1
|
Ravichandran M, Kumar TTA, Dineshkumar R. Carbon dioxide capture, sequestration, and utilization models for carbon management and transformation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55895-55916. [PMID: 39256334 DOI: 10.1007/s11356-024-34861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
The elevated level of carbon dioxide in the atmosphere has become a pressing concern for environmental health due to its contribution to climate change and global warming. Simultaneously, the energy crisis is a significant issue for both developed and developing nations. In response to these challenges, carbon capture, sequestration, and utilization (CCSU) have emerged as promising solutions within the carbon-neutral bioenergy sector. Numerous technologies are available for CCSU including physical, chemical, and biological routes. The aim of this study is to explore the potential of CCSU technologies, specifically focusing on the use of microorganisms based on their well-established metabolic part. By investigating these biological pathways, we aim to develop sustainable strategies for climate management and biofuel production. One of the key novelties of this study lies in the utilization of microorganisms for CO2 fixation and conversion, offering a renewable and efficient method for addressing carbon emissions. Algae, with its high growth rate and lipid contents, exhibits CO2 fixation capabilities during photosynthesis. Similarly, methanogens have shown efficiency in converting CO2 to methane by methanogenesis, offering a viable pathway for carbon sequestration and energy production. In conclusion, our study highlights the importance of exploring biological pathways, which significantly reduce carbon emissions and move towards a more environmentally friendly future. The output of this review highlights the significant potential of CCSU models for future sustainability. Furthermore, this review has been intensified in the current agenda for reduction of CO2 at considerable extends with biofuel upgrading by the microbial-shift reaction.
Collapse
Affiliation(s)
- Mythili Ravichandran
- Department of Microbiology, Vivekanandha Arts and Science College for Women, Sankagiri Salem, 637 303, Tamil Nadu, India
| | | | - Ramar Dineshkumar
- Department of Microbiology, Vivekanandha Arts and Science College for Women, Sankagiri Salem, 637 303, Tamil Nadu, India.
- Center for Global Health Research, Saveetha Medical College and Hospital , Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, 602105, Tamil Nadu, India.
| |
Collapse
|
2
|
Yu C, Liu Y, Zhang Y, Shen MZ, Wang JH, Chi ZY. Seawater Chlorella sp. biofilm for mariculture effluent polishing under environmental combined antibiotics exposure and ecological risk evaluation based on parent antibiotics and transformation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173643. [PMID: 38821282 DOI: 10.1016/j.scitotenv.2024.173643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Mariculture effluent polishing with microalgal biofilm could realize effective nutrients removal and resolve the microalgae-water separation issue via biofilm scraping or in-situ aquatic animal grazing. Ubiquitous existence of antibiotics in mariculture effluents may affect the remediation performances and arouse ecological risks. The influence of combined antibiotics exposure at environment-relevant concentrations towards attached microalgae suitable for mariculture effluent polishing is currently lack of research. Results from suspended cultures could offer limited guidance since biofilms are richer in extracellular polymeric substances that may protect the cells from antibiotics and alter their transformation pathways. This study, therefore, explored the effects of combined antibiotics exposure at environmental concentrations towards seawater Chlorella sp. biofilm in terms of microalgal growth characteristics, nutrients removal, anti-oxidative responses, and antibiotics removal and transformations. Sulfamethoxazole (SMX), tetracycline (TL), and clarithromycin (CLA) in single, binary, and triple combinations were investigated. SMX + TL displayed toxicity synergism while TL + CLA revealed toxicity antagonism. Phosphorus removal was comparable under all conditions, while nitrogen removal was significantly higher under SMX and TL + CLA exposure. Anti-oxidative responses suggested microalgal acclimation towards SMX, while toxicity antagonism between TL and CLA generated least cellular oxidative damage. Parent antibiotics removal was in the order of TL (74.5-85.2 %) > CLA (60.8-69.5 %) > SMX (13.5-44.1 %), with higher removal efficiencies observed under combined than single antibiotic exposure. Considering the impact of residual parent antibiotics, CLA involved cultures were identified of high ecological risks, while medium risks were indicated in other cultures. Transformation products (TPs) of SMX and CLA displayed negligible aquatic toxicity, the parent antibiotics themselves deserve advanced removal. Four out of eight TPs of TL could generate chronic toxicity, and the elimination of these TPs should be prioritized for TL involved cultures. This study expands the knowledge of combined antibiotics exposure upon microalgal biofilm based mariculture effluent polishing.
Collapse
Affiliation(s)
- Chong Yu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yang Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ying Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ming-Zhi Shen
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China.
| | - Zhan-You Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
3
|
Giwa AS, Shafique E, Ali N, Vakili M. Recent Advances in Food Waste Transformations into Essential Bioplastic Materials. Molecules 2024; 29:3838. [PMID: 39202917 PMCID: PMC11357003 DOI: 10.3390/molecules29163838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Lignocellulose is a major biopolymer in plant biomass with a complex structure and composition. It consists of a significant amount of high molecular aromatic compounds, particularly vanillin, syringeal, ferulic acid, and muconic acid, that could be converted into intracellular metabolites such as polyhydroxyalkanoates (PHA) and hydroxybutyrate (PHB), a key component of bioplastic production. Several pre-treatment methods were utilized to release monosaccharides, which are the precursors of the relevant pathway. The consolidated bioprocessing of lignocellulose-capable microbes for biomass depolymerization was discussed in this study. Carbon can be stored in a variety of forms, including PHAs, PHBs, wax esters, and triacylglycerides. From a biotechnology standpoint, these compounds are quite adaptable due to their precursors' utilization of hydrogen energy. This study lays the groundwork for the idea of lignocellulose valorization into value-added products through several significant dominant pathways.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- School of Civil and Environmental Engineering, Nanchang Institute of Science and Technology, Nanchang 330108, China;
| | - Ehtisham Shafique
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Khanpur Road Haripur 22621, Pakistan;
| | - Nasir Ali
- Department of Biological and Health Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Khanpur Road Haripur 22621, Pakistan;
| | | |
Collapse
|
4
|
Oliveira DTD, Mescouto VAD, Paiva RDJ, Silva SRFD, Santos LAB, Serra GM, Xavier LP, Noronha RCR, Nascimento LASD. Use of Residual Lignocellulosic Biomass and Algal Biomass to Produce Biofuels. Int J Mol Sci 2024; 25:8299. [PMID: 39125868 PMCID: PMC11312266 DOI: 10.3390/ijms25158299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Efforts are intensifying to identify new biofuel sources in response to the pressing need to mitigate environmental pollutants, such as greenhouse gases, which are key contributors to global warming and various worldwide calamities. Algae and microalgae present themselves as excellent alternatives for solid-gaseous fuel production, given their renewable nature and non-polluting characteristics. However, making biomass production from these organisms economically feasible remains a challenge. This article collates various studies on the use of lignocellulosic waste, transforming it from environmental waste to valuable organic supplements for algae and microalgae cultivation. The focus is on enhancing biomass production and the metabolites derived from these biomasses.
Collapse
Affiliation(s)
- Deborah Terra de Oliveira
- Science and Technology Park-Guamá, Amazon Oil Laboratory, Belém-Pará 66075-750, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém-Pará 47806-421, Brazil
| | - Vanessa Albuquerque de Mescouto
- Science and Technology Park-Guamá, Amazon Oil Laboratory, Belém-Pará 66075-750, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém-Pará 47806-421, Brazil
| | - Rutiléia de Jesus Paiva
- Science and Technology Park-Guamá, Amazon Oil Laboratory, Belém-Pará 66075-750, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém-Pará 47806-421, Brazil
| | - Sara Roberta Ferreira da Silva
- Science and Technology Park-Guamá, Amazon Oil Laboratory, Belém-Pará 66075-750, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém-Pará 47806-421, Brazil
| | - Luiz Augusto Barbosa Santos
- Science and Technology Park-Guamá, Amazon Oil Laboratory, Belém-Pará 66075-750, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém-Pará 47806-421, Brazil
| | - Gustavo Marques Serra
- Institute of Biological Sciences, Federal University of Pará, Belém-Pará 47806-421, Brazil
| | - Luciana Pereira Xavier
- Institute of Biological Sciences, Federal University of Pará, Belém-Pará 47806-421, Brazil
| | | | - Luís Adriano Santos do Nascimento
- Science and Technology Park-Guamá, Amazon Oil Laboratory, Belém-Pará 66075-750, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém-Pará 47806-421, Brazil
| |
Collapse
|
5
|
Shenbagamuthuraman V, Kasianantham N. Microwave irradiation pretreated fermentation of bioethanol production from Chlorella vulgaris Biomasses: Comparative analysis of response surface methodology and artificial neural network techniques. BIORESOURCE TECHNOLOGY 2023; 390:129867. [PMID: 37832853 DOI: 10.1016/j.biortech.2023.129867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Bioethanol is a promising biofuel for replacing gasoline due to its sustainability. This work uses microwave irradiation and acid hydrolysis to produce bioethanol from Chlorella vulgaris. The hydrolysis procedure used 1%-3% sulfuric acid (H2SO4). The maximum output of reducing sugar was 6.773 g/L after 5 min of irradiation. This study used RSM and ANN to optimize bioethanol production. The study predicted bioethanol yield using three factors: fermentation duration (12-36 h), temperature (28-32 °C), and inoculum concentration (0.5-1.5 g/L). The highest bioethanol yield was achieved using fermentation conditions of 36 h, 30 °C temperature, and 1.5 g/L inoculum concentration. The ANN model predicted the best ethanol output compared to the RSM model. The leftover biomass from biofuel synthesis was characterized for its potential for other energy production. The current study examined the feasibility of employing biomass in an environmentally sustainable manner to enhance the production of biofuels.
Collapse
Affiliation(s)
- V Shenbagamuthuraman
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Nanthagopal Kasianantham
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
6
|
Romanowska-Duda Z, Piotrowski K, Szufa S, Sklodowska M, Naliwajski M, Emmanouil C, Kungolos A, Zorpas AA. Valorization of Spirodela polyrrhiza biomass for the production of biofuels for distributed energy. Sci Rep 2023; 13:16533. [PMID: 37783756 PMCID: PMC10545719 DOI: 10.1038/s41598-023-43576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
Considering the main objectives of a circular economy, Lemnaceae plants have great potential for different types of techniques to valorize their biomass for use in biofuel production. For this reason, scientific interest in this group of plants has increased in recent years. The aim of this study was to evaluate the effects of salt stress on the growth and development of S. polyrrhiza and the valorization of biomass for biofuel and energy production in a circular economy. Plants were grown in a variety of culture media, including standard 'Z' medium, tap water, 1% digestate from a biogas plant in Piaszczyna (54° 01' 21″ N, 17° 10' 19″ E), Poland) and supplemented with different concentrations of NaCl (from 25 to 100 mM). Plants were cultured under phytotron conditions at 24 °C. After 10 days of culture, plant growth, fresh and dry biomass, as well as physio-chemical parameters such as chlorophyll content index, gas exchange parameters (net photosynthesis, transpiration, stomatal conductance and intercellular CO2 concentration), chlorophyll fluorescence measurements were analyzed. After 10 days of the experiment, the percentage starch content of Spirodela shoot segments was determined. S. polyrrhiza was shown to have a high starch storage capacity under certain unfavorable growth conditions, such as salt stress and nutrient deficiency. In the W2 (50 mM NaCl) series, compared to the control (Control2), starch levels were 76% higher in shoots and 30% lower in roots. The analysis of the individual growth and development parameters of S. polyrrhiza plants in the experiment carried out indicates new possibilities for the use of this group of plants in biofuel and bioethanol production.
Collapse
Affiliation(s)
- Z Romanowska-Duda
- Department of Plant Ecophysiology, University of Lodz, Banacha Str. 12/16, 92-237, Lodz, Poland.
| | - K Piotrowski
- Department of Plant Ecophysiology, University of Lodz, Banacha Str. 12/16, 92-237, Lodz, Poland
| | - S Szufa
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924, Lodz, Poland
| | - M Sklodowska
- Department of Plant Physiology and Biochemistry, University of Lodz, Banacha Str. 12/16, 92-237, Lodz, Poland
| | - M Naliwajski
- Department of Plant Physiology and Biochemistry, University of Lodz, Banacha Str. 12/16, 92-237, Lodz, Poland
| | - C Emmanouil
- Department of Planning and Regional Development, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Kungolos
- Civil Engineering Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A A Zorpas
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Giannou Kranidioti 89, Latsia, 2231, Nicosia, Cyprus
| |
Collapse
|
7
|
Padil, Putra MD, Hidayat M, Kasiamdari RS, Mutamima A, Iwamoto K, Darmawan MA, Gozan M. Mechanism and kinetic model of microalgal enzymatic hydrolysis for prospective bioethanol conversion. RSC Adv 2023; 13:21403-21413. [PMID: 37465575 PMCID: PMC10350658 DOI: 10.1039/d3ra01556d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Tetraselmis chuii is a potential microalgae that is in consideration for producing bioethanol owing to its large content of carbohydrates. The glucose production from T. chuii through an enzymatic process with cellulase and xylanase (pretreatment process) and α-amylase and glucoamylase (saccharification process) was studied. The mechanism of the enzymatic process was developed and the kinetic models were then evaluated. For the pretreatment process, enzymes with 30% concentration reacted at 30 °C for 40 min resulted in 35.9% glucose yield. For the saccharification process, the highest glucose yield of 90.03% was obtained using simultaneous α-amylase (0.0006%) and glucoamylase (0.01%) enzymes at 55 °C and for 40 min. The kinetic models fitted well with the experimental data. The model also revealed that the saccharification process performed better than the pretreatment process with a higher kinetic constant and lower activation energy. The proposed kinetic model plays an important role in implementing processes at a larger scale.
Collapse
Affiliation(s)
- Padil
- Department of Chemical Engineering, Riau University Pekanbaru 28293 Indonesia
| | - Meilana Dharma Putra
- Department of Chemical Engineering, Lambung Mangkurat University Banjarbaru 70713 Indonesia
| | - Muslikhin Hidayat
- Department of Chemical Engineering, Gadjah Mada University Yogyakarta 55284 Indonesia
| | | | - Anisa Mutamima
- Department of Chemical Engineering, Riau University Pekanbaru 28293 Indonesia
| | - Koji Iwamoto
- Department of Environmental Engineering and Green Technology, Universiti Technologi Malaysia Kuala Lumpur 54100 Malaysia
| | - Muhammad Arif Darmawan
- Research Center for Process and Manufacturing Industry Technology, Research Organization for Energy and Manufacture, National Research and Innovation Agency Jakarta Pusat 10340 Indonesia
| | - Misri Gozan
- Department of Chemical Engineering, University of Indonesia Depok 16424 Indonesia
- Research Center for Biomass Valorization, University of Indonesia Depok 16424 Indonesia
| |
Collapse
|
8
|
Oliveira J, Pardilhó S, Dias JM, Pires JCM. Microalgae to Bioenergy: Optimization of Aurantiochytrium sp. Saccharification. BIOLOGY 2023; 12:935. [PMID: 37508366 PMCID: PMC10376672 DOI: 10.3390/biology12070935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
Microalgae are a promising feedstock for bioethanol production, essentially due to their high growth rates and absence of lignin. Hydrolysis-where the monosaccharides are released for further fermentation-is considered a critical step, and its optimization is advised for each raw material. The present study focuses on the thermal acid hydrolysis (with sulfuric acid) of Aurantiochytrium sp. through a response surface methodology (RSM), studying the effect of acid concentration, hydrolysis time and biomass/acid ratio on both sugar concentration of the hydrolysate and biomass conversion yield. Preliminary studies allowed to establish the range of the variables to be optimized. The obtained models predicted a maximum sugar concentration (18.05 g/L; R2 = 0.990) after 90 min of hydrolysis, using 15% (w/v) biomass/acid ratio and sulfuric acid at 3.5% (v/v), whereas the maximum conversion yield (12.86 g/100 g; R2 = 0.876) was obtained using 9.3% (w/v) biomass/acid ratio, maintaining the other parameters. Model outputs indicate that the biomass/acid ratio and time are the most influential parameters on the sugar concentration and yield models, respectively. The study allowed to obtain a predictive model that is very well adjusted to the experimental data to find the best saccharification conditions for the Aurantiochytrium sp. microalgae.
Collapse
Affiliation(s)
- Joana Oliveira
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Sara Pardilhó
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Metallurgical and Materials Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Joana M Dias
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Metallurgical and Materials Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - José C M Pires
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
9
|
Li S, Xie P, Chang H, Ho SH. Simultaneously enhancement in the assimilation of microalgal nitrogen and the accumulation of carbohydrate by Debaryomyces hansenii. CHEMOSPHERE 2023:139183. [PMID: 37302499 DOI: 10.1016/j.chemosphere.2023.139183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Microalgae-based techniques are considered an alternative to traditional activated sludge processes for removing nitrogen from wastewater. Bacteria consortia have been broadly conducted as one of the most important partners. However, fungal effects on the removal of nutrients and changes in physiological properties of microalgae, and their impact mechanisms remain unclear. The current work demonstrates that, adding fungi increased the nitrogen assimilation of microalgae and the generation of carbohydrates compared to pure microalgal cultivation. The NH4+-N removal efficiency was 95.0% within 48 h using the microalgae-fungi system. At 48 h, total sugars (glucose, xylose, and arabinose) accounted for 24.2 ± 4.2% per dry weight in the microalgae-fungi group. Gene ontology (GO) enrichment analysis revealed that, among various processes, phosphorylation and carbohydrate metabolic processes were more prominent. Gene encoding the key enzymes of glycolysis, pyruvate kinase, and phosphofructokinase were significantly up-regulated. Overall, for the first time, this study provides new insights into the art of microalgae-fungi consortia for producing value-added metabolites.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
10
|
Kusmayadi A, Huang CY, Kit Leong Y, Yen HW, Lee DJ, Chang JS. Utilizing microalgal hydrolysate from dairy wastewater-grown Chlorella sorokiniana SU-1 as sustainable feedstock for polyhydroxybutyrate and β-carotene production by engineered Rhodotorula glutinis #100-29. BIORESOURCE TECHNOLOGY 2023:129277. [PMID: 37290703 DOI: 10.1016/j.biortech.2023.129277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
The objective of this study was to explore the potential of utilizing Chlorella sorokiniana SU-1 biomass grown on dairy wastewater-amended medium as sustainable feedstock for the biosynthesis of β-carotene and polyhydroxybutyrate (PHB) by Rhodotorula glutinis #100-29. To break down the rigid cell wall, 100 g/L of microalgal biomass was treated with 3% sulfuric acid, followed by detoxification using 5% activated carbon to remove the hydroxymethylfurfural inhibitor. The detoxified microalgal hydrolysate (DMH) was used for flask-scale fermentation, which yielded a maximum biomass production of 9.22 g/L, with PHB and β-carotene concentration of 897 mg/L and 93.62 mg/L, respectively. Upon scaling up to a 5-L fermenter, the biomass concentration increased to 11.2 g/L, while the PHB and β-carotene concentrations rose to 1830 mg/L and 134.2 mg/L. These outcomes indicate that DMH holds promise as sustainable feedstock for the production of PHB and β-carotene by yeast.
Collapse
Affiliation(s)
- Adi Kusmayadi
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Chi-Yu Huang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Hong-Wei Yen
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
11
|
Valorization of Delonix regia Pods for Bioethanol Production. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Delonix regia (common name: Flame tree) pods, an inexpensive lignocellulosic waste matrix, were successfully used to produce value-added bioethanol. Initially, the potentiality of D. regia pods as a lignocellulosic biomass was assessed by Fourier-transform infrared spectroscopy (FTIR), which revealed the presence of several functional groups belonging to cellulose, hemicellulose, and lignin, implying that D. regia pods could serve as an excellent lignocellulosic biomass. Response Surface Methodology (RSM) and Central Composite Design (CCD) were used to optimize pretreatment conditions of incubation time (10–70 min), H2SO4 concentration (0.5–3%), amount of substrate (0.02–0.22 g), and temperature (45–100 °C). Then, RSM-suggested 30 trials of pretreatment conditions experimented in the laboratory, and a trial using 0.16 g substrate, 3% H2SO4, 70 min incubation at 90 °C, yielded the highest amount of glucose (0.296 mg·mL−1), and xylose (0.477 mg·mL−1). Subsequently, the same trial conditions were chosen in the downstream process, and pretreated D. regia pods were subjected to enzymatic hydrolysis with 5 mL of indigenously produced cellulase enzyme (74 filter per unit [FPU]) at 50 °C for 72 h to augment the yield of fermentable sugars, yielding up to 55.57 mg·mL−1 of glucose. Finally, the released sugars were fermented to ethanol by Saccharomyces cerevisiae, yielding a maximum of 7.771% ethanol after 72 h of incubation at 30 °C. Conclusively, this study entails the successful valorization of D. regia pods for bioethanol production.
Collapse
|
12
|
Glucose Conversion for Biobutanol Production from Fresh Chlorella sorokiniana via Direct Enzymatic Hydrolysis. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Microalgae, which accumulate considerable carbohydrates, are a potential source of glucose for biofuel fermentation. In this study, we investigated the enzymatic hydrolysis efficiency of wet microalgal biomass compared with freeze-dried and oven-dried biomasses, both with and without an acidic pretreatment. With the dilute sulfuric acid pretreatment followed by amy (α-amylase and amyloglucosidase) and cellulase hydrolysis, approximately 95.4% of the glucose was recovered; however, 88.5% was released by the pretreatment with 2% (w/v) sulfuric acid, which indicates the potential of the acids for direct saccharification process. There were no considerable differences in the glucose yields among the three kinds of materials. In the direct amy hydrolysis without any pretreatment, a 78.7% glucose yield was obtained, and the addition of cellulase had no significant effect on the hydrolysis to glucose. Compared with the oven-dried biomass, the wet biomass produced a substantially higher glucose yield, which is possibly because the cross-linked cells of the oven-dried biomass prevented the accessibility of the enzymes. According to the results, the fresh microalgal biomass without cell disruption can be directly used for enzymatic hydrolysis to produce glucose. The enzymatic hydrolysate of the wet microalgal biomass was successfully used for acetone–butanol–ethanol (ABE) fermentation, which produced 7.2 g/L of ABE, indicating the application potential of wet microalgae in the bioalcohol fuel fermentation process.
Collapse
|
13
|
Chavan S, Yadav B, Tyagi RD, Wong JWC, Drogui P. Trends and challenges in the valorization of kitchen waste to polyhydroxyalkanoates. BIORESOURCE TECHNOLOGY 2023; 369:128323. [PMID: 36400275 DOI: 10.1016/j.biortech.2022.128323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Kitchen waste (KW) is frequently available for free or with a negative cost due to its huge production. It contains a large proportion of organic substances, especially fermentable sugars, which can be used for bioplastic (polyhydroxyalkanoates or PHA) synthesis. Nevertheless, due to the difficulties in processing, various pre-treatments of KW are being investigated to enhance the concentration of simple sugars released during its hydrolysis. The effective use of KW will help in minimizing the issues of its inappropriate disposal. However, the review on KW to bioplastic synthesis is rarely reported in the literature. Hence, this particular review provides a comprehensive summary of the updated research developments in KW valorization and its potency as a feedstock for PHAs synthesis. Additionally, the impacts of KW, its availability, the necessary pre-treatments for the biopolymerization process, as well as the prospects and challenges for industrially generating sustainable PHAs, are critically discussed.
Collapse
Affiliation(s)
- Shraddha Chavan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Bhoomika Yadav
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- BOSK-Bioproducts, 100-399 rue Jacquard, Québec (QC) G1N 4J6, Canada; School of Technology, Huzhou University, Huzhou 311800, China.
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; School of Technology, Huzhou University, Huzhou 311800, China
| | - Patrick Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
14
|
Aratboni HA, Rafiei N, Allaf MM, Abedini S, Rasheed RN, Seif A, Wang S, Ramirez JRM. Nanotechnology: An outstanding tool for increasing and better exploitation of microalgae valuable compounds. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
15
|
Priya A, Naseem S, Pandey D, Bhowmick A, Attrah M, Dutta K, Rene ER, Suman SK, Daverey A. Innovative strategies in algal biomass pretreatment for biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 369:128446. [PMID: 36473587 DOI: 10.1016/j.biortech.2022.128446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Biohydrogen is one of the cleanest renewable energies with a high calorific value. Algal biomass can be utilized as a sustainable feedstock for biohydrogen production via dark fermentation. However, the recovery of fermentable sugar from algal biomass is challenging because of the diversity and complex cell wall composition and therefore, requires an additional pretreatment step. However, most of the conventional pretreatment strategies suffer from limited technological feasibility and poor economic viability. In this context, this review aims to present the structural complexities of the cell wall of algae and highlight the innovative approaches such as the use of hybrid technologies, biosurfactants, nanoparticles, and genetic engineering approaches for the hydrolysis of algal biomass and improved biohydrogen production. Additionally, a comprehensive discussion of the comparative evaluation of various pretreatment methods, and the techno-economic and life cycle assessment of algal biohydrogen production is also presented in this review.
Collapse
Affiliation(s)
- Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India
| | - Anisha Bhowmick
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Mustafa Attrah
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India; School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
16
|
Ami J, Mensah M, Asiedu NY, Thygesen A. Optimization of Reducing Sugar Concentration from Ulva fasciata Using Cellulase via Response Surface Methodology Techniques. Ind Biotechnol (New Rochelle N Y) 2023. [DOI: 10.1089/ind.2022.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Affiliation(s)
- Johannes Ami
- Department of Chemical Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Moses Mensah
- Department of Chemical Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nana Yaw Asiedu
- Department of Chemical Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Anders Thygesen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
17
|
Microalgae-mediated wastewater treatment for biofuels production: A comprehensive review. Microbiol Res 2022; 265:127187. [DOI: 10.1016/j.micres.2022.127187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 01/20/2023]
|
18
|
Fatima B, Bibi F, Ishtiaq Ali M, Woods J, Ahmad M, Mubashir M, Shariq Khan M, Bokhari A, Khoo KS. Accompanying effects of sewage sludge and pine needle biochar with selected organic additives on the soil and plant variables. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:197-208. [PMID: 36108538 DOI: 10.1016/j.wasman.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The effects of synthetic fertilizer and nutrient leaching are causing serious problems impacting soil function and its fertility. Mitigation of nutrient leaching and use of chemical fertilizer is crucial as fertile land adds up sustainability to climate changes. Biochar produced from agricultural bio-waste and municipal solid waste has been used for crop production and when applied in combination with organic nutrients may support mitigation of nutrient loss and adverse effects of chemical fertilizers. Different types of biochar and their application for soil enhancement have been observed, pine needle and sewage sludge derived low-temperature biochar along with compost, organic fertilizer in the form of manure and microalgal biomass may interact with soil chemistry and plant growth to impact nutrient loss and compensate the hazardous effect of chemical fertilizer, but it has not been investigated yet. This present study elaborates application of sewage sludge and pine needle biochar produced at 400 °C in an application rate of 5 % w/w and 10 t h-1 in combination with compost, manure and microalgal biomasses of Closteriopsis acicularis (BM1) and Tetradesmus nygaardi (BM2) on the growth of Chickpea (Cicer arietinum) and Fenugreek (Trigonella foenum-graecum) crop assessed in a pot experiment over a two crop (Chickpea - Fenugreek) cycle in Pakistan. Results depict that the pine needle biochar with additives has increased plant height by 104.1 ± 2.76 cm and fresh biomass by 49.9 ± 1.02 g, buffered the soil pH to 6.5 for optimum growth of crops and enhance carbon retention by 36 %. This study highlights the valorization of sewage sludge and pine needle into biochar and the effect of biochar augmentation, its impact on soil nutrients and plant biomass enhancement. The greener approach also mitigates and helps in the sustainable management of solid wastes.
Collapse
Affiliation(s)
- Bushra Fatima
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Farhana Bibi
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Jeremy Woods
- Centre for Environmental Policy, Imperial College London, United Kingdom
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000 Kuala Lumpur, Malaysia
| | - Mohd Shariq Khan
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Oman
| | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00 Brno, Czech Republic; Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Punjab, 54000, Lahore, Pakistan
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
19
|
AlMomani F, Shawaqfah M, Alsarayreh M, Khraisheh M, Hameed BH, Naqvi SR, Berkani M, Varjani S. Developing pretreatment methods to promote the production of biopolymer and bioethanol from residual algal biomass (RAB). ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Sharmila VG, Rajesh Banu J, Dinesh Kumar M, Adish Kumar S, Kumar G. Algal biorefinery towards decarbonization: Economic and environmental consideration. BIORESOURCE TECHNOLOGY 2022; 364:128103. [PMID: 36243260 DOI: 10.1016/j.biortech.2022.128103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Algae biomass contains various biological elements, including lipids, proteins, and carbohydrates, making it a viable feedstock for manufacturing biofuels. However, the biggest obstacle to commercializing algal biofuels is their high production costs, primarily related to an algae culture. The extraction of additional high value added bioproducts from algal biomass is thus required to increase the economic viability of producing algae biofuel. This study aims to discuss the economic benefits of a zero-carbon economy and an environmentally sustainable algae resource in decarbonizing the environment through the manufacture of algal-based biofuels from algae biomass for a range of potential uses. In addition, research on the algae biorefineries, with an emphasis on case studies for various cultivation methods, as well as the commercialization of biofuel and bioenergy. Overall, the algal biorefinery offers fresh potential for synthesizing various products.
Collapse
Affiliation(s)
- V Godvin Sharmila
- Department of Civil Engineering, Rohini College of Engineering and Technology, Kanyakumari, Tamil Nadu, India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - M Dinesh Kumar
- Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - S Adish Kumar
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamilnadu, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
21
|
Condor BE, de Luna MDG, Chang YH, Chen JH, Leong YK, Chen PT, Chen CY, Lee DJ, Chang JS. Bioethanol production from microalgae biomass at high-solids loadings. BIORESOURCE TECHNOLOGY 2022; 363:128002. [PMID: 36155816 DOI: 10.1016/j.biortech.2022.128002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Industrial adoption of microalgae biofuel technology has always been hindered by its economic viability. To increase the feasibility of bioethanol production from microalgae, fermentation was applied to Chlorella vulgaris FSP-E biomass at high-solids loading conditions. First, Chlorella vulgaris FSP-E was cultivated to produce microalgae biomass with high carbohydrate content. Next, different ethanol-producing microorganisms were screened. Saccharomyces cerevisiae FAY-1 showed no inhibition when fermenting high initial glucose concentrations and was selected for the fermentation experiments at high-solids loadings. Optimization of acid hydrolysis at high biomass loading was also performed. The fermentation of microalgal biomass hydrolysate produced a final ethanol concentration and yield higher than most reported literature using microalgae feedstock. In addition, the kinetics of bioethanol fermentation of microalgae hydrolysate under high-solids loading were evaluated. These results showed the potential of fermenting microalgae biomass at high-solids loading in improving the viability of microalgae bioethanol production.
Collapse
Affiliation(s)
- Billriz E Condor
- Energy Engineering Program, National Graduate School of Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Mark Daniel G de Luna
- Energy Engineering Program, National Graduate School of Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines; Department of Chemical Engineering, College of Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Yu-Han Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Jih-Heng Chen
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Po-Ting Chen
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
22
|
Min KJ, Oh DY, Park KY. Field test of water-net based wastewater treatment for nutrient removal and bioethanol production. CHEMOSPHERE 2022; 301:134791. [PMID: 35508263 DOI: 10.1016/j.chemosphere.2022.134791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
In this study, an open pond constructed in Myanmar, a region with tropical climate and favorable environmental conditions for algae growth, was considered to conduct field experiments on sewage inflow river water. The nutrient removal efficiency and productivity of Hydrodictyon reticulatum (H. reticulatum) were analyzed, and the maximum fermentation limit concentration for bioethanol production was determined. Three ponds were operated in batch mode to investigate the effect of light intensity. Photoinhibition was caused due to excessive light intensity in summer season in the region with tropical climate resulting in reduced facility efficiency in the absence of shade. For light blocking, a transparent film was found to be more effective than a translucent film. In the transparent film shading facility, the nitrogen and phosphorus removal efficiencies were maintained above 76% and 81%, respectively, and the productivity of H. reticulatum was 2.27 g m-2 d-1. For a raceway open pond facility shaded with transparent film, the performance was evaluated based on hydraulic retention time (HRT), and the productivity of algae was found to increase with increasing supply of nitrogen and phosphorous. Maximum biomass production of 3.21 g m-2 d-1 was observed with an HRT of 3 d, suggesting the possibility of long-term operation. As a result of evaluating the ethanol production based on the initial concentration of H. reticulatum, the yield of bioethanol at the initial reducing sugar content of 120 g L-1 was 89.4%, but bioethanol production was only 8.9 g L-1.
Collapse
Affiliation(s)
- Kyung Jin Min
- Department of Civil and Environmental Engineering, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea.
| | - Doo Young Oh
- Department of Civil and Environmental Engineering, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea.
| | - Ki Young Park
- Department of Civil and Environmental Engineering, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Microalgae-Based Biorefineries: Challenges and Future Trends to Produce Carbohydrate Enriched Biomass, High-Added Value Products and Bioactive Compounds. BIOLOGY 2022; 11:biology11081146. [PMID: 36009773 PMCID: PMC9405046 DOI: 10.3390/biology11081146] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Microalgae-based biorefineries allow the simultaneous production of microalgae biomass enriched in a particular macromolecule and high-added and low-value products if a proper selection of the microalgae species and the cultivation conditions are adequate for the purpose. This review discusses the challenges and future trends related to microalgae-based biorefineries stressing the multi-product approach and the use of raw wastewater or pretreated wastewater to improve the cost-benefit ratio of biomass and products. Emphasis is given to the production of biomass enriched in carbohydrates. Microalgae-bioactive compounds as potential therapeutical and health promoters are also discussed. Future and novel trends following the circular economy strategy are also discussed. Abstract Microalgae have demonstrated a large potential in biotechnology as a source of various macromolecules (proteins, carbohydrates, and lipids) and high-added value products (pigments, poly-unsaturated fatty acids, peptides, exo-polysaccharides, etc.). The production of biomass at a large scale becomes more economically feasible when it is part of a biorefinery designed within the circular economy concept. Thus, the aim of this critical review is to highlight and discuss challenges and future trends related to the multi-product microalgae-based biorefineries, including both phototrophic and mixotrophic cultures treating wastewater and the recovery of biomass as a source of valuable macromolecules and high-added and low-value products (biofertilizers and biostimulants). The therapeutic properties of some microalgae-bioactive compounds are also discussed. Novel trends such as the screening of species for antimicrobial compounds, the production of bioplastics using wastewater, the circular economy strategy, and the need for more Life Cycle Assessment studies (LCA) are suggested as some of the future research lines.
Collapse
|
24
|
Abstract
Whole-cell microalgae biomass and their specific metabolites are excellent sources of renewable and alternative feedstock for various products. In most cases, the content and quality of whole-cell biomass or specific microalgal metabolites could be produced by both fresh and marine microalgae strains. However, a large water footprint for freshwater microalgae strain is a big concern, especially if the biomass is intended for non-food applications. Therefore, if any marine microalgae could produce biomass of desired quality, it would have a competitive edge over freshwater microalgae. Apart from biofuels, recently, microalgal biomass has gained considerable attention as food ingredients for both humans and animals and feedstock for different bulk chemicals. In this regard, several technologies are being developed to utilize marine microalgae in the production of food, feed, and biofuels. Nevertheless, the production of suitable and cheap biomass feedstock using marine microalgae has faced several challenges associated with cultivation and downstream processing. This review will explore the potential pathways, associated challenges, and future directions of developing marine microalgae biomass-based food, feed, and fuels (3F).
Collapse
|
25
|
Macromolecules assessment from spent biomass during phycoremediation of pollutants from coke-oven wastewater: A prospective approach for production of value added products. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Testimony on a successful lab protocol to disrupt Chlorella vulgaris microalga cell wall. PLoS One 2022; 17:e0268565. [PMID: 35587491 PMCID: PMC9119475 DOI: 10.1371/journal.pone.0268565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Over the last decades, microalgae have gained popularity due to demand for novel environmental green solutions and development of innovative mass-production sources for multiple processes, including animal feed and human diet, turning microalgae into an exquisite candidate for several ecofriendly technologies. Notwithstanding, there is a catch. Most species of microalgae, as the case of common Chlorella vulgaris (C. vulgaris) display a recalcitrant cell wall, characterized by a complex matrix of polysaccharides and glycoproteins, which constitutes a major barrier for monogastric species digestibility and extraction of inner valuable nutritional compounds. To overcome this limitation, the development of feed enzymes, in particular Carbohydrate-Active enZymes (CAZymes) with capacity to disrupt C. vulgaris cell wall may contribute to improve the bioavailability of these microalgae compounds in monogastric diets, namely at high levels of incorporation. In order to disclosure novel combination of feed enzymes to disrupt C. vulgaris cell wall, a lab protocol was implemented by our research team containing the following key steps: after microalgae cultivation and having available a repertoire of two hundred pre-selected CAZymes produced by high-throughput technology, the step 1 is the individual screening of the most functional enzymes on disrupting C. vulgaris cell wall (versus a control, defined as the microalgae suspension incubated with PBS) and the determination of reducing sugars released by the 3,5-dinitrosalicylic acid (DNSA) method; step 2 concerns on finding the best CAZymes cocktail, testing the synergistic effect of enzymes, to disrupt C. vulgaris cell wall (in parallel with running the control) along with characterization of each enzyme thermostability and resistance to proteolytic attack, to which feed enzymes are subjected in the animal gastrointestinal tract; step 3 is the assessment of C. vulgaris cell wall degradation degree by measuring the amount of reducing sugars released by the DNSA method, fatty acid analysis by gas chromatography (GC) with flame ionization detector (FID), oligosaccharides quantification by high performance liquid chromatography (HPLC) equipped with an electrochemical detector (ECD), protein content by the Kjeldahl method, and various pigments (chlorophylls a and b, and total carotenoids) in the supernatant. In the correspondent residue, we also assessed cellular counting using a Neubauer chamber by direct observation on a bright-field microscope and fluorescence intensity, after staining with Calcofluor White for both control and CAZymes cocktail treatments, on a fluorescence microscope. Beyond animal feed industry with impact on human nutrition, our lab protocol may increase the yield in obtaining valued constituents from C. vulgaris microalga for other biotechnological industries.
Collapse
|
27
|
Yoosefian SH, Ebrahimi R, Hosseinzadeh Samani B, Maleki A. Modification of bioethanol production in an innovative pneumatic digester with non-thermal cold plasma detoxification. BIORESOURCE TECHNOLOGY 2022; 350:126907. [PMID: 35227915 DOI: 10.1016/j.biortech.2022.126907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
An anaerobic pneu-mechanical digester (PD) was designed to ferment lignocellulosic compounds. So, wheat and rice straws were pretreated using an ultrasound-acid, and then thermal-acid hydrolysis was conducted. Hydrolysis optimization was performed using the response surface method and the optimal points for time, temperature, and acid concentration were 45 min, 148.4 °C, and 2.04 % v/v, respectively. Cold plasma was then used as detoxification to reduce the amount of inhibitory compounds and acids. This method was capable of reducing the amounts of acetic acid, formic acid and furfural by 73, 83 and 68 % in hydrolyzed biomass, respectively. The biomass was fermented in a PD for 20 days and compared with a conventional digester (CD). The obtained results showed that the PD could increase the efficiency of bioethanol by 37 % in the detoxified state and 22 % in the non-detoxified state after 20 days of fermentation compared to the CD. Moreover, H2S, CO and O2 were measured during fermentation process. In PD, the amount of H2S and O2 was lower than CD, but CO was significantly higher in the PD.
Collapse
Affiliation(s)
- Seyedeh Hoda Yoosefian
- Department of Mechanical Engineering of Biosystems, Shahrekord University, 8818634141 Shahrekord, Iran
| | - Rahim Ebrahimi
- Department of Mechanical Engineering of Biosystems, Shahrekord University, 8818634141 Shahrekord, Iran.
| | | | - Ali Maleki
- Department of Mechanical Engineering of Biosystems, Shahrekord University, 8818634141 Shahrekord, Iran
| |
Collapse
|
28
|
Karimian A, Mahdavi MA, Gheshlaghi R. Algal cultivation strategies for enhancing production of Chlorella sorokiniana IG-W-96 biomass and bioproducts. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Microalgal Biorefinery Concepts’ Developments for Biofuel and Bioproducts: Current Perspective and Bottlenecks. Int J Mol Sci 2022; 23:ijms23052623. [PMID: 35269768 PMCID: PMC8910654 DOI: 10.3390/ijms23052623] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
Microalgae have received much interest as a biofuel feedstock. However, the economic feasibility of biofuel production from microalgae does not satisfy capital investors. Apart from the biofuels, it is necessary to produce high-value co-products from microalgae fraction to satisfy the economic aspects of microalgae biorefinery. In addition, microalgae-based wastewater treatment is considered as an alternative for the conventional wastewater treatment in terms of energy consumption, which is suitable for microalgae biorefinery approaches. The energy consumption of a microalgae wastewater treatment system (0.2 kW/h/m3) was reduced 10 times when compared to the conventional wastewater treatment system (to 2 kW/h/m3). Microalgae are rich in various biomolecules such as carbohydrates, proteins, lipids, pigments, vitamins, and antioxidants; all these valuable products can be utilized by nutritional, pharmaceutical, and cosmetic industries. There are several bottlenecks associated with microalgae biorefinery. Hence, it is essential to promote the sustainability of microalgal biorefinery with innovative ideas to produce biofuel with high-value products. This review attempted to bring out the trends and promising solutions to realize microalgal production of multiple products at an industrial scale. New perspectives and current challenges are discussed for the development of algal biorefinery concepts.
Collapse
|
30
|
Zheng Y, Li Y, Yang Y, Zhang Y, Wang D, Wang P, Wong ACY, Hsieh YSY, Wang D. Recent Advances in Bioutilization of Marine Macroalgae Carbohydrates: Degradation, Metabolism, and Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1438-1453. [PMID: 35089725 DOI: 10.1021/acs.jafc.1c07267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine macroalgae are considered renewable natural resources due to their high carbohydrate content, which gives better utilization value in biorefineries and higher value conversion than first- and second-generation biomass. However, due to the diverse composition, complex structure, and rare metabolic pathways of macroalgae polysaccharides, their bioavailability needs to be improved. In recent years, enzymes and pathways related to the degradation and metabolism of macroalgae polysaccharides have been continuously developed, and new microbial fermentation platforms have emerged. Aiming at the bioutilization and transformation of macroalgae resources, this review describes the latest research results from the direction of green degradation, biorefining, and metabolic pathway design, including summarizing the the latest biorefining technology and the fermentation platform design of agarose, alginate, and other polysaccharides. This information will provide new research directions and solutions for the biotransformation and utilization of marine macroalgae.
Collapse
Affiliation(s)
- Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yanping Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuanyuan Yang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ye Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Di Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Peiyao Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ann C Y Wong
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 11421 Stockholm, Sweden
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
31
|
Zhu Q, Zhang M, Liu B, Wen F, Yang Z, Liu J. Transcriptome and Metabolome Profiling of a Novel Isolate Chlorella sorokiniana G32 (Chlorophyta) Displaying Enhanced Starch Accumulation at High Growth Rate Under Mixotrophic Condition. Front Microbiol 2022; 12:760307. [PMID: 35069466 PMCID: PMC8770532 DOI: 10.3389/fmicb.2021.760307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Chlorella sorokiniana is one of the most productive microalgal species with a high potential for the production of biofuels and other high value-added molecules. Many studies have focused on its capability of mixotrophic growth using reduced organic carbon and growth pattern shift between autotrophic and mixotrophic conditions. In this study, we investigated growth patterns of a novel isolate, C. sorokiniana G32, under mixotrophic growth conditions supplemented with a low level (1.25 g L-1) and a high level (5 g L-1) of glucose. Physiological, transcriptomic (i.e., RNA-seq), and metabolomic (i.e., LC-MS/MS) methods were used. We showed that peak growth based on OD680nm absorbance is ∼4-fold higher with high glucose vs. low glucose supplementation. Photosynthetic efficiency (Fv/Fm) in G32 mixotrophic cultures with high or low glucose supplementation remains identical to that of G32 phototrophic growth. We also found that the conversion rate between absorbance-based cell density and cell dry weight with high glucose supplementation was lower than with low glucose. This suggests that more cell biomass is produced under high glucose treatment than with low glucose. The result was confirmed via sucrose density gradient centrifugation. It is likely that accumulation of high concentration of starch may account for this effect. Transcriptomic analysis of G32 cultures (i.e., via RNA-seq) in response to reciprocal change of glucose levels reveals that expression of a subset of differentially expressed genes (DEGs) is correlated with the amount of glucose supplementation. These DEGs are designated as glucose-specific responsive (GSR) genes. GSR genes are enriched for a number of energy metabolic pathways. Together with metabolomics data (i.e., LC-MS/MS), we show that under high-level supplementation, glucose is preferentially oxidized through an oxidative pentose phosphate pathway. Collectively, our results indicate the mechanism of regulation of glucose assimilation and energy metabolism in G32 under mixotrophic conditions with different levels of glucose supplementation revealed by transcriptomic and metabolomic analyses. We propose that C. sorokiniana G32 has the potential for the production of high value-added molecules.
Collapse
Affiliation(s)
- Qingling Zhu
- Systems Biology, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Mengmeng Zhang
- Systems Biology, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Bingying Liu
- Marine Biology, Ocean College, Zhejiang University, Zhoushan, China
| | - Fang Wen
- Marine Biology, Ocean College, Zhejiang University, Zhoushan, China
| | - Zhili Yang
- Systems Biology, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Jianhua Liu
- Systems Biology, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
32
|
Biological-Based Produced Water Treatment Using Microalgae: Challenges and Efficiency. SUSTAINABILITY 2022. [DOI: 10.3390/su14010499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Produced water (PW) is the most significant waste stream generated in the oil and gas industries. The generated PW has the potential to be a useful water source rather than waste. While a variety of technologies can be used for the treatment of PW for reuse, biological-based technologies are an effective and sustainable remediation method. Specifically, microalgae, which are a cost-effective and sustainable process that use nutrients to eliminate organic pollutants from PW during the bioremediation process. In these treatment processes, microalgae grow in PW free of charge, eliminate pollutants, and generate clean water that can be recycled and reused. This helps to reduce CO2 levels in the atmosphere while simultaneously producing biofuels, other useful chemicals, and added-value products. As such, this review focuses on PW generation in the oil and gas industry, PW characteristics, and examines the available technologies that can be used for PW remediation, with specific attention to algal-based technologies. In addition, the various aspects of algae growth and cultivation in PW, the effect of growth conditions, water quality parameters, and the corresponding treatment performance are presented. Lastly, this review emphasizes the bioremediation of PW using algae and highlights how to harvest algae that can be processed to generate biofuels for added-value products as a sustainable approach.
Collapse
|
33
|
Samadhiya K, Sangtani R, Nogueira R, Bala K. Insightful Advancement and Opportunities for Microbial Bioplastic Production. Front Microbiol 2022; 12:674864. [PMID: 35058887 PMCID: PMC8763809 DOI: 10.3389/fmicb.2021.674864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022] Open
Abstract
Impetuous urbanization and population growth are driving increased demand for plastics to formulate impeccable industrial and biomedical commodities. The everlasting nature and excruciating waste management of petroleum-based plastics have catered to numerous challenges for the environment. However, just implementing various end-of-life management techniques for assimilation and recycling plastics is not a comprehensive remedy; instead, the extensive reliance on finite resources needs to be reduced for sustainable production and plastic product utilization. Microorganisms, such as bacteria and algae, are explored substantially for their bioplastic production repertoire, thus replacing fossil-based plastics sooner or later. Nevertheless, the utilization of pure microbial cultures has led to various operational and economical complications, opening the ventures for the usage of mixed microbial cultures (MMCs) consisting of bacteria and algae for sustainable production of bioplastic. The current review is primarily focuses on elaborating the bioplastic production capabilities of different bacterial and algal strains, followed by discussing the quintessence of MMCs. The present state-of-the-art of bioplastic, different types of bacterial bioplastic, microalgal biocomposites, operational factors influencing the quality and quantity of bioplastic precursors, embracing the potential of bacteria-algae consortia, and the current global status quo of bioplastic production has been summarized extensively.
Collapse
Affiliation(s)
- Kanchan Samadhiya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Rimjhim Sangtani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Regina Nogueira
- Institute for Sanitary Engineering and Waste Management, Leibniz Universitaet Hannover, Hanover, Germany
| | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| |
Collapse
|
34
|
Abbas M, Shaheen S, Pervaiz M, Jaffer M, Tahir A. Microalgae role in sustainable bioenergy generation as determined by light microscopy. Microsc Res Tech 2022; 85:1808-1813. [PMID: 34978356 DOI: 10.1002/jemt.24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/26/2021] [Accepted: 12/18/2021] [Indexed: 11/07/2022]
Abstract
The main aim of this study was to explore the role of light microscopy in the identification of microalgae as a source of study. Three microalgal species (Nostoc, Anabaena, and Volvox) were identified by light. In this study, different parameters of the oil extraction process from algae biomass were studied. The samples of Nostoc, Anabaena, and Volvox were collected from the freshwater bodies in Lahore, and the samples were identified by light microscopy. Pretreatment of algae was done which includes harvesting, drying, and grinding. The sun drying of sample was done. Solvent extraction was done for the extraction of oil from algal cells. Solvent n-hexane and diethyl ether were used alone as well as in combination. Effects of n-hexane to oil ratio, size of algal biomass, and contact time on the percentage yield of extracted oil were studied and analyzed. It was concluded that maximum amount of oil was extracted from algae by using a greater ratio of solvent to algal biomass, maximum contact time, and smaller algal biomass size. The extracted oil yield was satisfactory, demonstrating the potential of microalgae for biodiesel production. It was discovered that if algal oil is subjected to transesterification, it can be turned into biodiesel, and light microscopy can be used to assess anatomical characteristics. However, more research will be required for transesterification.
Collapse
Affiliation(s)
- Moneeza Abbas
- Department of Environment Science, Lahore College for Women University, Lahore, Pakistan
| | - Shabnum Shaheen
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Mahnoor Pervaiz
- Department of Environment Science, Lahore College for Women University, Lahore, Pakistan
| | - Mehwish Jaffer
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Arfa Tahir
- Department of Environment Science, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
35
|
Shenbagamuthuraman V, Patel A, Khanna S, Banerjee E, Parekh S, Karthick C, Ashok B, Velvizhi G, Nanthagopal K, Ong HC. State of art of valorising of diverse potential feedstocks for the production of alcohols and ethers: Current changes and perspectives. CHEMOSPHERE 2022; 286:131587. [PMID: 34303047 DOI: 10.1016/j.chemosphere.2021.131587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Alcohols could be the biggest factor for the improvement of world biofuel economy in the present century due to their excellent properties compared to petroleum products. The primary concerns of sustainable alcohol production for meeting the growing energy demand owing to the selection of viable feedstock and this might enhance the opportunities for developing numerous advanced techniques. In this review, the valorization of alcohol production from several production routes has been exposed by covering the traditional routes to the present state of the art technologies. Even though the fossil fuel conversion could be dominant method for methanol production, many recent innovations like photo electrochemical synthesis and electrolysis methods might play vital role in production of renewable methanol in future. There have been several production routes for production of ethanol and among which the fermentation of lignocellulose biomass would be the ultimate choice for large scale shoot up. The greenhouse gas recovery in the form of alcohols through electrochemistry technique and hydrogenation method are the important methods for commercialization of alcohols in future. It is also observed that algae based renewable bio-alcohols is highly influenced by carbohydrate content and sustainable approaches in algae conversion to bio-alcohols would bring greater demand in future market. There is a lack of innovation in higher alcohols production in single process and this could be bounded by combining dehydrogenation and decarboxylation techniques. Finally, this review enlists the opportunities and challenges of existing alcohols production and recommended the possible routes for making significant enhancement in production.
Collapse
Affiliation(s)
- V Shenbagamuthuraman
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Adamya Patel
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Shaurya Khanna
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Eleena Banerjee
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - Shubh Parekh
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - C Karthick
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - B Ashok
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
| | - G Velvizhi
- CO(2) Research and Green Technology Center, Vellore Institute of Technology, Vellore, 632014, India
| | - K Nanthagopal
- Engine Testing Laboratory, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
| | - Hwai Chyuan Ong
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
36
|
Abstract
Hydrogen (H2) has become an important energy vector for mitigating the effects of climate change since it can be obtained from renewable sources and can be fed to fuel cells for producing power. Bioethanol can become a green H2 source via Ethanol Steam Reforming (ESR) but several variables influence the power production in the fuel cell. Herein, we explored and optimized the main variables that affect this power production. The process includes biomass fermentation, bioethanol purification, H2 production via ESR, syngas cleaning by a CO-removal reactor, and power production in a high temperature proton exchange membrane fuel cell (HT-PEMFC). Among the explored variables, the steam-to-ethanol molar ratio (S/E) employed in the ESR has the strongest influence on power production, process efficiency, and energy consumption. This effect is followed by other variables such as the inlet ethanol concentration and the ESR temperature. Although the CO-removal reactor did not show a significant effect on power production, it is key to increase the voltage on the fuel cell and consequently the power production. Optimization was carried out by the response surface methodology (RSM) and showed a maximum power of 0.07 kWh kg−1 of bioethanol with an efficiency of 17%, when ESR temperature is 700 °C. These values can be reached from different bioethanol sources as the S/E and CO-removal temperature are changed accordingly with the inlet ethanol concentration. Because there is a linear correlation between S/E and ethanol concentration, it is possible to select a proper S/E and CO-removal temperature to maximize the power generation in the HT-PEMFC via ESR. This study serves as a starting point to diversify the sources for producing H2 and moving towards a H2-economy.
Collapse
|
37
|
Microalgal Systems for Wastewater Treatment: Technological Trends and Challenges towards Waste Recovery. ENERGIES 2021. [DOI: 10.3390/en14238112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Wastewater (WW) treatment using microalgae has become a growing trend due the economic and environmental benefits of the process. As microalgae need CO2, nitrogen, and phosphorus to grow, they remove these potential pollutants from wastewaters, making them able to replace energetically expensive treatment steps in conventional WW treatment. Unlike traditional sludge, biomass can be used to produce biofuels, biofertilizers, high value chemicals, and even next-generation growth media for “organically” grown microalgal biomass targeting zero-waste policies and contributing to a more sustainable circular bioeconomy. The main challenge in this technology is the techno-economic feasibility of the system. Alternatives such as the isolation of novel strains, the use of native consortia, and the design of new bioreactors have been studied to overcome this and aid the scale-up of microalgal systems. This review focuses on the treatment of urban, industrial, and agricultural wastewaters by microalgae and their ability to not only remove, but also promote the reuse, of those pollutants. Opportunities and future prospects are discussed, including the upgrading of the produced biomass into valuable compounds, mainly biofuels.
Collapse
|
38
|
Chen W, Wang T, Dou Z, Xie X. Microalgae Harvesting by Self-Driven 3D Microfiltration with Rationally Designed Porous Superabsorbent Polymer (PSAP) Beads. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15446-15455. [PMID: 34739206 DOI: 10.1021/acs.est.1c04907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microalgae are emerging as next-generation renewable resources for production of sustainable biofuels and high-value bioproducts. Conventional microalgae harvesting methods including centrifugation, filtration, flocculation, and flotation are limited by intensive energy consumption, high capital cost, long treatment time, or the requirement of chemical addition. In this study, we design and fabricate porous superabsorbent polymer (PSAP) beads for self-driven 3D microfiltration of microalgal cultures. The PSAP beads can swell fast in a microalgal suspension with high water absorption capacity. During this process, microalgal cells are excluded outside the beads and successfully concentrated in the residual medium. After treatment, the beads can be easily separated from the microalgal concentrate and reused after dewatering. In one PSAP treatment, a high concentration factor for microalgal cultures up to 13 times can be achieved in 30 min with a harvesting efficiency higher than 90%. Furthermore, microalgal cultures could be concentrated from 0.2 g L-1 to higher than 120 g L-1 with minimal biomass loss through multistage PSAP treatments. Therefore, the use of PSAP beads for microalgae harvesting is fast, effective, and scalable. It does not require any complex instrument or chemical addition. This technique potentially provides an efficient and feasible alternative to obtain high concentrations of functional biomass at a very low cost.
Collapse
Affiliation(s)
- Wensi Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ting Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zeou Dou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
39
|
Su HY, Wu SW, Chou HH, Lin WH, Chow TJ, Chiu HH, Fei Q, Cheng KK. Recombinant cyanobacteria cultured in CO2 and seawater as feedstock for coproduction of acetoin and succinate by engineered Enterobacter cloacae. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Improved saccharification of Chlorella vulgaris biomass by fungal secreted enzymes for bioethanol production. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Mehariya S, Goswami RK, Karthikeysan OP, Verma P. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. CHEMOSPHERE 2021; 280:130553. [PMID: 33940454 DOI: 10.1016/j.chemosphere.2021.130553] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Microalgae is a renewable bioresource with the potential to replace the conventional fossil-based industrial production of organic chemicals and pharmaceuticals. Moreover, the microalgal biomass contains carotenoids, vitamins, and other biomolecules that are widely used as food supplements. However, the microalgal biomass production, their composition variations, energy-intensive harvesting methods, optimized bio-refinery routes, and lack of techno-economic analysis are the major bottleneck for the life-sized commercialization of this nascent bio-industry. This review discusses the microalgae-derived key bioactive compounds and their applications in different sectors for human health. Furthermore, this review proposes advanced strategies to enhance the productivity of bioactive compounds and highlight the key challenges associated with a safety issue for use of microalgae biomass. It also provides a detailed global scenario and market demand of microalgal bioproducts. In conclusion, this review will provide the concept of microalgal biorefinery to produce bioactive compounds at industrial scale platform for their application in the nutraceutical and pharmaceutical sector considering their current and future market trends.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa Dell'Annunziata, Via Roma 29, 81031, Aversa, CE, Italy; Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Obulisamy Parthiba Karthikeysan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA; Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA.
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
42
|
Chavan R, Mutnuri S. Domestic wastewater treatment by constructed wetland and microalgal treatment system for the production of value-added products. ENVIRONMENTAL TECHNOLOGY 2021; 42:3304-3317. [PMID: 32013783 DOI: 10.1080/09593330.2020.1726471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
The main aim of this study is to treat domestic wastewater in a hybrid Vertical Flow Constructed Wetland (VFCW-4.2 m2) and Microalgal Treatment System (MTS-1 m2). The objective is not only to treat Domestic wastewater (DW) but also to produce value-added products from microalgal biomass. The domestic wastewater was initially treated by VFCW and the VFCW effluent was further phycoremediated by MTS. Canna indica was used for wetland vegetation and resident microalgal consortium from VFCW effluent was used in MTS. The VFCW and MTS was operated at 1 m3/day (HRT-0.25 m3/m2-day, OLR-400 g/m2-day) and 0.03 m3/day (HRT-0.03 m3/m2-day, OLR-400 g/m2-day), respectively. The integrated system was observed to remove 68.9% COD, 77.4% NH4-N, 75.8% TKN and 63.6% PO4-P. The harvested Naive Biomass (NB) was observed to contain 16.7% of lipids (W/W). The Residual Biomass after Lipid Extraction (RBLE) was used as a substrate for ethanol production. The observed yield of ethanol using RBLE as a substrate was 33.4%. NB, RBLE, and Residual Biomass after Lipid and Sugar Extraction (RBLSE) indicated net biomethane yield (mL/g VS) of 211.8, 134.6 and 107.7, respectively. The present study demonstrated an initial attempt of demonstrating a hybrid wastewater treatment system for the production of value-added products in terms of biofuel.
Collapse
Affiliation(s)
- Ram Chavan
- BITS Pilani, KK Birla Goa Campus, Applied Environmental Biotechnology Laboratory, Zuarinagar, India
| | - Srikanth Mutnuri
- BITS Pilani, KK Birla Goa Campus, Applied Environmental Biotechnology Laboratory, Zuarinagar, India
| |
Collapse
|
43
|
Jeong GT. Valorization of microalgae into 5-hydroxymethylfurfural by two-step conversion with ferric sulfate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112919. [PMID: 34089958 DOI: 10.1016/j.jenvman.2021.112919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Microalgae are known as renewable, potential, and sustainable feedstocks for biofuel production. The present work investigated the efficient valorization of green microalgae Chlorella sp. to produce sugars and 5-hydroxymethylfurfural (5-HMF) using thermochemical conversion with a metal-salt (ferric sulfate) as catalyst using a statistical approach and two-step conversion. A statistical approach with a Box-Behnken design was introduced to optimize the conversion for producing sugars. As a result of optimization, 86.46% sugar yield (68.32% glucose yield) was achieved under the condition of 5% biomass and 0.6 g-catalyst/g-biomass at 155 °C and 40 min. Two-step thermochemical conversion was introduced to produce 5-HMF from microalgae. In the first step, sugars were produced from the above optimum condition; in the second step, sugar hydrolysates were converted into 5-HMF by thermochemical conversion without an additional catalyst. In two-step conversion, the maximum 5-HMF yield (37.23%) was achieved at 170 °C and 60 min from the sugar hydrolysate of microalgae obtained from the first-step thermochemical conversion with ferric sulfate. In conclusion, the microalgae as biomass and ferric sulfate as catalyst have availability and the potential to produce biosugars and platform chemicals.
Collapse
Affiliation(s)
- Gwi-Taek Jeong
- Department of Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
44
|
Microalgal culture in animal cell waste medium for sustainable 'cultured food' production. Arch Microbiol 2021; 203:5525-5532. [PMID: 34426852 DOI: 10.1007/s00203-021-02509-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
'Cultured food' has tremendous potential as a sustainable meat alternative. Increased cultured food production is increasing the amount of waste medium from cell culture. Nitrogen- and phosphorus-containing compounds in waste medium can cause eutrophication of water bodies. Currently, microalgae are used in energy production, environmental protection, agriculture and pharmaceutical and health food industries. Here, we used the microalgae, Chlorococcum littorale and Chlorella vulgaris and the waste medium of C2C12 cells for a case study. We found that 80% and 26% of ammonia and 16% and 15% of phosphorus in the waste medium were consumed by C. littorale and C. vulgaris, respectively. In addition, C. littorale and C. vulgaris proliferated 3.2 folds and 1.6 folds, respectively, after seven days in the waste medium that was enhanced by adjusting medium salt concentration. This report demonstrates the potential of sustainability for solving the issue of waste medium production during the production of cultured food.
Collapse
|
45
|
Deep eutectic solvents and ionic liquid assisted hydrolysis of microalgal biomass: A promising approach towards sustainable biofuel production. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Min KJ, Oh DY, Park KY. Pilot-scale cultivation of water-net in secondary effluent using an open pond raceway for nutrient removal and bioethanol production. CHEMOSPHERE 2021; 277:130129. [PMID: 33774229 DOI: 10.1016/j.chemosphere.2021.130129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Although microalgae are seen as a potential alternative source of energy and other materials currently sourced from petroleum, issues still remain with industrialization because of difficulties in developing commercially operational microalgal production systems. We set up a pilot-scale study that involved the simultaneous reuse of wastewater and production of algae under different light and harvesting conditions. We cultivated Hydrodictyon reticulatum (H. reticulatum), a type of water-net algae, using secondary effluent from a wastewater treatment plant in a raceway open pond combined with an underwater light device. Experimental results showed that the underwater light device maintained some level of underwater light throughout the year. Photoinhibition of algal growth only occurred when the sunlight exceeded 1270 μmol m-2 s-1. During the non-harvest process, the maximum algal concentration was 1700 mg L-1 at 20 days after the experiment began, the maximum specific growth rate was 0.18 d-1 and the maximum productivity was 21.3 g m-2 d-1. Conversely, periodic harvesting decreased the concentration of nutrients in the effluent more as the days of cultivation increased, but the productivity of algae also decreased to 11.7 g m-2 d-1. The maximum yield of bioethanol using three kinds of fermentation strains was 93.5% and, thus, the commercial value of H. reticulatum as a raw material for energy production was excellent.
Collapse
Affiliation(s)
- Kyung Jin Min
- Department of Civil and Environmental Engineering, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea.
| | - Doo Young Oh
- Department of Civil and Environmental Engineering, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea.
| | - Ki Young Park
- Department of Civil and Environmental Engineering, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Yukesh Kannah R, Kavitha S, Parthiba Karthikeyan O, Rene ER, Kumar G, Rajesh Banu J. A review on anaerobic digestion of energy and cost effective microalgae pretreatment for biogas production. BIORESOURCE TECHNOLOGY 2021; 332:125055. [PMID: 33813179 DOI: 10.1016/j.biortech.2021.125055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Microalgae is considered as a renewable and sustainable biomass to produce bioenergy and other high-value products. Besides, the cultivation of microalgae does not need any fertile land and it provides opportunities for climate change mitigation by sequestering atmospheric carbon-dioxide (CO2), facilitating nutrient recovery from wastewater and regulating industrial pollutions/emissions. Algal biomass harvested from different technologies are unique in their physio-chemical properties that require critical understanding prior to value-addition or bioenergy recovery. In this review, we elaborate the importance of cell wall weakening followed by pretreatment as a key process step and strategy to reduce the energy cost of converting algal biomass into bioenergy. From the energy-calculations, it was measured that the cell wall weakening significantly improves the net-energy ratio from 0.68 to 1.02. This approach could be integrated with any pre-treatment options, while it reduces the time of pre-treatment and costs of energy/chemicals required for hydrolysis of algal biomass.
Collapse
Affiliation(s)
- R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamil Nadu, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamil Nadu, India
| | | | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, The Netherlands
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India.
| |
Collapse
|
48
|
Catalyst derived from wastes for biofuel production: a critical review and patent landscape analysis. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01948-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Yirgu Z, Leta S, Hussen A, Khan MM, Aragaw T. Optimization of microwave-assisted carbohydrate extraction from indigenous Scenedesmus sp. grown in brewery effluent using response surface methodology. Heliyon 2021; 7:e07115. [PMID: 34136690 PMCID: PMC8178074 DOI: 10.1016/j.heliyon.2021.e07115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 11/07/2022] Open
Abstract
The use of wastewater as a nutrient source for microalgae cultivation is considered as a cost-effective approach for algal biomass and biofuel production. The microalgal biomass contains carbohydrates that can be processed into bioethanol through different extraction methods. The objective of this study is to optimize the microwave-assisted extraction (MAE) of carbohydrates from the indigenous Scenedesmus sp. grown on brewery effluent. Optimization of independent variables, such as acid concentration (0.1–5 N), microwave power (800–1200 W), temperature (80–180 °C) and extraction time (5–30 min) performed by response surface methodology. It was found that all independent variables had a significant and positive effect on microwave-assisted carbohydrate extraction. The quadratic model developed on the basis of carbohydrate yield had F value of 112.05 with P < 0.05, indicating that the model was significant to predict the carbohydrate yield. The model had a high value of R2 (0.9899) and adjusted R2 (0.9811), indicating that the fitted model displayed a good agreement between the predicted and actual carbohydrate yield. An optimum carbohydrate yield obtained was 260.54 mg g−1 under the optimum conditions of acid concentration (2.8 N), microwave power (1075 W), temperature (151 °C) and extraction time (22 min). The validation test showed that the model has adequately described the microwave-assisted extraction (MAE) of carbohydrates from microalgal biomass. This study demonstrated that the indigenous Scenedesmus sp. grown on brewery effluent provides a promising result in carbohydrate production for bioethanol feedstock.
Collapse
Affiliation(s)
- Zenebe Yirgu
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Environmental Science, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Seyoum Leta
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ahmed Hussen
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Temesgen Aragaw
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
50
|
Peron-Schlosser B, Stobienia M, Bispo LDO, Colla LM, Baraldi IJ, Colla E. Residual fractions from Arthrospira platensis protein extraction as feedstock for ethanol production. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1931145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Bianca Peron-Schlosser
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Medianeira, Brazil
| | - Mônica Stobienia
- Food Engineering Course, Federal Technological University of Paraná (UTFPR), Medianeira, Brazil
| | | | - Luciane Maria Colla
- Graduate Program in Food Science and Technology, University of Passo Fundo, Passo Fundo, Brazil
| | - Ilton José Baraldi
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Medianeira, Brazil
| | - Eliane Colla
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Medianeira, Brazil
| |
Collapse
|