1
|
SO 3H-functionalized carbon fibers for the catalytic transformation of glycerol to glycerol tert-butyl ethers. Sci Rep 2023; 13:565. [PMID: 36631517 PMCID: PMC9834229 DOI: 10.1038/s41598-023-27432-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
Carbon fibers (CFs) of high quality were produced from hydrocarbons such as isobutane or ethylene using the catalytic chemical vapor deposition method (CCVD) and Ni catalyst. The as-prepared samples were functionalized with acidic groups using concentrated sulfuric acid or 4-benzenediazonium sulfonate (BDS) generated in situ from sulfanilic acid and sodium nitrite. The morphological features of the materials were confirmed by transmission electron microscopy, whereas their physicochemical properties were characterized by means of elemental and textural analyses, thermogravimetric (TG) method, Raman spectroscopy, potentiometric back titration, and X-ray diffraction analysis. The obtained CFs were used as catalysts in glycerol etherification with tert-butyl alcohol at 110 °C under autogenous pressure. The BDS-modified CFs were particularly effective in the reaction, showing high glycerol conversions (of about 45-55% after 6 h) and substantial yields of mono- and di-glycerol ethers. It was found that the chemistry of the sample surface was crucial for the process. The high concentration of -SO3H groups decorating CFs boosted the formation of di- and tri-tert-butyl glycerol ethers. Surface oxygen functionalities also had a positive effect on the reaction, however, their impact on the catalytic performances of CFs was significantly weaker compared to that shown by -SO3H groups and it was probably due to the adsorption of reagents on the catalyst surface.
Collapse
|
2
|
Critical Review of the Various Reaction Mechanisms for Glycerol Etherification. Catalysts 2022. [DOI: 10.3390/catal12111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This review provides in-depth coverage of numerous mechanisms available for the etherification process of glycerol, including alcohol solvent, olefin solvent and solvent-free routes along with products that are formed at various stages of the reaction. Mono tert-butyl glycerol ether (MTBG), di tert-butyl glycerol ether (DTBG), and tri tert-butyl glycerol ether (TTBG) are the three general ether compounds obtained through tert-butyl alcohol (TBA) etherification. Glycerol etherification with n-butanol results in the formation of glycerol ether products that are linked to the substituted butyl groups. These products include two mono-butyl glycerol ethers, two di-butyl glycerol ethers and a tri-butyl glycerol ether. Two mono-benzyl glycerol ether isomers, two di-benzyl glycerol ether isomers and tri-benzyl glycerol ether are the most reported results when benzyl alcohol is used as a solvent in the etherification reaction. The etherification of glycerol with 1-butene involves a series of equilibrium reactions to produce mono-ethers, di-ethers, and tri-ethers, whereas the etherification of glycerol with isobutene is carried out via tert-butylation of glycerol, yielding similar glycerol ether products when TBA is used as a solvent. As the by-product may be easily removed, the solvent-free glycerol etherification approach may have several advantages over the other conventional methods. Therefore, further studies on base-catalyzed glycerol etherification that employs a solvent-free reaction route may reveal a method for improving the conversion, selectivity, and yield of reaction products. This review study is crucial in improving knowledge of numerous mechanisms and how they relate to the effectiveness of the product’s catalytic process.
Collapse
|
3
|
Bhargava A, Shelke S, Dilkash M, Chaubal-Durve NS, Patil PD, Nadar SS, Marghade D, Tiwari MS. A comprehensive review on catalytic etherification of glycerol to value-added products. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The increase in biodiesel production has resulted in the oversupply of glycerol into the market. Purified and processed glycerol has found many direct applications in pharmaceuticals, food, etc. However, the cost of processing and market value of processed glycerol has driven the research of direct utilization of crude glycerol to industrially essential chemicals. Various methods and research have been devoted to using glycerol to produce value-added products separately. Glycerol can undergo several transformation reactions like hydrogenation, oxidation, alcoholysis, and etherification. Etherification of glycerol can be divided into three main reactions: self-etherification, using alcohol, and olefins and these products have vast applications such as fuel additives, plasticizer, etc. The current review presents a comprehensive summary of glycerol etherification to value-added products and their applications. The catalytic system developed along with reaction conditions and the factors responsible for the better activity is also discussed. Overall, the review presents a detailed discussion on the catalytic system developed, the utilization of different alcohols and olefins, and the application of products. Moreover, the environmental and economic aspects of the etherification of glycerol via various conversion routes while assessing the process parameters needs to be tackled to attain wider adoption of the process.
Collapse
Affiliation(s)
- Anuj Bhargava
- Department of Chemical Engineering , SVKM’S NMIMS Mukesh Patel School of Technology Management & Engineering , Mumbai , Maharashtra 400056 , India
| | - Shraddha Shelke
- Department of Chemical Engineering , SVKM’S NMIMS Mukesh Patel School of Technology Management & Engineering , Mumbai , Maharashtra 400056 , India
| | - Mohammed Dilkash
- Department of Chemical Engineering , SVKM’S NMIMS Mukesh Patel School of Technology Management & Engineering , Mumbai , Maharashtra 400056 , India
| | - Nivedita S. Chaubal-Durve
- Department of Basic Science & Humanities , SVKM’S NMIMS Mukesh Patel School of Technology Management & Engineering , Mumbai , Maharashtra 400056 , India
| | - Pravin D. Patil
- Department of Basic Science & Humanities , SVKM’S NMIMS Mukesh Patel School of Technology Management & Engineering , Mumbai , Maharashtra 400056 , India
| | - Shamraja S. Nadar
- Department of Chemical Engineering , Institute of Chemical Technology , Mumbai , India
| | - Deepali Marghade
- Department of Applied Chemistry , Priyadarshini Institute of Engineering , Nagpur 440019 , India
| | - Manishkumar S. Tiwari
- Department of Chemical Engineering , SVKM’S NMIMS Mukesh Patel School of Technology Management & Engineering , Mumbai , Maharashtra 400056 , India
| |
Collapse
|
4
|
Abstract
Utilization of biofuels generated from renewable sources has attracted broad attention due to their benefits such as reducing consumption of fossil fuels, sustainability, and consequently prevention of global warming. The production of biodiesel causes a huge amount of by-product, crude glycerol, to accumulate. Glycerol, because of its unique structure having three hydroxyl groups, can be converted to a variety of industrially valuable products. In recent decades, increasing studies have been carried out on different catalytic pathways to selectively produce a wide range of glycerol derivatives. In the current review, the main routes including carboxylation, oxidation, etherification, hydrogenolysis, esterification, and dehydration to convert glycerol to value-added products are investigated. In order to achieve more glycerol conversion and higher desired product selectivity, acquisition of knowledge on the catalysts, the type of acidic or basic, the supports, and studying various reaction pathways and operating parameters are necessary. This review attempts to summarize the knowledge of catalytic reactions and mechanisms leading to value-added derivatives of glycerol. Additionally, the application of main products from glycerol are discussed. In addition, an overview on the market of glycerol, its properties, applications, and prospects is presented.
Collapse
|
5
|
Vlasenko NV, Strizhak PE. Hybrid organic‐inorganic acid catalysts: The effect of active sites localization on catalytic characteristics in the processes of alcohols' etherification. A review. J Appl Polym Sci 2022. [DOI: 10.1002/app.51926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nina V. Vlasenko
- L. V. Pysarzhevsky Institute of Physical Chemistry NAS of Ukraine Kyiv Ukraine
| | - Peter E. Strizhak
- L. V. Pysarzhevsky Institute of Physical Chemistry NAS of Ukraine Kyiv Ukraine
| |
Collapse
|
6
|
Giustini A, Winfough M, Czekner J, Sztáray B, Meloni G, Bodi A. Photoionization of Two Potential Biofuel Additives: γ-Valerolactone and Methyl Butyrate. J Phys Chem A 2021; 125:10711-10724. [PMID: 34918933 DOI: 10.1021/acs.jpca.1c08033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photoionization of two potential biofuel additives, γ-valerolactone (GVL, C5H8O2) and methyl butyrate (MB, C5H10O2) has been studied by imaging photoelectron photoion coincidence spectroscopy (iPEPICO) at the VUV beamline of the Swiss Light Source (SLS). The vibrational fine structure in the photoelectron spectrum is compared with a Franck-Condon simulation for the electronic ground-state band of the GVL cation. In the lowest energy dissociative photoionization channel of GVL, CO2 is lost, resulting in a 1-butene fragment ion with a 0 K appearance energy of E0 = 10.35 ± 0.01 eV. A newly calculated 1-butene ionization energy of 9.595 ± 0.015 eV establishes the reverse barrier height to CO2 loss as 66.6 ± 4.3 kJ mol-1. Methyl butyrate cations undergo McLafferty rearrangement, which explains the missing ion signal at the computed adiabatic ionization energy of 9.25 eV. After H transfer, ethylene is lost in the lowest energy dissociation channel to yield the methyl acetate enol ion at E0 = 10.24 ± 0.04 eV. This value connects the energetics of methyl butyrate with that of methyl acetate enol ion, which is established at ΔfHo0K[CH2C(OH)OCH3+] = 502 ± 6 kJ mol-1. Parallel to ethylene loss, methyl loss is also observed from the enol tautomer of the parent ion. Both samples exhibit low-energy nonstatistical dissociative ionization channels. In GVL, the methyl-loss abundance rises quickly but levels off suddenly in the energy range of the first electronically excited states, indicating nonstatistical competition between CH3 and CO2 loss. In MB, the major parallel dissociation channel is the loss of a methoxy radical. Calculations indicate that McLafferty rearrangement is inhibited on the excited-state surface. Indeed, breakdown curve modeling of this and a sequential CO-loss channel confirms a second statistical regime in dissociative photoionization, decoupled from ethylene loss.
Collapse
Affiliation(s)
- Andrea Giustini
- Dipartimento di Scienze Fisiche e Chimiche, University of L'Aquila, 67100 L'Aquila, Italy
| | - Matthew Winfough
- Department of Chemistry, University of San Francisco, 2130 Fulton Street, San Francisco, California 94117-1080, United States
| | - Joseph Czekner
- Institut für Physikalische Chemie II, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Bálint Sztáray
- Department of Chemistry, University of the Pacific, 3601 Pacific Avenue, Stockton, California 95211, United States
| | - Giovanni Meloni
- Dipartimento di Scienze Fisiche e Chimiche, University of L'Aquila, 67100 L'Aquila, Italy.,Department of Chemistry, University of San Francisco, 2130 Fulton Street, San Francisco, California 94117-1080, United States
| | - Andras Bodi
- Laboratory for Femtochemistry and Synchrotron Radiation, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| |
Collapse
|
7
|
Study of the Synchrotron Photoionization Oxidation of Alpha-Angelica Lactone (AAL) Initiated by O( 3P) at 298, 550, and 700 K. Molecules 2021; 26:molecules26134070. [PMID: 34279410 PMCID: PMC8271512 DOI: 10.3390/molecules26134070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/01/2022] Open
Abstract
In recent years, biofuels have been receiving significant attention because of their potential for decreasing carbon emissions and providing a long-term renewable solution to unsustainable fossil fuels. Currently, lactones are some of the alternatives being produced. Many lactones occur in a range of natural substances and have many advantages over bioethanol. In this study, the oxidation of alpha-angelica lactone initiated by ground-state atomic oxygen, O(3P), was studied at 298, 550, and 700 K using synchrotron radiation coupled with multiplexed photoionization mass spectrometry at the Lawrence Berkeley National Lab (LBNL). Photoionization spectra and kinetic time traces were measured to identify the primary products. Ketene, acetaldehyde, methyl vinyl ketone, methylglyoxal, dimethyl glyoxal, and 5-methyl-2,4-furandione were characterized as major reaction products, with ketene being the most abundant at all three temperatures. Possible reaction pathways for the formation of the observed primary products were computed using the CBS–QB3 composite method.
Collapse
|
8
|
Cannilla C, Giacoppo G, Frusteri L, Todaro S, Bonura G, Frusteri F. Techno-economic feasibility of industrial production of biofuels by glycerol etherification reaction with isobutene or tert-butyl alcohol assisted by vapor-permeation membrane. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Timofeev KL, Vodyankina OV. Selective oxidation of bio-based platform molecules and their conversion products over metal nanoparticle catalysts: a review. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00352b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The conversion of bio-renewable raw materials into valuable products (biofuels, bifunctional carbonyls/carboxyls) that serve as the basis for biopolymers, has become one of the most important areas in the development of novel hybrid catalysts.
Collapse
|
10
|
Bozkurt ÖD, Bağlar N, Çelebi S, Uzun A. Screening of solid acid catalysts for etherification of glycerol with isobutene under identical conditions. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Rorrer JE, Bell AT, Toste FD. Synthesis of Biomass-Derived Ethers for Use as Fuels and Lubricants. CHEMSUSCHEM 2019; 12:2835-2858. [PMID: 31232521 DOI: 10.1002/cssc.201900535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Ethers synthesized from biomass-derived compounds have exceptional properties as fuels, lubricants, and specialty chemicals and can serve as replacements for petroleum-derived products. Recent efforts have identified heterogeneous catalysts for the selective synthesis of ethers from alcohols, aldehydes, ketones, furans, esters, olefins, carboxylic acids, and other molecules derived from biomass. This Review highlights the scope of etherification reactions and provides insights into the choice of catalysts and reaction conditions best suited for producing targeted ethers from the available starting materials. First, the properties of ethers for specific applications and the methods by which synthons for ether synthesis can be obtained from biomass are discussed. Then the progress that has been made on the synthesis of ethers via the following methods is summarized: direct etherification of alcohols; reductive etherification of alcohols with aldehydes or ketones; etherification of furanic compounds, esters, and carboxylic acids; and the addition of alcohols to olefins. Next, the mechanisms of these reactions and catalyst properties required to promote them are discussed, with the goal of understanding how reaction conditions can be tuned to optimize catalyst activity and selectivity towards desired ethers. The Review closes by examining the tradeoffs between catalyst selectivity, activity, stability, and reaction conditions required to achieve the most economically and environmentally favorable routes to biomass-derived ethers.
Collapse
Affiliation(s)
- Julie E Rorrer
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alexis T Bell
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - F Dean Toste
- Department of Chemistry, University of California Berkeley, CA, 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
12
|
An Overview of the Production of Oxygenated Fuel Additives by Glycerol Etherification, Either with Isobutene or tert-Butyl Alcohol, over Heterogeneous Catalysts. ENERGIES 2019. [DOI: 10.3390/en12122364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biodiesel production has considerably increased in recent decades, generating a surplus of crude glycerol, which is the main drawback for the economy of the process. To overcome this, many scientists have directed their efforts to transform glycerol, which has great potential as a platform molecule, into value-added products. A promising option is the preparation of oxygenate additives for fuel, in particular those obtained by the etherification reaction of glycerol with alcohols or olefins, mainly using heterogeneous catalysis. This review collects up-to-date research findings in the etherification of glycerol, either with isobutene (IB) or tert-Butyl alcohol (TBA), highlighting the best catalytic performances reported. Furthermore, the experimental sets employed for these reactions have been included in the present manuscript. Likewise, the characteristics of the glycerol ethers–(bio)fuel blends as well as their performances (e.g., quality of emissions, technical advantages or disadvantages, etc.) have been also compiled and discussed.
Collapse
|
13
|
Etherification of Glycerol with Propylene or 1-Butene for Fuel Additives. ScientificWorldJournal 2017; 2017:4089036. [PMID: 28845442 PMCID: PMC5560022 DOI: 10.1155/2017/4089036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/04/2017] [Accepted: 05/14/2017] [Indexed: 11/17/2022] Open
Abstract
The etherification of glycerol with propylene over acidic heterogeneous catalysts, Amberlyst-15, S100, and S200 resins, produced mono-propyl glycerol ethers (MPGEs), 1,3-di- and 1,2-di-propyl glycerol ethers (DPGEs), and tri-propyl glycerol ether (TPGE). The propylation of glycerol over Amberlyst-15 yielded only TPGE. The glycerol etherification with 1-butene over Amberlyst-15 and S200 resins produced 1-mono-, 2-mono-, 1,2-di-, and 1,3-di-butyl glycerol ethers (1-MBGE, 2-MBGE, 1,2-DBGE, and 1,3-DBGE). The use of Amberlyst-15 resulted in the propylation and butylation of glycerol with higher yields than those obtained from the S100 and S200 resins. The PGEs, TPGE, and BGEs were evaluated as cold flow improvers and octane boosters. These alkyl glycerol ethers can reduce the cloud point of blended palm biodiesels with diesel. They can increase the research octane number and the motor octane number of gasoline.
Collapse
|
14
|
Carbon microspheres preparation, graphitization and surface functionalization for glycerol etherification. Catal Today 2016. [DOI: 10.1016/j.cattod.2016.02.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Behr A, Kleyensteiber A, Domke L. Herstellung von Glycerin- tert-butylethern - Entwicklung vom Labor bis zur Miniplant. CHEM-ING-TECH 2016. [DOI: 10.1002/cite.201500178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
|
17
|
Gonçalves M, Soler FC, Isoda N, Carvalho WA, Mandelli D, Sepúlveda J. Glycerol conversion into value-added products in presence of a green recyclable catalyst: Acid black carbon obtained from coffee ground wastes. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
High-Throughput Screening of Heterogeneous Catalysts for the Conversion of Furfural to Bio-Based Fuel Components. Catalysts 2015. [DOI: 10.3390/catal5042244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Farobie O, Matsumura Y. Energy analysis for the production of biodiesel in a spiral reactor using supercritical tert-butyl methyl ether (MTBE). BIORESOURCE TECHNOLOGY 2015; 196:65-71. [PMID: 26231125 DOI: 10.1016/j.biortech.2015.07.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
In this study, energy analysis was conducted for the production of biodiesel in a spiral reactor using supercritical tert-butyl methyl ether (MTBE). This study aims to determine the net energy ratio (NER) and energy efficiency for the production of biodiesel using supercritical MTBE and to verify the effectiveness of the spiral reactor in terms of heat recovery efficiency. The analysis results revealed that the NER for this process was 0.92. Meanwhile, the energy efficiency was 0.98, indicating that the production of biodiesel in a spiral reactor using supercritical MTBE is an energy-efficient process. By comparing the energy supply required for biodiesel production between spiral and conventional reactors, the spiral reactor was more efficient than the conventional reactor.
Collapse
Affiliation(s)
- Obie Farobie
- Division of Energy and Environmental Engineering, Institute of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yukihiko Matsumura
- Division of Energy and Environmental Engineering, Institute of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| |
Collapse
|
20
|
Gonzalez-Arellano C, Grau-Atienza A, Serrano E, Romero AA, Garcia-Martinez J, Luque R. The role of mesoporosity and Si/Al ratio in the catalytic etherification of glycerol with benzyl alcohol using ZSM-5 zeolites. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2015.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Sutter M, Silva ED, Duguet N, Raoul Y, Métay E, Lemaire M. Glycerol Ether Synthesis: A Bench Test for Green Chemistry Concepts and Technologies. Chem Rev 2015. [PMID: 26196761 DOI: 10.1021/cr5004002] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marc Sutter
- Equipe Catalyse Synthèse Environnement, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR-CNRS 5246, Université de Lyon, Université Claude Bernard-Lyon 1, Bâtiment Curien , 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Eric Da Silva
- Equipe Catalyse Synthèse Environnement, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR-CNRS 5246, Université de Lyon, Université Claude Bernard-Lyon 1, Bâtiment Curien , 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Nicolas Duguet
- Equipe Catalyse Synthèse Environnement, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR-CNRS 5246, Université de Lyon, Université Claude Bernard-Lyon 1, Bâtiment Curien , 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Yann Raoul
- Organisation Nationale Interprofessionnelle des Oléagineux, 11 rue de Monceau, CS 60003, 75378 Paris Cedex 08, France
| | - Estelle Métay
- Equipe Catalyse Synthèse Environnement, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR-CNRS 5246, Université de Lyon, Université Claude Bernard-Lyon 1, Bâtiment Curien , 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Marc Lemaire
- Equipe Catalyse Synthèse Environnement, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR-CNRS 5246, Université de Lyon, Université Claude Bernard-Lyon 1, Bâtiment Curien , 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| |
Collapse
|
22
|
|
23
|
Abstract
AbstractIn this work the etherification reaction of glycerol with isobutene (IB) and tert-butyl alcohol (TBA) has been studied with the aim of preparing mixtures with high content of poly-substituted ethers. The results obtained using solid acid catalysts have shown that the reaction with IB proceeds at a high rate but the formation of undesired di-isobutene (DIB) represents a serious problem when catalysts with high density of acid sites, such as Amberlyst, are used. When using TBA as a reactant, the main problem is the formation of water that, due to thermodynamic reasons, prevents the formation of poly-substituted ethers regardless of the catalyst used. Some preliminary experiments carried out with a water permselective tubular membrane have demonstrated that the yield of poly-substituted ethers significantly increases once water was selectively removed from the reaction medium by recirculation of the gas phase.
Collapse
|
24
|
Cannilla C, Bonura G, Frusteri L, Frusteri F. Glycerol etherification with TBA: high yield to poly-ethers using a membrane assisted batch reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6019-6026. [PMID: 24798456 DOI: 10.1021/es4053413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, a novel approach to obtain high yield to poly-tert-butylglycerolethers by glycerol etherification reaction with tert-butyl alcohol (TBA) is proposed. The limit of this reaction is the production of poly-ethers, which inhibits the formation of poly-ethers potentially usable in the blend with conventional diesel for transportation. The results herein reported demonstrate that the use of a water permselective membrane offers the possibility to shift the equilibrium toward the formation of poly-ethers since the water formed during reaction is continuously and selectively removed from the reaction medium by the recirculation of the gas phase. Using a proper catalyst and optimizing the reaction conditions, in a single experiment, a total glycerol conversion can be reached with a yield to poly-ethers close to 70%, which represents data never before reached using TBA as reactant. The approach here proposed could open up new opportunities for all catalytic reactions affected by water formation.
Collapse
Affiliation(s)
- Catia Cannilla
- Institute CNR-ITAE "Nicola Giordano" , Via S. Lucia 5, Messina I-98126, Italy
| | | | | | | |
Collapse
|
25
|
Tuning the acidic and textural properties of ordered mesoporous silicas for their application as catalysts in the etherification of glycerol with isobutene. Catal Today 2014. [DOI: 10.1016/j.cattod.2013.10.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Pico MP, Rodríguez S, Santos A, Romero A. Etherification of Glycerol with Benzyl Alcohol. Ind Eng Chem Res 2013. [DOI: 10.1021/ie402026t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- María Pilar Pico
- Departamento Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
| | - Sergio Rodríguez
- Departamento Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
| | - Aurora Santos
- Departamento Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
| | - Arturo Romero
- Departamento Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
| |
Collapse
|
27
|
Yin P, Chen W, Liu W, Chen H, Qu R, Liu X, Tang Q, Xu Q. Efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica for biodiesel synthesis by esterification of oleic acid with ethanol. BIORESOURCE TECHNOLOGY 2013; 140:146-151. [PMID: 23688666 DOI: 10.1016/j.biortech.2013.04.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/21/2013] [Accepted: 04/23/2013] [Indexed: 06/02/2023]
Abstract
An efficient bifunctional catalyst lipase/organophosphonic acid-functionalized silica (SG-T-P-LS) has been successfully developed, and biodiesel production of fatty acid ethyl ester (FAEE) from free fatty acid (FFA) oleic acid with short-chain alcohol ethanol catalyzed by SG-T-P-LS was investigated. The process optimization using response surface methodology (RSM) was performed and the interactions between the operational variables were elucidated, and it was found that the molar ratio of alcohol to acid was the most significant factor. The optimum values for maximum conversion ratio can be obtained by using a Box-Behnken center-united design, and the conversion ratio could reach 89.94 ± 0.42% under the conditions that ethanol/acid molar ratio was 1.05:1 and SG-T-P-LS to FFA weight ratio was 14.9 wt.% at 28.6°C. The research results show that SG-T-P and LS-20 could work cooperatively to promote the esterification reaction, and the bifunctional catalyst SG-T-P-LS is a potential catalyst for biodiesel production.
Collapse
Affiliation(s)
- Ping Yin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Affiliation(s)
- Jingjun Liu
- Department of Chemical Engineering, State Key Laboratory
of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an Shaanxi 710049, People’s
Republic of China
| | - Bolun Yang
- Department of Chemical Engineering, State Key Laboratory
of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an Shaanxi 710049, People’s
Republic of China
| | - Chunhai Yi
- Department of Chemical Engineering, State Key Laboratory
of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an Shaanxi 710049, People’s
Republic of China
| |
Collapse
|
30
|
Gonçalves M, Souza VC, Galhardo TS, Mantovani M, Figueiredo FCA, Mandelli D, Carvalho WA. Glycerol Conversion Catalyzed by Carbons Prepared from Agroindustrial Wastes. Ind Eng Chem Res 2013. [DOI: 10.1021/ie303072d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maraisa Gonçalves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André − SP, CEP 09210-170, Brazil
| | - Victor C. Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André − SP, CEP 09210-170, Brazil
| | - Thalita S. Galhardo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André − SP, CEP 09210-170, Brazil
| | - Michelle Mantovani
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André − SP, CEP 09210-170, Brazil
| | - Flávia C. A. Figueiredo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André − SP, CEP 09210-170, Brazil
| | - Dalmo Mandelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André − SP, CEP 09210-170, Brazil
| | - Wagner A. Carvalho
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André − SP, CEP 09210-170, Brazil
| |
Collapse
|
31
|
Gholami Z, Abdullah AZ, Lee KT. Glycerol etherification to polyglycerols using Ca1+xAl1−xLaxO3 composite catalysts in a solventless medium. J Taiwan Inst Chem Eng 2013. [DOI: 10.1016/j.jtice.2012.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|