1
|
Saelor S, Kongjan P, Prasertsan P, Mamimin C, O-Thong S. Enhancing thermophilic methane production from oil palm empty fruit bunches through various pretreatment methods: A comparative study. Heliyon 2024; 10:e39668. [PMID: 39506955 PMCID: PMC11538946 DOI: 10.1016/j.heliyon.2024.e39668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
This study investigated the effects of various pretreatment methods on the anaerobic digestibility of oil palm empty fruit bunches (EFB) for methane production. Pretreatment methods included weak alkaline (2 % Ca(OH)2), weak acid (2 % acetic acid), acidified palm oil mill effluent (POME), biogas effluent, hydrothermal (180 °C, 190 °C, and 200 °C), and microwave pretreatments. All pretreatment methods enhanced methane yield compared to untreated EFB (189.45 mL-CH4/g-VS), with weak alkaline pretreatment being the most effective (277.11 mL-CH4/g-VS), followed by hydrothermal pretreatment at 180 °C (244.33 mL-CH4/g-VS) and biogas effluent pretreatment (238.32 mL-CH4/g-VS). The enhanced methane yield was attributed to increased cellulose content (45.5 % for weak alkaline pretreatment), reduced hemicellulose (18.0 % for hydrothermal pretreatment at 200 °C), and lignin contents (19.0 % for hydrothermal pretreatment at 200 °C), decreased crystallinity index (40.0 % for hydrothermal pretreatment at 200 °C), and increased surface area. Weak alkaline pretreatment also showed the highest net energy balance (8.73 kJ/g-VS) and a short break-even point (2 years). Microbial community analysis revealed that weak alkaline pretreatment favored the growth of syntrophic acetate-oxidizing bacteria and hydrogenotrophic methanogens, contributing to improved methane yield. This study demonstrates the potential of EFB pretreatment, particularly weak alkaline and biogas effluent pretreatment, for enhancing methane production and sustainable management of palm oil mill waste.
Collapse
Affiliation(s)
- Sittikorn Saelor
- Department of Biological Science, Faculty of Science and Digital Innovation, Thaksin University, Phatthalung 93210, Thailand
- Faculty of Science and Technology, Hatyai University, Hat Yai, Songkhla 90110, Thailand
| | - Prawit Kongjan
- Chemistry Division, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Poonsuk Prasertsan
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | | | - Sompong O-Thong
- Biofuel and Biocatalysis Innovation Research Unit, Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| |
Collapse
|
2
|
Nair LG, Agrawal K, Verma P. Organosolv pretreatment: an in-depth purview of mechanics of the system. BIORESOUR BIOPROCESS 2023; 10:50. [PMID: 38647988 PMCID: PMC10991910 DOI: 10.1186/s40643-023-00673-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/03/2023] [Indexed: 04/25/2024] Open
Abstract
The concept of biorefinery has been advancing globally and organosolv pretreatment strategy has seen an upsurge in research due to its efficiency in removing the recalcitrant lignin and dissolution of cellulose. The high-performance organosolv system uses green solvents and its reusability contributes concurrently to the biorefinery sector and sustainability. The major advantage of the current system involves the continuous removal of lignin to enhance cellulose accessibility, thereby easing the later biorefinery steps, which were immensely restricted due to the recalcitrant lignin. The current system process can be further explored and enhanced via the amalgamation of new technologies, which is still a work in progress. Thus, the current review summarizes organosolv pretreatment and the range of solvents used, along with a detailed mechanistic approach that results in efficient pretreatment of LCB. The latest developments for designing high-performance pretreatment systems, their pitfalls, and advanced assessments such as Life Cycle Assessment along with Techno-Economic Assessment have also been deliberated to allow an insight into its diverse potential applicability towards a sustainable future.
Collapse
Affiliation(s)
- Lakshana G Nair
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
- Department of Microbiology, School of Bio Engineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
3
|
Hamid A, Zafar A, Latif S, Peng L, Wang Y, Liaqat I, Afzal MS, ul-Haq I, Aftab MN. Enzymatic hydrolysis of low temperature alkali pretreated wheat straw using immobilized β-xylanase nanoparticles. RSC Adv 2023; 13:1434-1445. [PMID: 36686938 PMCID: PMC9814908 DOI: 10.1039/d2ra07231a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
A low temperature alkali (LTA) pretreatment method was used to treat wheat straw. In order to obtain good results, different factors like temperature, incubation time, NaOH concentration and solid to liquid ratio for the pretreatment process were optimized. Wheat straw is a potential biomass for the production of monomeric sugars. The objective of the current study was to observe the saccharification (%) of wheat straw with immobilized magnetic nanoparticles (MNPs). For this purpose, immobilized MNPs of purified β-xylanase enzyme was used for hydrolysis of pretreated wheat straw. Wheat straw was pretreated using the LTA method and analyzed by SEM analysis. After completion of the saccharification process, saccharification% was calculated by using a DNS method. Scanning electron micrographs revealed that the hemicellulose, cellulose and lignin were partially removed and changes in the cell wall structure of the wheat straw had caused it to become deformed, increasing the specific surface area, so more fibers of the wheat straw were exposed to the immobilized β-xylanase enzyme after alkali pretreatment. The maximum saccharification potential of wheat straw was about 20.61% obtained after pretreatment with optimized conditions of 6% NaOH, 1/10 S/L, 30 °C and 72 hours. Our results indicate the reusability of the β-xylanase enzyme immobilized magnetic nanoparticles and showed a 15% residual activity after the 11th cycle. HPLC analysis of the enzyme-hydrolyzed filtrate also revealed the presence of sugars like xylose, arabinose, xylobiose, xylotriose and xylotetrose. The time duration of the pretreatment has an important effect on thermal energy consumption for the low-temperature alkali method.
Collapse
Affiliation(s)
- Attia Hamid
- Institute of Industrial Biotechnology, Govt. College UniversityLahore 54000Pakistan+924299213341+923444704190
| | - Asma Zafar
- Faculty of Science and Technology, University of Central PunjabLahorePakistan
| | | | - Liangcai Peng
- Biomass and Bioenergy Research Center, Huazhong Agriculture UniversityWuhanChina
| | - Yanting Wang
- Biomass and Bioenergy Research Center, Huazhong Agriculture UniversityWuhanChina
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College UniversityLahorePakistan
| | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Science, University of Management and Technology (UMT)LahorePakistan
| | - Ikram ul-Haq
- Institute of Industrial Biotechnology, Govt. College UniversityLahore 54000Pakistan+924299213341+923444704190
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Govt. College UniversityLahore 54000Pakistan+924299213341+923444704190
| |
Collapse
|
4
|
Zhou Z, Ouyang D, Liu D, Zhao X. Oxidative pretreatment of lignocellulosic biomass for enzymatic hydrolysis: Progress and challenges. BIORESOURCE TECHNOLOGY 2023; 367:128208. [PMID: 36323374 DOI: 10.1016/j.biortech.2022.128208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Deconstruction of cell wall structure is important for biorefining of lignocellulose to produce various biofuels and chemicals. Oxidative delignification is an effective way to increase the enzymatic digestibility of cellulose. In this work, the current research progress on conventional oxidative pretreatment including wet oxidation, alkaline hydrogen peroxide, organic peracids, Fenton oxidation, and ozone oxidation were reviewed. Some recently developed novel technologies for coupling pretreatment and direct biomass-to-electricity conversion with recyclable oxidants were also introduced. The primary mechanism of oxidative pretreatment to enhance cellulose digestibility is delignification, especially in alkaline medium, thus eliminating the physical blocking and non-productive adsorption of enzymes by lignin. However, the cost of oxidative delignification as a pretreatment is still too expensive to be applied at large scale at present. Efforts should be made particularly to reduce the cost of oxidants, or explore valuable products to obtain more revenue.
Collapse
Affiliation(s)
- Ziyuan Zhou
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Denghao Ouyang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuebing Zhao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Corn Stover Pretreatment with Na2CO3 Solution from Absorption of Recovered CO2. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Renewable resources such as lignocellulosic biomass are effective at producing fermentable sugars during enzymatic hydrolysis when pretreated. Optimizing pretreatment methods for delignification while maintaining sustainability and low processing costs requires innovative strategies such as reusing greenhouse gas emissions for materials processing. Corn stover, an agricultural waste residue, was pretreated with 2.2 M Na2CO3 produced from CO2 captured via absorption in a 5 M NaOH solution. Composition analysis of the pretreated corn stover exhibited higher cellulose content (40.96%) and less lignin (16.50%) than the untreated biomass. Changes in the chemical structures are visible in the FTIR-ATR spectra, particularly in the cellulose and lignin-related absorption bands. The sugar release from hydrolysis was evaluated at different time intervals and by varying two enzyme ratios of CTec2-to-HTec2 (2:1 and 3:1). Enzymatic hydrolysis produced higher and more stable glucose yields for the pretreated biomass, surpassing 90% after 24 h using the 3:1 enzyme ratio. Sugar concentrations notably increased after pretreatment and even more when using the cellulase-rich enzyme solution. The maximum glucose, xylose, and arabinose recovered were 44, 19, and 2.3 g L−1. These results demonstrate the viability of capturing CO2 and converting it into an efficient Na2CO3 pretreatment for corn stover biomass. Additional processing optimizations depend on the combination of physicochemical parameters selected.
Collapse
|
6
|
Sun W, Li X, Zhao J, Qin Y. Pretreatment Strategies to Enhance Enzymatic Hydrolysis and Cellulosic Ethanol Production for Biorefinery of Corn Stover. Int J Mol Sci 2022; 23:13163. [PMID: 36361955 PMCID: PMC9655029 DOI: 10.3390/ijms232113163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/13/2023] Open
Abstract
There is a rising interest in bioethanol production from lignocellulose such as corn stover to decrease the need for fossil fuels, but most research mainly focuses on how to improve ethanol yield and pays less attention to the biorefinery of corn stover. To realize the utilization of different components of corn stover in this study, different pretreatment strategies were used to fractionate corn stover while enhancing enzymatic digestibility and cellulosic ethanol production. It was found that the pretreatment process combining dilute acid (DA) and alkaline sodium sulfite (ASS) could effectively fractionate the three main components of corn stover, i.e., cellulose, hemicellulose, and lignin, that xylose recovery reached 93.0%, and that removal rate of lignin was 85.0%. After the joint pretreatment of DA and ASS, the conversion of cellulose at 72 h of enzymatic hydrolysis reached 85.4%, and ethanol concentration reached 48.5 g/L through fed-batch semi-simultaneous saccharification and fermentation (S-SSF) process when the final concentration of substrate was 18% (w/v). Pretreatment with ammonium sulfite resulted in 83.8% of lignin removal, and the conversion of cellulose and ethanol concentration reached 86.6% and 50 g/L after enzymatic hydrolysis of 72 h and fed-batch S-SSF, respectively. The results provided a reference for effectively separating hemicellulose and lignin from corn stover and producing cellulosic ethanol for the biorefinery of corn stover.
Collapse
Affiliation(s)
- Wan Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Yang J, Gao C, Yang X, Su Y, Shi S, Han L. Effect of combined wet alkaline mechanical pretreatment on enzymatic hydrolysis of corn stover and its mechanism. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:31. [PMID: 35300735 PMCID: PMC8932242 DOI: 10.1186/s13068-022-02130-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/08/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND To further optimize the mechanochemical pretreatment process, a combined wet alkaline mechanical pretreatment of corn stover was proposed with a short time and less chemical consumption at room temperature. RESULTS The combined alkaline mechanical pretreatment significantly enhanced enzymatic hydrolysis resulting a highest glucose yield (YG) of 91.9% with 3% NaOH and ball milling (BM) for 10 min. At this optimal condition, 44.4% lignin was removed and major portion of cellulose was retained (86.6%). The prehydrolysate contained by-products such as monosaccharides, oligosaccharides, acetic acid, and lignin but no furfural and 5-HMF. The alkaline concentration showed a significant impact on glucose yield, while the BM time was less important. Quantitative correlation analysis showed that YG (%) = 0.68 × BM time (min) + 19.27 × NaOH concentration (%) + 13.71 (R2 = 0.85), YG = 6.35 × glucan content - 231.84 (R2 = 0.84), and YG = - 14.22 × lignin content + 282.70 (R2 = 0.87). CONCLUSION The combined wet alkaline mechanical pretreatment at room temperature had a boosting effect on the yield of enzymatic hydrolysis with short treatment time and less chemical consumption. The impact of the physical and chemical properties of corn stover pretreated with different BM times and/or different NaOH concentrations on the subsequent enzymatic hydrolysis was investigated, which would be beneficial to illustrate the effective mechanism of the mechanochemical pretreatment method.
Collapse
Affiliation(s)
- Jie Yang
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China
| | - Chongfeng Gao
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China
| | - Xueqi Yang
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China
| | - Yanfu Su
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China
| | - Suan Shi
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China.
| | - Lujia Han
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Box 191, Beijing, 100083, China
| |
Collapse
|
8
|
Kundu C, Samudrala SP, Kibria MA, Bhattacharya S. One-step peracetic acid pretreatment of hardwood and softwood biomass for platform chemicals production. Sci Rep 2021; 11:11183. [PMID: 34045559 PMCID: PMC8160206 DOI: 10.1038/s41598-021-90667-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Lignocellulosic biomass is an attractive renewable resource to produce biofuel or platform chemicals. Efficient and cost-effective conversion systems of lignocellulosic biomass depend on their appropriate pretreatment processes. Alkali or dilute acid pretreatment of biomass requires a high temperature (> 150 °C) to remove xylan (hemicellulosic sugar) and lignin partially. In this study, peracetic acid was used to pretreat biomass feedstocks, including hardwood and softwood species. It was found that the thermally-assisted dilute acid pretreatment of biomass conducted under the mild temperature of 90 °C up to 5 h resulted in the effective removal of lignin from the biomass with a negligible loss of carbohydrates. This thermally-assisted pretreatment achieved 90% of delignification, and this result was compared with the microwave-assisted pretreatment method. In addition, the crystallinity index (CrI), surface morphology, and chemical structure were significantly changed after the acid pretreatment. The biomass digestibility increased significantly with increased reaction time, by 32% and 23% for hardwood and softwood, respectively. From this study, it is clear that peracetic acid pretreatment is an effective method to enrich glucan content in biomass by delignification.
Collapse
Affiliation(s)
- Chandan Kundu
- Department of Chemical Engineering, Monash University, Melbourne, 3800, Australia
| | | | - Mahmud Arman Kibria
- Department of Chemical Engineering, Monash University, Melbourne, 3800, Australia
| | - Sankar Bhattacharya
- Department of Chemical Engineering, Monash University, Melbourne, 3800, Australia.
| |
Collapse
|
9
|
Thulluri C, Balasubramaniam R, Velankar HR. Generation of highly amenable cellulose-Iβ via selective delignification of rice straw using a reusable cyclic ether-assisted deep eutectic solvent system. Sci Rep 2021; 11:1591. [PMID: 33452315 PMCID: PMC7810886 DOI: 10.1038/s41598-020-80719-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/24/2020] [Indexed: 11/10/2022] Open
Abstract
Cellulolytic enzymes can readily access the cellulosic component of lignocellulosic biomass after the removal of lignin during biomass pretreatment. The enzymatic hydrolysis of cellulose is necessary for generating monomeric sugars, which are then fermented into ethanol. In our study, a combination of a deep eutectic (DE) mixture (of 2-aminoethanol and tetra-n-butyl ammonium bromide) and a cyclic ether (tetrahydrofuran) was used for selective delignification of rice straw (RS) under mild conditions (100 °C). Pretreatment with DE-THF solvent system caused ~ 46% delignification whereas cellulose (~ 91%) and hemicellulose (~ 67%) recoveries remained higher. The new solvent system could be reused upto 10 subsequent cycles with the same effectivity. Interestingly, the DE-THF pretreated cellulose showed remarkable enzymatic hydrolysability, despite an increase in its crystallinity to 72.3%. Contrary to conventional pretreatments, we report for the first time that the enzymatic hydrolysis of pretreated cellulose is enhanced by the removal of lignin during DE-THF pretreatment, notwithstanding an increase in its crystallinity. The current study paves way for the development of newer strategies for biomass depolymerization with DES based solvents.
Collapse
Affiliation(s)
- Chiranjeevi Thulluri
- Bioprocess Division, Hindustan Petroleum Corporation Limited, HP Green R&D Centre, KIADB Industrial Area, Tarabahalli, Devanagundi, Hoskote, Bangalore, 560067, India
| | - Ravi Balasubramaniam
- Bioprocess Division, Hindustan Petroleum Corporation Limited, HP Green R&D Centre, KIADB Industrial Area, Tarabahalli, Devanagundi, Hoskote, Bangalore, 560067, India
| | - Harshad Ravindra Velankar
- Bioprocess Division, Hindustan Petroleum Corporation Limited, HP Green R&D Centre, KIADB Industrial Area, Tarabahalli, Devanagundi, Hoskote, Bangalore, 560067, India.
| |
Collapse
|
10
|
Feng Z, Liu Q, Zhang H, Xu D, Zhai H, Ren H. Adsorption of bovine serum albumin on the surfaces of poplar lignophenols. Int J Biol Macromol 2020; 158:290-304. [PMID: 32380101 DOI: 10.1016/j.ijbiomac.2020.04.270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022]
Abstract
Two phenolic compounds (p-cresol and pyrogallol) were introduced into the benzyl position of poplar lignin by a phase separation method to obtain lignin-based derivatives with different structural properties called poplar lignophenols (LPs). The maximum protein adsorption capacity of LPs is 50-70 times greater than that of the industrial lignin under the same conditions. The interaction between poplar LPs and bovine serum albumin (BSA) near its isoelectric point (pH = 4.5) was studied using a quartz crystal microbalance with dissipation monitoring (QCM-D). The adsorption and desorption of BSA molecules on different LPs were investigated at various pH values of the buffer solution (2.1, 6.4, and 10.0), and the interaction mechanism between LP and BSA species was examined. The obtained results showed that hydrogen bonding was the strongest binding force between LPs and BSA as compared with hydrophobic and electrostatic interactions. The findings of this work can help to establish a relationship between the contents of hydroxyl groups, molecular structures, and molecular sizes of LPs and proteins under different pH conditions.
Collapse
Affiliation(s)
- Zhang Feng
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Qi Liu
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Haonan Zhang
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Dongliang Xu
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Huamin Zhai
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Ren
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
11
|
Jiménez IM, Chandel AK, Marcelino PRF, Anjos V, Batesttin Costa C, Jose V Bell M, Pereira B, da Silva SS. Comparative data on effects of alkaline pretreatments and enzymatic hydrolysis on bioemulsifier production from sugarcane straw by Cutaneotrichosporon mucoides. BIORESOURCE TECHNOLOGY 2020; 301:122706. [PMID: 31945682 DOI: 10.1016/j.biortech.2019.122706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Bioemulsifiers are surface active compounds which could be potentially used in food processing, cosmetic sector and oil recovery. Sugarcane straw (SS), was used as the raw substrate for the production of bio-emulsifiers (BE) by Cutaneotrichosporon mucoides. Three different delignification strategies using dilute sodium hydroxide, sodium sulfite and ammonium hydroxide followed by enzymatic hydrolysis (Cellic CTec 2, 7.5% total solids, 15 FPU/g, 72 h) were studied. Enzyme hydrolysis of ammonium hydroxide pretreated SS showed a maximum of 62.19 ± 0.74 g/l total reducing sugars with 88.35% hydrolytic efficiency (HE) followed by sodium hydroxide (60.06 ± 0.33 g/l; 85.40% HE) and sodium sulfite pretreated SS (57.22 ± 0.52 g/l; 84.71% HE), respectively. The ultrastructure of SS (native and delignified) by fourier transform-infrared and near infrared spectroscopy, revealed notable structural differences. The fermentation of hydrolysates by C. mucoides into bioemulsifiers showing emulsification index (EI) of 54.33%, 48.66% and 32.66% from sodium sulfite, sodium hydroxide, and ammonium hydroxide pretreated SS, respectively.
Collapse
Affiliation(s)
- Itzcoatl M Jiménez
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, s/n° 12.602-810, Brazil
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, s/n° 12.602-810, Brazil.
| | - Paulo R F Marcelino
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, s/n° 12.602-810, Brazil
| | - Virgilio Anjos
- Engineering and Materials Spectroscopy Group, Department of Physics, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Cassiano Batesttin Costa
- Engineering and Materials Spectroscopy Group, Department of Physics, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Maria Jose V Bell
- Engineering and Materials Spectroscopy Group, Department of Physics, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Barbara Pereira
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, s/n° 12.602-810, Brazil
| | - Silvio S da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, s/n° 12.602-810, Brazil
| |
Collapse
|
12
|
Xia F, Gong J, Lu J, Cheng Y, Zhai S, An Q, Wang H. Combined liquid hot water with sodium carbonate-oxygen pretreatment to improve enzymatic saccharification of reed. BIORESOURCE TECHNOLOGY 2020; 297:122498. [PMID: 31812916 DOI: 10.1016/j.biortech.2019.122498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
In this work, two-stage combination of liquid hot water (LHW) and Na2CO3-O2 pretreatment was performed efficiently on reed to obtain fermentable sugar. Reed was first treated with LHW at 170 °C for 60 min and then with Na2CO3-O2. The optimal conditions for Na2CO3-O2 pretreatment were as follow: reaction temperature of 150 °C, residence time of 40 min, Na2CO3 concentration of 33.3 g/L and oxygen pressure of 0.6 MPa. The total sugar yield of 79.1% was achieved with a cellulase of 20 FPU/g-pretreated solid for 48 h. The total sugar yield improved 36.0% compared with single Na2CO3-O2 pretreatment. The combined pretreatment could avoid the loss of carbohydrate degradation. The total sugar yield was increased by 48.6% compared to only LHW pretreatment. Owing to advantages of the combined pretreatment breaking the restraint of lignin and cellulose, LHW combined with Na2CO3-O2 pretreatment was a promising method for the production of fermentable sugar.
Collapse
Affiliation(s)
- Fei Xia
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jingwei Gong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jie Lu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shangru Zhai
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Qingda An
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
13
|
Abstract
Fermentative hydrogen production via dark fermentation with the application of lignocellulosic biomass requires a multistep pre-treatment procedure, due to the complexed structure of the raw material. Hence, the comparison of the hydrogen productivity potential of different lignocellulosic materials (LCMs) in relation to the lignocellulosic biomass composition is often considered as an interesting field of research. In this study, several types of biomass, representing woods, cereals and grass were processed by means of mechanical pre-treatment and alkaline and enzymatic hydrolysis. Hydrolysates were used in fermentative hydrogen production via dark fermentation process with Enterobacter aerogenes (model organism). The differences in the hydrogen productivity regarding different materials hydrolysates were analyzed using chemometric methods with respect to a wide dataset collected throughout this study. Hydrogen formation, as expected, was positively correlated with glucose concentration and total reducing sugars amount (YTRS) in enzymatic hydrolysates of LCMs, and negatively correlated with concentrations of enzymatic inhibitors i.e., HMF, furfural and total phenolic compounds in alkaline-hydrolysates LCMs, respectively. Interestingly, high hydrogen productivity was positively correlated with lignin content in raw LCMs and smaller mass loss of LCM after pre-treatment step. Besides results of chemometric analysis, the presented data analysis seems to confirm that the structure and chemical composition of lignin and hemicellulose present in the lignocellulosic material is more important to design the process of its bioconversion than the proportion between the cellulose, hemicellulose and lignin content in this material. For analyzed LCMs we found remarkable higher potential of hydrogen production via bioconversion process of woods i.e., beech (24.01 mL H2/g biomass), energetic poplar (23.41 mL H2/g biomass) or energetic willow (25.44 mL H2/g biomass) than for cereals i.e., triticale (17.82 mL H2/g biomass) and corn (14.37 mL H2/g biomass) or for meadow grass (7.22 mL H2/g biomass).
Collapse
|
14
|
Yang S, Wen Y, Zhang H, Li J, Ni Y. Enhancing the Fock reactivity of dissolving pulp by the combined prerefining and poly dimethyl diallyl ammonium chloride-assisted cellulase treatment. BIORESOURCE TECHNOLOGY 2018; 260:135-140. [PMID: 29625285 DOI: 10.1016/j.biortech.2018.03.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 05/25/2023]
Abstract
Dissolving pulp is an important source of cellulose raw material, and its key quality parameter is the Fock reactivity for viscose rayon application. Cellulase treatment is an effective method for improving the Fock reactivity of kraft-based dissolving pulp. In this study, a novel process concept of improving the cellulase treatment for this purpose was developed, and it consists of mechanical pre-refining and PDADMAC-assisted cellulase treatment. The hypothesis is based on: 1) opening up the fiber structures to improve the cellulase accessibility by pulp prerefining, 2) the addition of cationic poly DADMAC to the subsequent cellulase stage enhances the cellulase adsorption onto anionic fibers due to favorable electrostatic interactions. The results showed that the Fock reactivity of the resultant pulp from the combined treatment is much higher than that of the control, yet, achieved at a much lower cellulase dosage.
Collapse
Affiliation(s)
- Shuo Yang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Yangbing Wen
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hongjie Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jianguo Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yonghao Ni
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
15
|
Optimization of Saccharification Conditions of Lignocellulosic Biomass under Alkaline Pre-Treatment and Enzymatic Hydrolysis. ENERGIES 2018. [DOI: 10.3390/en11040886] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Tavares J, Łukasik RM, de Paiva T, da Silva F. Hydrothermal alkaline sulfite pretreatment in the delivery of fermentable sugars from sugarcane bagasse. NEW J CHEM 2018. [DOI: 10.1039/c7nj04975g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integration of hydrothermal and alkaline processing in the formation of upgradable sugars for advanced processing of sugarcane bagasse residues.
Collapse
Affiliation(s)
- João Tavares
- University of São Paulo
- Engineering School of Lorena
- Estrada Municipal do Campinho s/no, Campinho
- Lorena-SP
- Brazil
| | - Rafał M. Łukasik
- National Laboratory for Energy and Geology (LNEG, I. P.)
- Unit of Bioenergy
- Estrada do Paço do Lumiar 22
- 1649-038 Lisbon
- Portugal
| | - Teresa de Paiva
- University of São Paulo
- Engineering School of Lorena
- Estrada Municipal do Campinho s/no, Campinho
- Lorena-SP
- Brazil
| | - Flávio da Silva
- University of São Paulo
- Engineering School of Lorena
- Estrada Municipal do Campinho s/no, Campinho
- Lorena-SP
- Brazil
| |
Collapse
|
17
|
Aguilar-Reynosa A, Romaní A, Rodríguez-Jasso RM, Aguilar CN, Garrote G, Ruiz HA. Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. BIORESOURCE TECHNOLOGY 2017; 243:273-283. [PMID: 28675841 DOI: 10.1016/j.biortech.2017.06.096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/16/2017] [Accepted: 06/17/2017] [Indexed: 05/15/2023]
Abstract
This work describes the application of two forms of heating for autohydrolysis pretreatment on isothermal regimen: conduction-convection heating and microwave heating processing using corn stover as raw material for bioethanol production. Pretreatments were performed using different operational conditions: residence time (10-50 min) and temperature (160-200°C) for both pretreatments. Subsequently, the susceptibility of pretreated solids was studied using low enzyme loads, and high substrate loads. The highest conversion was 95.1% for microwave pretreated solids. Also solids pretreated by microwave heating processing showed better ethanol conversion in simultaneous saccharification and fermentation process (92% corresponding to 33.8g/L). Therefore, microwave heating processing is a promising technology in the pretreatment of lignocellulosic materials.
Collapse
Affiliation(s)
- Alejandra Aguilar-Reynosa
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico; Cluster of Bioalcohols, Mexican Centre for Innovation in Bioenergy (Cemie-Bio), Mexico
| | - Aloia Romaní
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico; Cluster of Bioalcohols, Mexican Centre for Innovation in Bioenergy (Cemie-Bio), Mexico
| | - Cristóbal N Aguilar
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Gil Garrote
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; CITI (Centro de Investigación, Transferencia e Innovación), University of Vigo, Tecnopole, San Ciprián das Viñas, 32901 Ourense, Spain
| | - Héctor A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico; Cluster of Bioalcohols, Mexican Centre for Innovation in Bioenergy (Cemie-Bio), Mexico.
| |
Collapse
|
18
|
Yang M, Wang J, Hou X, Wu J, Fan X, Jiang F, Tao P, Wang F, Peng P, Yang F, Zhang J. Exploring surface characterization and electrostatic property of Hybrid Pennisetum during alkaline sulfite pretreatment for enhanced enzymatic hydrolysability. BIORESOURCE TECHNOLOGY 2017; 244:1166-1172. [PMID: 28869121 DOI: 10.1016/j.biortech.2017.08.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
The surface characterization and electrostatic property of Hybrid Pennisetum (HP) after alkaline sulfite pretreatment were explored for enhanced enzymatic hydrolysability. The O/C ratio in HP increased from 0.34 to 0.60, and C1 concentration decreased from 62.5% to 31.6%, indicating that alkaline sulfite pretreatment caused poorer lignin but richer carbohydrate on HP surface. Zeta potential and sulfur element analysis indicated that more enzymes would preferably adsorb on the carbohydrate surface of alkaline sulfite pretreated HP because the lignin was sulfonated, which facilitated the decrease of non-productive adsorption. Glucose yield of alkaline sulfite pretreated HP reached to 100% by synergistic action of cellulase and xylanase in the hydrolysis, which was significantly higher than that of NaOH pretreated, and the concentration of glucose released was 1.52times higher. The results suggested that alkaline sulfite pretreatment had potential for improving the HP hydrolysability, and the surface characterization and electrostatic property facilitated the enzymatic digestibility.
Collapse
Affiliation(s)
- Ming Yang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Jingfeng Wang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Xincun Hou
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Juying Wu
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xifeng Fan
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fan Jiang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Pan Tao
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Fan Wang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Pai Peng
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China.
| |
Collapse
|
19
|
Jiang F, Ma L, Cai R, Ma Q, Guo G, Du L, Xiao D. Efficient crude multi-enzyme produced by Trichoderma reesei using corncob for hydrolysis of lignocellulose. 3 Biotech 2017; 7:339. [PMID: 28955636 DOI: 10.1007/s13205-017-0982-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/15/2017] [Indexed: 01/02/2023] Open
Abstract
To improve the efficiency of enzymatic saccharification for lignocellulose, an efficient crude multi-enzyme was produced by Trichoderma reesei using corncob, a low cost inducer. Expression of cbh1, bgl1, egl1, xyn1 and positive regulator xyr1 induced by corncob increased significantly compared to that by cellulose. After 120 h induction by corncob, enzymatic activities on filter, CMC, β-glucose and xylan increased 86.5, 46.9, 120.9 and 291.2% compared to those induced by cellulose, and the concentration of secreted protein increased by 120.8%. FPase:β-glucosidase and FPase:xylanase values in crude multi-enzyme I (ECI, induced by corncob) were higher than that in crude multi-enzyme II (ECII, induced by cellulose). Under the same hydrolysis conditions, the volume dosage of ECI was only half of ECII, but ECI still showed a maximum of 12.5 and 33.4% higher than ECII in the total reducing sugar and glucose yield in lignocellulose hydrolysis. Corncob could be a candidate for low cost production of multi-enzyme for efficient lignocellulose degradation, and this work could guide the genetic modification of T. reesei to obtain efficient multi-enzyme for lignocellulose hydrolysis.
Collapse
Affiliation(s)
- Fengchao Jiang
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Lijuan Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Rui Cai
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Qing Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Gaojie Guo
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Liping Du
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Dongguang Xiao
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| |
Collapse
|
20
|
Ren X, Wang J, Yu H, Peng C, Hu J, Ruan Z, Zhao S, Liang Y, Peng N. Anaerobic and sequential aerobic production of high-titer ethanol and single cell protein from NaOH-pretreated corn stover by a genome shuffling-modified Saccharomyces cerevisiae strain. BIORESOURCE TECHNOLOGY 2016; 218:623-630. [PMID: 27416512 DOI: 10.1016/j.biortech.2016.06.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
In this study, a Saccharomyces cerevisiae recombinant strain 14 was constructed through genome shuffling method by transferring the whole genomic DNA of Candida intermedia strain 23 into a thermo-tolerant S. cerevisiae strain. The recombinant strain 14 combined the good natures of both parent strains that efficiently produced ethanol from glucose and single cell protein from xylose with 54.6% crude protein and all essential amino acids except cysteine at 35°C. Importantly, the recombinant strain 14 produced 64.07g/L ethanol from 25%(w/v) NaOH-pretreated and washed corn stover with the ethanol yield of 0.26g/g total stover by fed-batch simultaneous saccharification and fermentation and produced 66.50g/L dry cell mass subsequently from the residual hydrolysate and ethanol. Therefore, this study represents a feasible method to comprehensively utilize hexose and pentose in lignocellulosic materials.
Collapse
Affiliation(s)
- Xueliang Ren
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Juncong Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Hui Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Chunlan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Jinlong Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Zhiyong Ruan
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430068, PR China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430068, PR China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; Hubei Collaborative Innovation Center for Industrial Fermentation, Wuhan 430068, PR China; Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
21
|
Review of Alkali-Based Pretreatment To Enhance Enzymatic Saccharification for Lignocellulosic Biomass Conversion. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01907] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Devendra LP, Kiran Kumar M, Pandey A. Evaluation of hydrotropic pretreatment on lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2016; 213:350-358. [PMID: 27013188 DOI: 10.1016/j.biortech.2016.03.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 05/06/2023]
Abstract
The production of cellulosic ethanol from biomass is considered as a promising alternative to fossil fuels, providing a sustainable option for fuels production in an environmentally compatible manner. The presence of lignin poses a significant challenge for obtaining biofuels and bioproducts from biomass. Part of that problem involves understanding fundamental aspects of lignin structure which can provide a pathway for the development of improved technologies for biomass conversion. Hydrotropic pretreatment has several attractive features that make it an attractive alternative for biofuel production. This review highlights the recent developments on hydrotropic pretreatment processes for lignocellulosic biomass on a molecular structure basis for recalcitrance, with emphasis on lignin concerning chemical structure, transformation and recalcitrance. The review also evaluates the hydrotropic delignification in comparison to alkaline delignification on lignin reduction and surface coverage by lignin. The effect of hydrotrope pretreatment on enzymatic saccharification has also been discussed.
Collapse
Affiliation(s)
- Leena P Devendra
- Centre for Biofuels, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695 019, India.
| | - M Kiran Kumar
- Centre for Biofuels, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695 019, India
| | - Ashok Pandey
- Centre for Biofuels, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695 019, India
| |
Collapse
|
23
|
Wang X, Taylor S, Wang Y. Improvement of radio frequency (RF) heating-assisted alkaline pretreatment on four categories of lignocellulosic biomass. Bioprocess Biosyst Eng 2016; 39:1539-51. [DOI: 10.1007/s00449-016-1629-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
24
|
Lu X, Zheng X, Li X, Zhao J. Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:118. [PMID: 27274766 PMCID: PMC4891831 DOI: 10.1186/s13068-016-0531-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/19/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND In the bioconversion of lignocellulosic substrates, the adsorption behavior of cellulase onto lignin has a negative effect on enzymatic hydrolysis of cellulose, decreasing glucose production during enzymatic hydrolysis, thus decreasing the yield of fermentation and the production of useful products. Understanding the interaction between lignin and cellulase is necessary to optimize the components of cellulase mixture, genetically engineer high-efficiency cellulase, and reduce cost of bioconversion. Most lignin is not removed during liquid hot water (LHW) pretreatment, and the characteristics of lignin in solid substrate are also changed. To understand the interactions between cellulase and lignin, this study investigated the change in the characteristics of lignin obtained from corn stover, as well as the behavior of cellulase adsorption onto lignin, under various severities of LHW pretreatment. RESULTS LHW pretreatment removed most hemicellulose and some lignin in corn stover, as well as improved enzymatic digestibility of corn stover. After LHW pretreatment, the molecular weight of lignin obviously increased, whereas its polydispersity decreased and became more negative. The hydrophobicity and functional groups in lignin also changed. Adsorption of cellulase from Penicillium oxalicum onto lignin isolated from corn stover was enhanced after LHW pretreatment, and increased under increasing pretreatment severity. Different adsorption behaviors were observed in different lignin samples and components of cellulase mixtures, even in different cellobiohydrolases (CBHs), endo-beta-1, 4-glucanases (EGs). The greatest reduction in enzyme activity caused by lignin was observed in CBH, followed by that in xylanase and then in EG and β-Glucosidase (BGL). The adsorption behavior exerted different effects on subsequent enzymatic hydrolysis of various biomass substrates. Hydrophobic and electrostatic interactions may be important factors affecting different adsorption behaviors between lignin and cellulase. CONCLUSIONS LHW pretreatment changed the characteristics of the remaining lignin in corn stover, thus affected the adsorption behavior of lignin toward cellulase. For different protein components in cellulase solution from P. oxalicum, electrostatic action was a main factor influencing the adsorption of EG and xylanase onto lignin in corn stover, while hydrophobicity affected the adsorption of CBH and BGL onto lignin.
Collapse
Affiliation(s)
- Xianqin Lu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 Shandong China
| | - Xiaoju Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 Shandong China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 Shandong China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 Shandong China
| |
Collapse
|
25
|
|
26
|
Putro JN, Soetaredjo FE, Lin SY, Ju YH, Ismadji S. Pretreatment and conversion of lignocellulose biomass into valuable chemicals. RSC Adv 2016. [DOI: 10.1039/c6ra09851g] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lignocellulose biomass can be utilized in many sectors of industry such as energy, chemical, and transportation. However, pretreatment is needed to break down the intricate bonding before converting it into wanted product.
Collapse
Affiliation(s)
- Jindrayani Nyoo Putro
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering
- Widya Mandala Surabaya Catholic University
- Surabaya 60114
- Indonesia
| | - Shi-Yow Lin
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Yi-Hsu Ju
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Suryadi Ismadji
- Department of Chemical Engineering
- Widya Mandala Surabaya Catholic University
- Surabaya 60114
- Indonesia
| |
Collapse
|
27
|
Liu H, Pang B, Wang H, Li H, Lu J, Niu M. Optimization of alkaline sulfite pretreatment and comparative study with sodium hydroxide pretreatment for improving enzymatic digestibility of corn stover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3229-34. [PMID: 25773993 DOI: 10.1021/jf505433q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this study, alkaline sulfite pretreatment of corn stover was optimized. The influences of pretreatments on solid yield, delignification, and carbohydrate recovery under different pretreatment conditions and subsequent enzymatic hydrolysis were investigated. The effect of pretreatment was evaluated by enzymatic hydrolysis efficiency and the total sugar yield. The optimum pretreatment conditions were obtained, as follows: the total titratable alkali (TTA) of 12%, liquid/solid ratio of 6:1, temperature of 140 °C, and holding time of 20 min. Under those conditions, the solid yield was 55.24%, and the removal of lignin was 82.68%. Enzymatic hydrolysis rates of glucan and xylan for pretreated corn stover were 85.38% and 70.36%, and the total sugar yield was 74.73% at cellulase loading of 20 FPU/g and β-glucosidase loading of 10 IU/g for 48 h. Compared with sodium hydroxide pretreatment with the same amount of total titratable alkali, the total sugar yield was raised by about 10.43%. Additionally, the corn stover pretreated under the optimum pretreatment conditions was beaten by PFI at 1500 revolutions. After beating, enzymatic hydrolysis rates of glucan and xylan were 89.74% and 74.06%, and the total sugar yield was 78.58% at the same enzymatic hydrolysis conditions. Compared with 1500 rpm of PFI beating after sodium pretreatment with the same amount of total titratable alkali, the total sugar yield was raised by about 14.05%.
Collapse
Affiliation(s)
- Huan Liu
- †Liaoning Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
- §CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 Shandong, China
| | - Bo Pang
- §CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 Shandong, China
| | - Haisong Wang
- †Liaoning Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
- §CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 Shandong, China
| | - Haiming Li
- †Liaoning Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
| | - Jie Lu
- †Liaoning Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
| | - Meihong Niu
- †Liaoning Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
| |
Collapse
|
28
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
29
|
Singh J, Suhag M, Dhaka A. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 2014; 117:624-631. [PMID: 25498680 DOI: 10.1016/j.carbpol.2014.10.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 10/24/2022]
Abstract
Lignocellulosic materials can be explored as one of the sustainable substrates for bioethanol production through microbial intervention as they are abundant, cheap and renewable. But at the same time, their recalcitrant structure makes the conversion process more cumbersome owing to their chemical composition which adversely affects the efficiency of bioethanol production. Therefore, the technical approaches to overcome recalcitrance of biomass feedstock has been developed to remove the barriers with the help of pretreatment methods which make cellulose more accessible to the hydrolytic enzymes, secreted by the microorganisms, for its conversion to glucose. Pretreatment of lignocellulosic biomass in cost effective manner is a major challenge to bioethanol technology research and development. Hence, in this review, we have discussed various aspects of three commonly used pretreatment methods, viz., steam explosion, acid and alkaline, applied on various lignocellulosic biomasses to augment their digestibility alongwith the challenges associated with their processing.
Collapse
Affiliation(s)
- Joginder Singh
- Laboratory of Environmental Biotechnology, Department of Botany, A. I. Jat H. M. College, Rohtak 124001, Haryana, India.
| | - Meenakshi Suhag
- Institute of Environmental Studies, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Anil Dhaka
- PNRS Government College, Rohtak 124001, Haryana, India.
| |
Collapse
|
30
|
Li H, Bhadury PS, Riisager A, Yang S. One-pot transformation of polysaccharides via multi-catalytic processes. Catal Sci Technol 2014. [DOI: 10.1039/c4cy00711e] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Chen J, Zhang W, Zhang H, Zhang Q, Huang H. Screw extrude steam explosion: a promising pretreatment of corn stover to enhance enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2014; 161:230-235. [PMID: 24709536 DOI: 10.1016/j.biortech.2014.02.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 06/03/2023]
Abstract
A screw extrude steam explosion (SESE) apparatus was designed and introduced to pretreat corn stover continuously for its following enzymatic hydrolysis. SESE parameters temperature (100, 120, 150°C) and residence time (1, 2, 3min) were investigated. The enzymatic hydrolysis of corn stover pretreated by SESE and steam explosion (SE) process was carried out and analyzed systematically. A serial of analysis methods were established, and the corn stover before/after the pretreatment were characterized by scanning electron microscope (SEM), X-ray Diffraction (XRD) and Thermal Gravity/Derivative Thermal Gravity Analysis (TG/DTG). After treated by SESE pretreatment at the optimum condition (150°C, 2min), the pretreated corn stover exhibited highest enzymatic hydrolysis yield (89%), and rare fermentation inhibitors formed. Characterization results indicated that the highest yield could be attributed to the effective removal of lignin/hemicellulose and destruction of cellulose structure by SESE pretreatment.
Collapse
Affiliation(s)
- Jingwen Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 210009, China; College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
| | - Wengui Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 210009, China; College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
| | - Hongman Zhang
- Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, China
| | - Qiuxiang Zhang
- Electrical and Mechanical Engineering College - Safety Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 210009, China; College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China.
| |
Collapse
|
32
|
Shang Y, Su R, Huang R, Yang Y, Qi W, Li Q, He Z. Recycling cellulases by pH-triggered adsorption-desorption during the enzymatic hydrolysis of lignocellulosic biomass. Appl Microbiol Biotechnol 2014; 98:5765-74. [DOI: 10.1007/s00253-014-5761-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/05/2014] [Accepted: 04/07/2014] [Indexed: 11/30/2022]
|
33
|
Song Z, GaiheYang, Liu X, Yan Z, Yuan Y, Liao Y. Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion. PLoS One 2014; 9:e93801. [PMID: 24695485 PMCID: PMC3973592 DOI: 10.1371/journal.pone.0093801] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/05/2014] [Indexed: 11/22/2022] Open
Abstract
Agriculture straw is considered a renewable resource that has the potential to contribute greatly to bioenergy supplies. Chemical pretreatment prior to anaerobic digestion can increase the anaerobic digestibility of agriculture straw. The present study investigated the effects of seven chemical pretreatments on the composition and methane yield of corn straw to assess their effectiveness of digestibility. Four acid reagents (H2SO4, HCl, H2O2, and CH3COOH) at concentrations of 1%, 2%, 3%, and 4% (w/w) and three alkaline reagents (NaOH, Ca(OH)2, and NH3·H2O) at concentrations of 4%, 6%, 8%, and 10% (w/w) were used for the pretreatments. All pretreatments were effective in the biodegradation of the lignocellulosic straw structure. The straw, pretreated with 3% H2O2 and 8% Ca(OH)2, acquired the highest methane yield of 216.7 and 206.6 mL CH4 g VS(-1) in the acid and alkaline pretreatments, which are 115.4% and 105.3% greater than the untreated straw. H2O2 and Ca(OH)2 can be considered as the most favorable pretreatment methods for improving the methane yield of straw because of their effectiveness and low cost.
Collapse
Affiliation(s)
- Zilin Song
- Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, Sichuan, PR China
| | - GaiheYang
- Research Center of Recycle Agricultural Engineering Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaofeng Liu
- Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, Sichuan, PR China
| | - Zhiying Yan
- Research Center of Recycle Agricultural Engineering Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yuexiang Yuan
- Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, Sichuan, PR China
| | - Yinzhang Liao
- Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, Sichuan, PR China
| |
Collapse
|
34
|
Mou HY, Heikkilä E, Fardim P. Topochemistry of alkaline, alkaline-peroxide and hydrotropic pretreatments of common reed to enhance enzymatic hydrolysis efficiency. BIORESOURCE TECHNOLOGY 2013; 150:36-41. [PMID: 24141195 DOI: 10.1016/j.biortech.2013.09.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 05/06/2023]
Abstract
Common reed was studied as raw material for sugar bioconversion. The low temperature alkaline, alkaline-peroxide and hydrotropic pretreatments were employed to overcome the recalcitrance of reed before enzymatic hydrolysis. After pretreatments, lignin was efficiently decreased from the fiber cell wall. Xylan was significantly reduced by hydrotropic pretreatment as well. The surface chemical compositions of reed before and after pretreatments were investigated by X-ray spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS). Reed had a high surface coverage by lignin. Hydrotropic pretreatment was outstanding to decrease the surface coverage by lignin and expose the polysaccharides to fiber surface. The surface lignin reduction was also supported by attenuated total reflectance (ATR)-FTIR results. Furthermore, the topochemical modification of the fiber wall by hydrotropic pretreatment could improve the fiber digestibility, and thus the maximum glucan and xylan yields with the cellulase dosage of 20 FPU/g raised to 93.1% and 25.5%, respectively.
Collapse
Affiliation(s)
- Hong Yan Mou
- Laboratory of Fiber and Cellulose Technology, Åbo Akademi University, Porthaninkatu 3, FI-20500 Turku, Finland.
| | | | | |
Collapse
|
35
|
Acetone–butanol–ethanol production from corn stover pretreated by alkaline twin-screw extrusion pretreatment. Bioprocess Biosyst Eng 2013; 37:913-21. [DOI: 10.1007/s00449-013-1063-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/09/2013] [Indexed: 11/25/2022]
|
36
|
Ji S, Lee I. Impact of cationic polyelectrolyte on the nanoshear hybrid alkaline pretreatment of corn stover: morphology and saccharification study. BIORESOURCE TECHNOLOGY 2013; 133:45-50. [PMID: 23425578 DOI: 10.1016/j.biortech.2013.01.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 06/01/2023]
Abstract
Cationic polyelectrolyte was first used as the additive in the nanoshear hybrid alkaline pretreatment of corn stover. The novel nanoshear hybrid pretreatment process was recently developed at MSU. The chemical compositions and morphologies were investigated by SEM, TEM, confocal CLSM, and XPS to elucidate the degradation mechanism of cellular structures. At room temperature and fast processing conditions (~2 min), lignin was found to redistribute on the inner and outer surfaces of the cell wall as lignin aggregate droplets instead of being extracted. Free microfibrils in the residues were also observed. The yields of enzymatic hydrolysis were enhanced for the pretreated corn stover with the aid of polyelectrolyte as an additive. We speculate that lignin was effectively modified which opened up the cell wall structure during the short pretreatment process and prevented non-productive binding of enzymes in the enzyme hydrolysis reaction.
Collapse
Affiliation(s)
- Shaowen Ji
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, United States
| | | |
Collapse
|
37
|
Sipponen MH, Lapierre C, Méchin V, Baumberger S. Isolation of structurally distinct lignin-carbohydrate fractions from maize stem by sequential alkaline extractions and endoglucanase treatment. BIORESOURCE TECHNOLOGY 2013; 133:522-8. [PMID: 23455224 DOI: 10.1016/j.biortech.2013.01.175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/25/2013] [Accepted: 01/30/2013] [Indexed: 05/08/2023]
Abstract
Sequential fractionation of extractive-free maize stems was carried out using two mild alkaline extractions (0.5 and 2 M NaOH, 20°C, 24h) before and after endoglucanase treatment. This procedure provided two lignin-carbohydrate fractions (LC1 and LC2) recovered after each alkali treatment. LC1 and LC2 contained 39% and 8% of the total lignin amount, respectively. These two fractions contained structurally distinct lignin molecules. While the content of resistant interunit bonds in lignin was 77% in LC1, it was increased up to 98% in LC2. Not unexpectedly, both alkali-soluble fractions contained substantial amount of p-coumaric and ferulic acids ether-linked to lignins. These results outline heterogeneity of maize stem lignins related to fractionation of grass materials.
Collapse
Affiliation(s)
- Mika Henrikki Sipponen
- Aalto University, School of Chemical Technology, Department of Biotechnology and Chemical Technology, Espoo, Finland.
| | | | | | | |
Collapse
|
38
|
Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2013. [DOI: 10.1155/2013/719607] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pretreatment of lignocellulose has received considerable research globally due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. Some of the most promising pretreatment methods require the application of chemicals such as acids, alkali, salts, oxidants, and solvents. Thus, advances in research have enabled the development and integration of chemical-based pretreatment into proprietary ethanol production technologies in several pilot and demonstration plants globally, with potential to scale-up to commercial levels. This paper reviews known and emerging chemical pretreatment methods, highlighting recent findings and process innovations developed to offset inherent challenges via a range of interventions, notably, the combination of chemical pretreatment with other methods to improve carbohydrate preservation, reduce formation of degradation products, achieve high sugar yields at mild reaction conditions, reduce solvent loads and enzyme dose, reduce waste generation, and improve recovery of biomass components in pure forms. The use of chemicals such as ionic liquids, NMMO, and sulphite are promising once challenges in solvent recovery are overcome. For developing countries, alkali-based methods are relatively easy to deploy in decentralized, low-tech systems owing to advantages such as the requirement of simple reactors and the ease of operation.
Collapse
|
39
|
Liu C, van der Heide E, Wang H, Li B, Yu G, Mu X. Alkaline twin-screw extrusion pretreatment for fermentable sugar production. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:97. [PMID: 23834726 PMCID: PMC3718628 DOI: 10.1186/1754-6834-6-97] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/04/2013] [Indexed: 05/07/2023]
Abstract
BACKGROUND The inevitable depletion of fossil fuels has resulted in an increasing worldwide interest in exploring alternative and sustainable energy sources. Lignocellulose, which is the most abundant biomass on earth, is widely regarded as a promising raw material to produce fuel ethanol. Pretreatment is an essential step to disrupt the recalcitrance of lignocellulosic matrix for enzymatic saccharification and bioethanol production. This paper established an ATSE (alkaline twin-screw extrusion pretreatment) process using a specially designed twin-screw extruder in the presence of alkaline solution to improve the enzymatic hydrolysis efficiency of corn stover for the production of fermentable sugars. RESULTS The ATSE pretreatment was conducted with a biomass/liquid ratio of 1/2 (w/w) at a temperature of 99°C without heating equipment. The results indicated that ATSE pretreatment is effective in improving the enzymatic digestibility of corn stover. Sodium hydroxide loading is more influential factor affecting both sugar yield and lignin degradation than heat preservation time. After ATSE pretreatment under the proper conditions (NaOH loading of 0.06 g/g biomass during ATSE and 1 hour heat preservation after extrusion), 71% lignin removal was achieved and the conversions of glucan and xylan in the pretreated biomass can reach to 83% and 89% respectively via subsequent enzymatic hydrolysis (cellulase loading of 20 FPU/g-biomass and substrate consistency of 2%). About 78% of the original polysaccharides were converted into fermentable sugars. CONCLUSIONS With the physicochemical functions in extrusion, the ATSE method can effectively overcome the recalcitrance of lignocellulose for the production of fermentable sugars from corn stover. This process can be considered as a promising pretreatment method due to its relatively low temperature (99°C), high biomass/liquid ratio (1/2) and satisfied total sugar yield (78%), despite further study is needed for process optimization and cost reduction.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory of Biofuels, Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Evert van der Heide
- Shell Global Solutions International B.V, Shell group, Carel van Bylandtlaan 30, Hague 2596 HR, Netherlands
| | - Haisong Wang
- Key Laboratory of Biofuels, Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Bin Li
- Key Laboratory of Biofuels, Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Guang Yu
- Key Laboratory of Biofuels, Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xindong Mu
- Key Laboratory of Biofuels, Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|