastewater, by rationally combined biological pretreatment, Fenton sub-pretreatment and final partial nitrification-denitrification (PN) process. It was noted that the oxic biological pretreatment (OP) could degrade above 80 % of COD and SCN- in the wastewater, by adopting the pristine coking wastewater sludge. Fenton sub-pretreatment would further degrade the residual toxic organics and protect the metabolic activity of nitrobacteria and denitrobacteria, realizing the efficient removal of NH4+-N and TN that occurred in the final PN process with self-cultivated sludge. This work can provide an interesting strategy by rationally combining biological-physicochemical processes for nitrogen removal in toxic industrial wastewaters.
Collapse
Affiliation(s)
- Chen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yaming Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Mingjie Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wei Xiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhicheng Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China
| | - Tao Zhou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
26
|
Han J, Cao R, Li K, Wang S, Ji G, Xu H, Wang J, Huang T, Wen G. Change of algal organic matter under different dissolved oxygen and pressure conditions and its related disinfection by-products formation potential in metalimnetic oxygen minimum. WATER RESEARCH 2022; 226:119216. [PMID: 36257160 DOI: 10.1016/j.watres.2022.119216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/06/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Most of the reservoirs or lakes will form a metalimnetic oxygen minimum (MOM) with the characterization of a substantial fraction of dissolved oxygen (DO) depleted below the epilimnion. The effect of intracellular organic matter (IOM) of algal cells transformed under MOM conditions is completely different from that of the original IOM on water quality. In this study, the IOM changes of Microcystic aeruginosa under different MOM conditions and its related disinfection by-products formation potentials (DBPFPs) were investigated by changing the pressure and DO concentration of MOM. Total Fmax increased slightly and then decreased under different pressure conditions, finally decreasing by no more than 22.0%. Under aerobic condition, dissolved organic carbon (DOC) and total Fmax decreased significantly, and decreased by 60.4% and 38.8% within the first 2 days. The results of specific UV absorbance (SUVA) and UV250/UV365 indicated that aromatic compounds and average molecular weight of IOM were gradually increased under different MOM conditions. The total DBPFPs increased firstly and then decreased under different pressure conditions, and finally decreased by 26.2%-33.1%. The decrease of total DBPFPs was significantly higher under aerobic condition than that under anoxic condition, which finally decreased by 64.5%. Redundancy analysis showed that the fluorescence parameter (protein-like and humic-like fluorescence) could be expected as an index to predict the DBPFPs. Moreover, the results revealed that with the decrease of DO, the activity and diversity of natural microbial consortium decreased, which prevented the further degradation and utilization of organic matter by natural microbial consortium. Therefore, lower DO was a key player for the deterioration of water quality under MOM conditions.
Collapse
Affiliation(s)
- Jingru Han
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Shuo Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gang Ji
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
27
|
Amoah ID, Kumari S, Bux F. A probabilistic assessment of microbial infection risks due to occupational exposure to wastewater in a conventional activated sludge wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156849. [PMID: 35728649 DOI: 10.1016/j.scitotenv.2022.156849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Exposure to pathogens during wastewater treatment could result in significant health risks. In this paper, a probabilistic approach for assessing the risks of microbial infection for workers in an activated sludge wastewater treatment plant is presented. A number of exposure routes were modelled, including hand-to-mouth and droplet ingestion of untreated wastewater, droplet ingestion and inhalation of aerosols after secondary treatment, and ingestion of sludge during drying. Almost all workers exposed to untreated wastewater could be infected with the three selected potential pathogens of pathogenic E. coli, Norovirus and Cryptosporidium spp. Hand-to-mouth ingestion is the single most significant route of exposure at the head of works. There is also a risk of infections resulting from ingestion of droplets or inhalation of aerosols at the aeration tanks or contaminated hands at the clarifiers during secondary wastewater treatment. For sludge, the risks of infection with Norovirus was found to be the highest due to accidental ingestion (median risks of 2.2 × 10-2(±3.3 × 10-3)). Regardless of the point and route of exposure, Norovirus and Cryptosporidium spp. presented the highest risks. The study finds that occupational exposure to wastewater at wastewater treatment plants can result in significant viral and protozoan infections. This risk assessment framework can be used to establish and measure the success of risk reduction measures in wastewater treatment plants. These measures could include the use of personal protective equipment and adherence to strict personal hygiene.
Collapse
Affiliation(s)
- Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.
| |
Collapse
|
28
|
Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Chen W, Wei J, Su Z, Wu L, Liu M, Huang X, Yao P, Wen D. Deterministic mechanisms drive bacterial communities assembly in industrial wastewater treatment system. ENVIRONMENT INTERNATIONAL 2022; 168:107486. [PMID: 36030743 DOI: 10.1016/j.envint.2022.107486] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Microbial communities are responsible for biological treatment of many industrial wastewater, but our knowledge of their diversity, assembly patterns, and function is still poor. Here, we analyzed the bacterial communities of wastewater and activated sludge samples taken from 11 full-scale industrial wastewater treatment plants (IWWTPs) characterized by the same process design but different wastewater types and WWTP compartments. We found significantly different diversity and compositions of bacterial assemblages among distinct wastewater types and IWWTPs compartments. IWWTPs bacterial communities exhibited a clear species abundance distribution. The dispersal-driven process was weak in shaping IWWTP communities. Meanwhile, environmental and operating conditions were important factors in regulating the structure of the activated sludge community and pollutants removal, indicating that bacterial community was largely driven by deterministic mechanisms. The core microbial community in IWWTPs was different from that in municipal wastewater treatment plants (MWWTPs), and many taxa (e.g. the genus Citreitalea) rarely were detected before, indicating IWWTPs harbored unique core bacterial communities. Furthermore, we found that bacterial community compositions were strongly linked to activated sludge function. These findings are important to both microbial ecologists and environmental engineers, who may optimize the operation strategies jointly for maintaining biodiversity, which in turn may promote a more stable performance of the IWWTP. Overall, our study enhances the mechanistic understanding of the IWWTP microbial community diversity, assembly patterns, and function, and provides important implications for microbial ecology and wastewater treatment processes.
Collapse
Affiliation(s)
- Weidong Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jie Wei
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Linwei Wu
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing China
| | - Min Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaoxuan Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Pengcheng Yao
- Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310017, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
30
|
He J, Zhang Q, Tan B, Guo N, Peng H, Feng J, Su J, Zhang Y. Understanding the effect of residual aluminum salt coagulant on activated sludge in sequencing batch reactor: Performance response, activity restoration and microbial community evolution. ENVIRONMENTAL RESEARCH 2022; 212:113449. [PMID: 35561832 DOI: 10.1016/j.envres.2022.113449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/07/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
To investigate the effect of residual coagulant after coagulation pretreatment on activated sludge system of wastewater treatment plants (WWTPs), comparative evaluation of lab-scale sequencing batch reactors under different poly-aluminum chloride (PAC) concentrations (20 and 55 mg/L), presenting the performance differences of reactors. Results showed that the PAC concentration of 20 mg/L slightly enhanced the average removal efficiencies of chemical oxygen demand (COD) and total nitrogen (TN), up to 93.43% and 72.52%. Whereas, an inhibition effect was exerted at the PAC concentration of 55 mg/L, the average removal efficiencies decreased to 88.56% and 57.80% respectively. Similarly, the residual aluminum salts showed a concentration effect of low promotion and high inhibition on sludge activity index. The content of specific oxygen utilization rate (SOUR) and dehydrogenase (DHA) sharply decreased by 30.17% and 53.56% under the high PAC concentration of 55 mg/L. Activity recovery phase showed that the suppression of aluminum salt coagulant on biological system was reversible. High-throughput sequencing presented that the relative abundance of microbes showed obvious variations at different PAC concentrations, and certain bacteria in Chloroflexi and Bacteroidota exhibited better adaptability to the high PAC concentration environment. Nevertheless, the antagonism action between denitrifying genera and other genera as well as the downregulation of functional enzymes regarding nitrogen metabolism gave rise to the deterioration of denitrification under the high PAC concentration of 55 mg/L. This study revealed the influence mechanism of residual aluminum salt coagulant on activated sludge system, providing strategies for efficient decontamination and long-term stable operation of biological system in wastewater treatment plant under the condition of adding PAC.
Collapse
Affiliation(s)
- Jing He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Bin Tan
- Wuhan Branch, Chengdu JiZhun FangZhong Architectural Design, Wuhan, 40061, PR China
| | - Nuowei Guo
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Haojin Peng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Junhao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yunjie Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| |
Collapse
|
31
|
Wolcott S, Hatwar M, Endreny TA, Newman LA. Suitability of select media for use in a novel green wall system used to treat brewery wastewater. ENVIRONMENTAL TECHNOLOGY 2022; 43:2656-2670. [PMID: 33736570 DOI: 10.1080/21622515.2021.1893829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Green walls are becoming increasingly popular as pleasing architectural installations and functional systems in sustainable urban building designs. However, utilization of green walls as an aqueous treatment option has been primarily limited to grey water. This study evaluates select media as appropriate support for plants and microorganisms in a novel green wall system used to treat wastewater from craft and micro-breweries. The media must have hydraulic capacity to treat large volumes of brewery wastewater, be lightweight and commercially available, and provide structure for plant roots and biofilm development. Two expanded recycled glass aggregates (Growstone® and Poraver®) and a lightweight expanded clay aggregate (Hydroton®) were evaluated, having a d50 range from 6 to 12 mm. To assess media performance, this study determined hydraulic characteristics and evaluated the growth of leafy green plants and microorganism populations irrigated with 100% raw brewery wastewater. It was determined that media with a particle d50 = 12 mm would facilitate a hydraulic loading rate of 1623 m3/m2/day media under unsaturated conditions and not result in interstitial velocities that shear away biofilm. No significant difference in plant growth metrics, microorganism type or cell density were observed between media. There were nearly three orders of magnitude more bacteria colonies than yeast CFU in biofilm. This innovative application of green walls has the potential to provide manufacturers of fermented beverages with a treatment option that has a low capital cost, simple to operate, and a small footprint, thereby avoiding traditional treatment processes and/or high sewer use fees.
Collapse
Affiliation(s)
- Scott Wolcott
- Department of Civil Engineering Technology, Environmental Management and Safety, Rochester Institute of Technology, Rochester, USA
| | - Mamata Hatwar
- Department of Civil Engineering Technology, Environmental Management and Safety, Rochester Institute of Technology, Rochester, USA
| | - Ted A Endreny
- Department of Environmental Resources Engineering, SUNY ESF, Syracuse, USA
| | - Lee A Newman
- Department of Environmental and Forest Biology, SUNY ESF, Syracuse, USA
| |
Collapse
|
32
|
Criado Monleon AJ, Knappe J, Somlai C, Betancourth CO, Ali M, Curtis TP, Gill LW. Spatial Variation of the Microbial Community Structure of On-Site Soil Treatment Units in a Temperate Climate, and the Role of Pre-treatment of Domestic Effluent in the Development of the Biomat Community. Front Microbiol 2022; 13:915856. [PMID: 35814661 PMCID: PMC9263727 DOI: 10.3389/fmicb.2022.915856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022] Open
Abstract
The growth of microbial mats or "biomats" has been identified as an essential component in the attenuation of pollutants within the soil treatment unit (STU) of conventional on-site wastewater treatment systems (OWTSs). This study aimed to characterize the microbial community which colonizes these niches and to determine the influence of the pre-treatment of raw-domestic wastewater on these communities. This was achieved through a detailed sampling campaign of two OWTSs. At each site, the STU areas were split whereby half received effluent directly from septic tanks, and half received more highly treated effluents from packaged aerobic treatment systems [a coconut husk media filter on one site, and a rotating biodisc contactor (RBC) on the other site]. Effluents from the RBC had a higher level of pre-treatment [~90% Total Organic Carbon (TOC) removal], compared to the media filter (~60% TOC removal). A total of 92 samples were obtained from both STU locations and characterized by 16S rRNA gene sequencing analysis. The fully treated effluent from the RBC resulted in greater microbial community richness and diversity within the STUs compared to the STUs receiving partially treated effluents. The microbial community structure found within the STU receiving fully treated effluents was significantly different from its septic tank, primary effluent counterpart. Moreover, the distance along each STU appears to have a greater impact on the community structure than the depth in each STU. Our findings highlight the spatial variability of diversity, Phylum- and Genus-level taxa, and functional groups within the STUs, which supports the assumption that specialized biomes develop around the application of effluents under different degrees of treatment and distance from the source. This research indicates that the application of pre-treated effluents infers significant changes in the microbial community structure, which in turn has important implications for the functionality of the STU, and consequently the potential risks to public health and the environment.
Collapse
Affiliation(s)
- Alejandro Javier Criado Monleon
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
| | - Jan Knappe
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
- Mathematics Applications Consortium for Science and Industry (MASCI), Limerick University, Limerick, Ireland
| | - Celia Somlai
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
| | | | - Muhammad Ali
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Thomas P. Curtis
- Department of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laurence William Gill
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, The University of Dublin College Green, Dublin, Ireland
| |
Collapse
|
33
|
Removal of a Mixture of Seven Volatile Organic Compounds (VOCs) Using an Industrial Pilot-Scale Process Combining Absorption in Silicone Oil and Biological Regeneration in a Two-Phase Partitioning Bioreactor (TPPB). ENERGIES 2022. [DOI: 10.3390/en15134576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The treatment of a synthetic polluted gas containing seven volatile organic compounds (VOCs) was studied using a pilot plant in real industrial conditions. The process combined VOC absorption in silicone oil (PolyDiMethylSiloxane, i.e., PDMS), a biological regeneration of the PDMS in a two-phase partitioning bioreactor (TPPB), and a phase separation including settling and centrifugation. The TPPB was operated at a water/PDMS volume ratio of 75/25. The VOCs treatment performance was efficient during the entire test, corresponding to 10 PDMS regeneration cycles. The analysis of the content of the aqueous phase and PDMS confirmed that VOCs are progressively degraded until mineralization. The nitrogen consumption and the characterization of the microorganisms highlighted possible anoxic functioning of the biomass within the first decanter. Moreover, although the absorption and biodegradation performances were very satisfactory, the separation of all phases, essential for the PDMS recycling, was problematic due to the production of biosurfactants by the microorganisms, leading to the formation of a stable emulsion and foaming episodes. As a consequence, the packed column showed slight fouling. However, no significant increase in the pressure drop of the packed bed, as well as no significant impact on VOC absorption efficiency was observed.
Collapse
|
34
|
Ma X, Dong X, Cai J, Fu C, Yang J, Liu Y, Zhang Y, Wan T, Lin S, Lou Y, Zheng M. Metagenomic Analysis Reveals Changes in Bacterial Communities and Antibiotic Resistance Genes in an Eye Specialty Hospital and a General Hospital Before and After Wastewater Treatment. Front Microbiol 2022; 13:848167. [PMID: 35663906 PMCID: PMC9162037 DOI: 10.3389/fmicb.2022.848167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in hospital wastewater poses a great threat to public health, and wastewater treatment plants (WWTPs) play an important role in reducing the levels of ARB and ARGs. In this study, high-throughput metagenomic sequencing was used to analyze the bacterial community composition and ARGs in two hospitals exposed to different antibiotic use conditions (an eye specialty hospital and a general hospital) before and after wastewater treatment. The results showed that there were various potential pathogenic bacteria in the hospital wastewater, and the abundance and diversity of the influent ARGs in the general hospital were higher than those in the eye hospital. The influent of the eye hospital was mainly composed of Thauera and Pseudomonas, and sul1 (sulfonamide) was the most abundant ARG. The influent of the general hospital contained mainly Aeromonas and Acinetobacter, and tet39 (tetracycline) was the most abundant ARG. Furthermore, co-occurrence network analysis showed that the main bacteria carrying ARGs in hospital wastewater varied with hospital type; the same bacteria in wastewater from different hospitals could carry different ARGs, and the same ARG could also be carried by different bacteria. The changes in the bacterial community and ARG abundance in the effluent from the two hospitals showed that the activated sludge treatment and the direct chlorination disinfection can effectively remove some bacteria and ARGs in wastewater but have limitations. The species diversity increased significantly after the activated sludge treatment, while the direct chlorination disinfection did not increase the diversity. The activated sludge treatment has a better effect on the elimination of ARGs than the direct chlorination disinfection. In summary, we investigated the differences in bacterial communities and ARGs in wastewater from two hospitals exposed to different antibiotic usage conditions, evaluated the effects of different wastewater treatment methods on the bacterial communities and ARGs in hospital wastewater, and recommended appropriate methods for certain clinical environments.
Collapse
Affiliation(s)
- Xueli Ma
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Xu Dong
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiabei Cai
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Chunyan Fu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Jing Yang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Yuan Liu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Yan Zhang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Tian Wan
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Shudan Lin
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meiqin Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Sun L, Mo Y, Zhang L. A mini review on bio-electrochemical systems for the treatment of azo dye wastewater: State-of-the-art and future prospects. CHEMOSPHERE 2022; 294:133801. [PMID: 35104551 DOI: 10.1016/j.chemosphere.2022.133801] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Azo dyes are typical toxic and refractory organic pollutants widely used in the textile industry. Bio-electrochemical systems (BESs) have great potential for the treatment of azo dyes with the help of microorganisms as biocatalysts and have advanced significantly in recent years. However, the latest and significant advancement and achievements of BESs treating azo dyes have not been reviewed since 8 years ago. This review thus focuses on the recent investigations of BESs treating azo dyes from the year of 2013-2020 in order to broaden the knowledge and deepen the understanding in this field. In this review, azo dyes degradation mechanisms of BESs are first elaborated, followed by the introduction of BES configurations with the emphasis on the novelties. The azo dye degradation performance of BESs is then presented to demonstrate their effectiveness in azo dye removal. Effects of various operating parameters on the overall performance of BESs are comprehensively elucidated, including electrode materials, external resistances and applied potentials, initial concentrations of azo dyes, and co-substrates. Predominant microorganisms responsible for degradation of azo dyes in BESs are highlighted in details. Furthermore, the combination of BESs with other processes to further improve the azo dye removal are discussed. Finally, an outlook on the future research directions and challenges is provided from the viewpoint of realistic applications of the technology.
Collapse
Affiliation(s)
- Liping Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yinghui Mo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Lu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
36
|
Sun H, Chang H, Tang W, Zhang X, Yang H, Zhang F, Zhang Y. Effects of influent immigration and environmental factors on bacterial assembly of activated sludge microbial communities. ENVIRONMENTAL RESEARCH 2022; 205:112426. [PMID: 34843723 DOI: 10.1016/j.envres.2021.112426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 05/13/2023]
Abstract
The functional mechanism of microbial assembly of activated sludge (AS) in urban wastewater treatment plants (UWTPs) remains unclear. A comprehensive quantitative evaluation of the contribution of influent immigration and environmental factors to AS community composition requires investigation. In this study, the microbial characteristics of six full-scale UWTPs with different influent compositions and environmental factors (altitude, temperature, dissolved oxygen (DO), pH, chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH4+-N), and total phosphorus (TP)) were analyzed to determine the main forces affecting the bacterial assembly of AS microbial communities. Abundant and core taxa were screened out based on the abundance and frequency of operational taxonomic units (OTUs) occurrence in all samples. Abundant OTUs (18.7% occurrence) accounted for 87.7% of the total 16S rRNA sequences, while rare OTUs (71.7% occurrence) accounted for only 7.8% of the total 16S rRNA sequences. A total of 135 OTUs were identified as core taxa, accounting for 14.6-26.2% of the total reads, of which 83 OTUs belonged to abundant taxa. The richness and uniformity of the influent community were significantly lower than those of the AS system. The community composition in influent varied from that in AS. Moreover, about 89.7% (86.5% of 16S rRNA sequences) OTUs in AS samples showed positive growth rates, indicating that immigration of influent communities had a limited effect on the microbial composition of AS. Redundancy analysis (RDA) combined with co-occurrence network showed that the bacterial assembly of microbial communities was significantly correlated with altitude, pH, and TN (P < 0.05), and these three parameters could explain 23.3%, 21.1%, and 17.7% of the bacterial assembly of AS microbial communities in UWTPs, respectively.
Collapse
Affiliation(s)
- Hongwei Sun
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China.
| | - Huanhuan Chang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Wei Tang
- Yantai City Drainage Service Center, Yantai, 264000, China
| | | | - Hao Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Feng Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Yanxiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China.
| |
Collapse
|
37
|
Liu C, Zhu L, Ji R. Direct contact membrane distillation (DCMD) process for simulated brackish water treatment: An especial emphasis on impacts of antiscalants. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Liu C, Zhu L, Pan M. Seasonal shift of water quality in China Yangtze River and its impacts on membrane fouling development during the drinking water supply by membrane distillation system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152298. [PMID: 34896505 DOI: 10.1016/j.scitotenv.2021.152298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Membrane distillation (MD) technique is increasingly regarded as a promising process for drinking water supply and wastewater treatment owing to its great water purification and usage of renewable energy. Like other membrane separation processes, the membrane fouling issue is widely considered as the main obstacle for real applications of large-scale MD systems. Feedwater characteristics, as the predominant factors for membrane fouling layer formation, mostly determined the membrane fouling trend of MD. Thus the impacts of seasonal shifts of initial feedwater quality on the MD membrane fouling were detailedly researched in this study, and the biofilm development mechanism was especially explored. The bacterial community structure of membrane biofilms was clearly clarified in MD runs of Yangtze River waters that collected in four seasons. The results revealed that the winter run posed a quite sharp flux drop, while a relatively milder flux decline behaviour was seen for other groups despite of the higher bacteria concentration of initial feedwaters. The poorer water quality in winter induced the establishment of a rather thick biofilm on the MD membrane, in which the biofilm-forming bacteria (Gammaproteobacteria and Alphaproteobacteria) and organic matters (EPS) were remarkably observed. Comparatively, a relatively thin biofilm containing abundant live cells and fewer organics finally formed in summer and autumn runs, causing a mitigated flux decline trend. Hence, it can be inferred that the membrane flux decline of MD was likely to be more sensitive to the organic attachment on the membrane in comparison with the bacteria adhesion. Finally, a three-phase pretreatment method was suggested for MD fouling control, including heating course, sterilization course, and filtration course.
Collapse
Affiliation(s)
- Chang Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Mei Pan
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224003, China
| |
Collapse
|
39
|
Liu C, Wang Y, Chen G, Yu D, Zhang X, Wang X, Tang Z, Xu A. A novel stable nitritation process: Treating sludge by alternating free nitrous acid/heat shock. BIORESOURCE TECHNOLOGY 2022; 347:126753. [PMID: 35081428 DOI: 10.1016/j.biortech.2022.126753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The feasibility of stable nitritation of sludge alternately treated by free nitrous acid (FNA) and heat shock in a sequencing batch reactor (SBR) was investigated in this study. The linear regression method was used to determine the optimal treatment conditions. Results revealed that an FNA concentration of 2.20 mg HNO2-N/L, exposure time of 24 h, and treatment ratio of 20% could inhibit nitrite oxidizing bacteria (NOB) activity to the greatest extent while maintaining the maximum ammonium oxidizing bacteria (AOB) activity; after heat shock at 60 °C for 20 min, NOB were inhibited while AOB still had certain activity. In the long-term continuous-flow experiment, the single FNA or heat shock treatments easily allowed adapt NOB to affect the stability of nitritation. The alternating FNA/heat shock treatment can achieve long-term stability of nitritation. Microbial community analysis revealed that the alternating FNA/heat shock treatment could inhibit NOB while maintaining high AOB abundance.
Collapse
Affiliation(s)
- Chengju Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yanyan Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xincheng Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xueping Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zhihao Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Ao Xu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
40
|
Pagsuyoin SA, Luo J, Chain FJ. Effects of sewer biofilm on the degradation of drugs in sewage: A microcosm study. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127666. [PMID: 34774351 DOI: 10.1016/j.jhazmat.2021.127666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
A thorough understanding of the in-sewer stability of chemical biomarkers is critical in applying wastewater-based surveillance of community drug use. In this study, we examined the effects of sewer biofilm on the degradation of commonly abused drugs, namely, morphine, fentanyl, cocaine, and amphetamine, in wastewater using 48-h batch degradation tests. The experiments were designed to distinguish among abiotic, biochemical, and physical degradation processes, and used mature biofilm obtained from an actual sewer line. Parallel microcosm tests were conducted using wastewater with and without suspended biofilm. Results indicate that first order kinetics describe the degradation of the drugs in both wastewater and wastewater-biofilm microcosms. Amphetamine was most stable in all microcosms, with a maximum removal of only 34% after 48 h. Abiotic chemical transformation played a major role in the degradation of morphine (kab = 0.018 h-1), fentanyl (kab = 0.022 h-1) and cocaine (kab = 0.049 h-1) in wastewater. Fentanyl removal from wastewater was also influenced by the presence of biofilm (kf = 0.015 h-1). This study is the first to report on the effect of sewer biofilm on fentanyl degradation, and highlights the need to account for in-sewer drug stability in wastewater-based drug use estimation, particularly for chemicals with high affinity for organics.
Collapse
Affiliation(s)
- Sheree A Pagsuyoin
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA.
| | - Jiayue Luo
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA
| | - Frédéric J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA
| |
Collapse
|
41
|
Kallistova A, Nikolaev Y, Grachev V, Beletsky A, Gruzdev E, Kadnikov V, Dorofeev A, Berestovskaya J, Pelevina A, Zekker I, Ravin N, Pimenov N, Mardanov A. New Insight Into the Interspecies Shift of Anammox Bacteria Ca. "Brocadia" and Ca. "Jettenia" in Reactors Fed With Formate and Folate. Front Microbiol 2022; 12:802201. [PMID: 35185828 PMCID: PMC8851195 DOI: 10.3389/fmicb.2021.802201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
The sensitivity of anaerobic ammonium-oxidizing (anammox) bacteria to environmental fluctuations is a frequent cause of reactor malfunctions. It was hypothesized that the addition of formate and folate would have a stimulating effect on anammox bacteria, which in turn would lead to the stability of the anammox process under conditions of a sharp increase in ammonium load, i.e., it helps overcome a stress factor. The effect of formate and folate was investigated using a setup consisting of three parallel sequencing batch reactors equipped with a carrier. Two runs of the reactors were performed. The composition of the microbial community was studied by the 16S rRNA gene profiling and metagenomic analysis. Among anammox bacteria, Ca. "Brocadia" spp. dominated during the first run. A stimulatory effect of folate on the daily nitrogen removal rate (dN) was identified. The addition of formate led to progress in dissimilatory nitrate reduction and stimulated the growth of Ca. "Jettenia" spp. The spatial separation of two anammox species was observed in the formate reactor: Ca. "Brocadia" occupied the carrier and Ca. "Jettenia"-the walls of the reactors. Biomass storage at low temperature without feeding led to an interspecies shift in anammox bacteria in favor of Ca. "Jettenia." During the second run, a domination of Ca. "Jettenia" spp. was recorded along with a stimulating effect of formate, and there was no effect of folate on dN. A comparative genome analysis revealed the patterns suggesting different strategies used by Ca. "Brocadia" and Ca. "Jettenia" spp. to cope with environmental changes.
Collapse
Affiliation(s)
- Anna Kallistova
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Yury Nikolaev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Grachev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Beletsky
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny Gruzdev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly Kadnikov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Dorofeev
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Julia Berestovskaya
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Pelevina
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ivar Zekker
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Nikolai Ravin
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Pimenov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Mardanov
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
42
|
Liu C, Zhu L, Ji R, Xiong H. Zero liquid discharge treatment of brackish water by membrane distillation system: Influencing mechanism of antiscalants on scaling mitigation and biofilm formation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Hu Y, Liu T, Chen N, Feng C. Changes in microbial community diversity, composition, and functions upon nitrate and Cr(VI) contaminated groundwater. CHEMOSPHERE 2022; 288:132476. [PMID: 34634272 DOI: 10.1016/j.chemosphere.2021.132476] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/12/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
With the increasing occurrences of nitrate and Cr(VI) pollution globally, microbially driven pollutant reduction and its interaction effects were of growing interest. Despite the increasing number of experimental reports on the simultaneous reduction of nitrate and Cr(VI), a broad picture of the keystone species and metabolic differences in this process remained elusive. This study explored the changing of microorganisms with the introduction of Cr(VI)/NO3- through analyzing 242 samples from the NCBI database. The correlation between microbial abundance and environmental factors showed that, the types of energy substances and pollutants species in the environment had an impact on the diversity of microorganisms and community structure. The genus of Zoogloea, Candidatus Accumulibacter, and Candidatus Kapabacteria sp. 59-99 had the ability of denitrification, while genus of Alcaligenes, Kerstersia, Petrimonas, and Leucobacter showed effectively Cr(VI) resistance and reducing ability. Azoarcus, Pseudomonas, and Thauera were recognized as important candidates in the simultaneous reduction of nitrate and Cr(VI). Metagenomic predictions of these microorganisms using PICRUSt2 further highlighted the enrichment of Cr(VI)and nitrate reduction-related genes (such as chrA and norC). Special attention should therefore be paid to these bacteria in subsequent studies to evaluate their performance and mechanisms involved in simultaneous denitrification and chromium removal. The microbial co-occurrence network analysis conducted on this basis emphasized a strong association between community collaboration and pollution removal. Collectively, either site surveys or laboratory experiments, subsequent studies should focus on these microbial populations and the interspecific collaborations as they strongly influence the occurrence of simultaneous nitrate and Cr(VI) reduction.
Collapse
Affiliation(s)
- Yutian Hu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Tong Liu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| |
Collapse
|
44
|
Kagemasa S, Kuroda K, Nakai R, Li YY, Kubota K. Diversity of <i>Candidatus</i> Patescibacteria in Activated Sludge Revealed by a Size-Fractionation Approach. Microbes Environ 2022; 37. [PMID: 35676047 PMCID: PMC9530733 DOI: 10.1264/jsme2.me22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uncultivated members of Candidatus Patescibacteria are commonly found in activated sludge treating sewage and are widely distributed in wastewater treatment plants in different regions and countries. However, the phylogenetic diversity of Ca. Patescibacteria is difficult to examine because of their low relative abundance in the environment. Since Ca. Patescibacteria members have small cell sizes, we herein collected small microorganisms from activated sludge using a filtration-based size-fractionation approach (i.e., 0.45–0.22 μm and 0.22–0.1 μm fractions). Fractionated samples were characterized using 16S rRNA gene amplicon and shotgun metagenomic sequence analyses. The amplicon analysis revealed that the relative abundance of Ca. Patescibacteria increased to 73.5% and 52.5% in the 0.45–0.22 μm and 0.22–0.1 μm fraction samples, respectively, from 5.8% in the unfractionated sample. The members recovered from the two size-fractionated samples included Ca. Saccharimonadia, Ca. Gracilibacteria, Ca. Paceibacteria, Ca. Microgenomatia, class-level uncultured lineage ABY1, Ca. Berkelbacteria, WS6 (Ca. Dojkabacteria), and WWE3, with Ca. Saccharimonadia being predominant in both fraction samples. The number of operational taxonomic units belonging to Ca. Patescibacteria was approximately 6-fold higher in the size-fractionated samples than in the unfractionated sample. The shotgun metagenomic analysis of the 0.45–0.22 μm fractioned sample enabled the reconstruction of 24 high-quality patescibacterial bins. The bins obtained were classified into diverse clades at the family and genus levels, some of which were rarely detected in previous activated sludge studies. Collectively, the present results suggest that the overall diversity of Ca. Patescibacteria inhabiting activated sludge is higher than previously expected.
Collapse
Affiliation(s)
- Shuka Kagemasa
- Department of Civil and Environmental Engineering, Tohoku University
| | - Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University
| | - Kengo Kubota
- Department of Frontier Sciences for Advanced Environment, Tohoku University
| |
Collapse
|
45
|
Li J, Chen X, Yang Z, Liu Z, Chen Y, Wang YE, Xie H. Denitrification performance and mechanism of sequencing batch reactor with a novel iron-polyurethane foam composite carrier. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Din GMU, Du Z, Zhang H, Zhao S, Liu T, Chen W, Gao L. Effects of Tilletia foetida on Microbial Communities in the Rhizosphere Soil of Wheat Seeds Coated with Different Concentrations of Jianzhuang. MICROBIAL ECOLOGY 2021; 82:736-745. [PMID: 33527233 PMCID: PMC8463399 DOI: 10.1007/s00248-021-01696-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/17/2021] [Indexed: 05/03/2023]
Abstract
Tilletia foetida (syn. T. laevis) leads to wheat common bunt, a worldwide disease that can lead to 80% yield loss and even total loss of production, together with degrading the quality of grains and flour by producing a rotten fish smell. To explore the potential microbial community that may contribute to the control of soil- and seed-borne pathogens, in this study, we analyzed the effects of the plant pathogenic fungus T. foetida on rhizosphere soil microorganisms in wheat seeds coated with different concentrations of a fungicide (Jianzhuang) used to control the disease. To analyze the bacterial and fungal abundance in T. foetida-infected and mock-infected plants, the microorganisms were sequenced using high-throughput HiSeq 2500 gene sequencing. The results showed that bacterial communities, including Verrucomicrobia, Patescibacteria, Armatimonadetes, Nitrospirae, Fibrobacteres, Chlamydiae, and Hydrogenedentes, and fungal communities, including Basidiomycota and Ciliophora, were more prevalent in the mock group than in the T. foetida-infected group, which may contribute to the control of wheat common bunt. Moreover, cluster and PCoA analysis revealed that replicates of the same samples were clustered together, and these results were also found in the distance index within-group analysis for bacterial and fungal communities in the T. foetida-infected and mock groups.
Collapse
Affiliation(s)
- Ghulam Muhae Ud Din
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhenzhen Du
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Han Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Xinjiang, 832003, China
| | - Sifeng Zhao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, Shihezi University, Xinjiang, 832003, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
47
|
|
48
|
The stimulation of microbial activity by microplastic contributes to membrane fouling in ultrafiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119477] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Chen D, Chen P, Zheng X, Cheng W, Wang Q, Wei X. Enhanced Denitrification of Integrated Sewage Treatment System by Supplementing Denitrifying Carbon Source. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9569. [PMID: 34574494 PMCID: PMC8470696 DOI: 10.3390/ijerph18189569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
Integrated sewage treatment system (ISTY) is a new technology for rural domestic sewage treatment. In the ISTY, the carbon source in the denitrification stage is often insufficient, affecting the denitrification efficiency. In order to improve the denitrification efficiency, several commonly available agricultural wastes, peanut shell (PS), sawdust (SD), peat (PT), and their mixtures (MT), were selected as supplementary carbon sources in the denitrification stage of ISTY to study the denitrification efficiency. Results show that PS exhibited a high carbon release capacity. PS released an enormous amount of carbon in 144 h, and the cumulative total organic carbon was 41.99 ± 0.7 mg/(g·L). The optimum carbon source dosage was 3 g/L, the nitrate removal rates of PS exceeded 95% after 48 h, and the denitrification rates were 9.35 mg/(g·L), which were 63.92% higher than that of the control group. After running the ISTY for 120 h, and with PS as supplementary carbon sources, the removal rate of TN increased from 29.76% to 83.86%. At the genus level, the dominant denitrifying bacteria in ISTY, after adding PS, were Pseudomonas and Cupriavidus, accounting for 78.68%, an increase of 72.90% compared with the control group. This evidence suggested that PS can obviously enhance the denitrification efficiency of the ISTY as a supplementary carbon source.
Collapse
Affiliation(s)
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (D.C.); (X.Z.); (W.C.); (Q.W.); (X.W.)
| | | | | | | | | |
Collapse
|
50
|
Zimmer-Faust AG, Steele JA, Xiong X, Staley C, Griffith M, Sadowsky MJ, Diaz M, Griffith JF. A Combined Digital PCR and Next Generation DNA-Sequencing Based Approach for Tracking Nearshore Pollutant Dynamics Along the Southwest United States/Mexico Border. Front Microbiol 2021; 12:674214. [PMID: 34421839 PMCID: PMC8377738 DOI: 10.3389/fmicb.2021.674214] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
Ocean currents, multiple fecal bacteria input sources, and jurisdictional boundaries can complicate pollution source tracking and associated mitigation and management efforts within the nearshore coastal environment. In this study, multiple microbial source tracking tools were employed to characterize the impact and reach of an ocean wastewater treatment facility discharge in Mexico northward along the coast and across the Southwest United States- Mexico Border. Water samples were evaluated for fecal indicator bacteria (FIB), Enterococcus by culture-based methods, and human-associated genetic marker (HF183) and Enterococcus by droplet digital polymerase chain reaction (ddPCR). In addition, 16S rRNA gene sequence analysis was performed and the SourceTracker algorithm was used to characterize the bacterial community of the wastewater treatment plume and its contribution to beach waters. Sampling dates were chosen based on ocean conditions associated with northern currents. Evidence of a gradient in human fecal pollution that extended north from the wastewater discharge across the United States/Mexico border from the point source was observed using human-associated genetic markers and microbial community analysis. The spatial extent of fecal contamination observed was largely dependent on swell and ocean conditions. These findings demonstrate the utility of a combination of molecular tools for understanding and tracking specific pollutant sources in dynamic coastal water environments.
Collapse
Affiliation(s)
- Amity G Zimmer-Faust
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| | - Joshua A Steele
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| | - Xianyi Xiong
- BioTechnology Institute, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Christopher Staley
- BioTechnology Institute, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Madison Griffith
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| | - Michael J Sadowsky
- Department of Soil, Water, and Climate, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Margarita Diaz
- Proyecto Fronterizo de Educación Ambiental, A.C., Tijuana, Mexico
| | - John F Griffith
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| |
Collapse
|