1
|
Chen X, Mosier N, Ladisch M. Valorization of lignin from aqueous-based lignocellulosic biorefineries. Trends Biotechnol 2024:S0167-7799(24)00182-3. [PMID: 39127599 DOI: 10.1016/j.tibtech.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
An additional 100 million tons/year of lignin coproduct will result when lignocellulosic biomass is processed in biorefineries to fiber, sugars, biofuels, and bioproducts. This will double the amount of lignin already generated from pulping and paper production. Unlike pulping that results in lignosulphonate (88% of total) or Kraft lignin (9%), aqueous-based biorefining leaves behind non-sulfonated lignin and aromatic molecules. This new type of lignin provides opportunities for large volume agricultural uses such as controlled-release carriers and soil amendments as well as feedstocks for new chemistries that lead to molecular building blocks for the chemical industry and to precursors for sustainable aviation biofuels.
Collapse
Affiliation(s)
- Xueli Chen
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA; Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN, USA.
| | - Nathan Mosier
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA; Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN, USA.
| | - Michael Ladisch
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA; Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Carvalho LC, Oliveira ALS, Carsanba E, Lopes A, Leal T, Ribeiro M, Fernandes S, Pintado M, Oliveira C. Removal of phenolic compounds from sugarcane syrup and impact on Saccharomyces cerevisiae fermentation for β-farnesene production. Biotechnol J 2024; 19:e2300465. [PMID: 38403437 DOI: 10.1002/biot.202300465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 02/27/2024]
Abstract
This work aimed to study for the first time the effects of phenolic compounds from sugarcane syrup on Saccharomyces cerevisiae β-farnesene fermentation by removing them from this feedstock. Syrup purification was optimized through a central composite design using five types of activated charcoal: three contact times (1-24 h) and three adsorbent concentrations (10-150 g L-1 ). The optimal purification condition-charcoal pellets at 115 g L-1 and contact time of 12.5 h-led to 96.7% of phenolic compounds removal and 43.7% of syrup recovery. The effects of reducing phenolic content from approximately 7.0-0.3 mg L-1 in sugarcane syrup on yeast fermentation varied with the scale. An increase in biomolecule productivity was only observed in shake-flasks (11%) and in biomass productivity only in the 2 L bioreactor (12%). Thus, phenolic compounds from sugarcane syrup do not influence β-farnesene production at a large scale under the conditions tested.
Collapse
Affiliation(s)
- Luís Carlos Carvalho
- Amyris BioProducts Portugal, Unipessoal, Porto, Portugal
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana L S Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Erdem Carsanba
- Amyris BioProducts Portugal, Unipessoal, Porto, Portugal
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana Lopes
- Amyris BioProducts Portugal, Unipessoal, Porto, Portugal
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Tânia Leal
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Mónica Ribeiro
- Amyris BioProducts Portugal, Unipessoal, Porto, Portugal
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Sara Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Carla Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
3
|
Wu G, Alriksson B, Jönsson LJ. Conditioning of pretreated birch by liquid-liquid organic extractions to improve yeast fermentability and enzymatic digestibility. RSC Adv 2023; 13:20023-20030. [PMID: 37409043 PMCID: PMC10318483 DOI: 10.1039/d3ra02210b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
By-products from hydrothermal pretreatment of lignocellulosic biomass inhibit enzymatic saccharification and microbial fermentation. Three long-chain organic extractants (Alamine 336, Aliquat 336 and Cyanex 921) were compared to two conventional organic solvents (ethyl acetate and xylene) with regard to conditioning of birch wood pretreatment liquid (BWPL) for improved fermentation and saccharification. In the fermentation experiments, extraction with Cyanex 921 resulted in the best ethanol yield, 0.34 ± 0.02 g g-1 on initial fermentable sugars. Extraction with xylene also resulted in a relatively high yield, 0.29 ± 0.02 g g-1, while cultures consisting of untreated BWPL and BWPL treated with the other extractants exhibited no ethanol formation. Aliquat 336 was most efficient with regard to removing by-products, but the residual Aliquat after the extraction was toxic to yeast cells. Enzymatic digestibility increased by 19-33% after extraction with the long-chain organic extractants. The investigation demonstrates that conditioning with long-chain organic extractants has the potential to relieve inhibition of both enzymes and microbes.
Collapse
Affiliation(s)
- Guochao Wu
- Shandong Key Lab of Edible Mushroom Technology, School of Agriculture, Ludong University 264025 Yantai China
- Department of Chemistry, Umeå University SE-901 87 Umeå Sweden
| | - Björn Alriksson
- RISE Research Institutes of Sweden AB SE-891 22 Örnsköldsvik Sweden
| | - Leif J Jönsson
- Department of Chemistry, Umeå University SE-901 87 Umeå Sweden
| |
Collapse
|
4
|
Michelin M, Ximenes E, M Polizeli MDLT, Ladisch MR. Inhibition of enzyme hydrolysis of cellulose by phenols from hydrothermally pretreated sugarcane straw. Enzyme Microb Technol 2023; 166:110227. [PMID: 36931149 DOI: 10.1016/j.enzmictec.2023.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Relatively few studies have addressed the characterization of sugarcane straw (SCS) for production of fermentable sugars through enzyme hydrolysis. Straw is a major co-product of the sugarcane harvest in Brazil that has potential to sustainably increase cellulosic feedstocks in Brazil by 50%. Pretreatment of 10% w/v straw with liquid hot water (LHW) at 180 °C for 50 min (severity, So, of 4.05), solubilizes hemicellulose, preserves glucan, and generates 4.49 g/L soluble phenolic compounds in the resulting liquid. Extracts from washing pretreated solids with excess hot water followed by acetone resulted in 1.10 and 0.83 g/L phenolics, respectively. Acetone-derived extracts were more inhibitory and decreased glucose yield for enzyme hydrolysis of Solka Floc (a lignin-free cellulose) by 42%. In comparison, pretreated straw washed with hot water or acetone was readily hydrolyzed to 92% and 97% by cellulase enzyme. Hydrothermally treated SCS has the potential to provide a valuable and added source of fermentable sugars suitable for bioprocessing into biofuels and bioproducts when cellulase enzyme inhibitors are removed after pretreatment.
Collapse
Affiliation(s)
- Michele Michelin
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2032, USA; Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil; Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Eduardo Ximenes
- Department of Environment and Occupational Health, School of Public Health, Innovation Center, Indiana University, Bloomington, IN 47408, USA
| | - Maria de Lourdes T M Polizeli
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Michael R Ladisch
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2032, USA.
| |
Collapse
|
5
|
Ndubuisi IA, Amadi CO, Nwagu TN, Murata Y, Ogbonna JC. Non-conventional yeast strains: Unexploited resources for effective commercialization of second generation bioethanol. Biotechnol Adv 2023; 63:108100. [PMID: 36669745 DOI: 10.1016/j.biotechadv.2023.108100] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The conventional yeast (Saccharomyces cerevisiae) is the most studied yeast and has been used in many important industrial productions, especially in bioethanol production from first generation feedstock (sugar and starchy biomass). However, for reduced cost and to avoid competition with food, second generation bioethanol, which is produced from lignocellulosic feedstock, is now being investigated. Production of second generation bioethanol involves pre-treatment and hydrolysis of lignocellulosic biomass to sugar monomers containing, amongst others, d-glucose and D-xylose. Intrinsically, S. cerevisiae strains lack the ability to ferment pentose sugars and genetic engineering of S. cerevisiae to inculcate the ability to ferment pentose sugars is ongoing to develop recombinant strains with the required stability and robustness for commercial second generation bioethanol production. Furthermore, pre-treatment of these lignocellulosic wastes leads to the release of inhibitory compounds which adversely affect the growth and fermentation by S. cerevisae. S. cerevisiae also lacks the ability to grow at high temperatures which favour Simultaneous Saccharification and Fermentation of substrates to bioethanol. There is, therefore, a need for robust yeast species which can co-ferment hexose and pentose sugars and can tolerate high temperatures and the inhibitory substances produced during pre-treatment and hydrolysis of lignocellulosic materials. Non-conventional yeast strains are potential solutions to these problems due to their abilities to ferment both hexose and pentose sugars, and tolerate high temperature and stress conditions encountered during ethanol production from lignocellulosic hydrolysate. This review highlights the limitations of the conventional yeast species and the potentials of non-conventional yeast strains in commercialization of second generation bioethanol.
Collapse
Affiliation(s)
| | - Chioma O Amadi
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Tochukwu N Nwagu
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Y Murata
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - James C Ogbonna
- Department of Microbiology, University of Nigeria Nsukka, Nigeria.
| |
Collapse
|
6
|
Kim D, Ji A, Jackson AL, Brown B, Kim Y, Kim SM, Laufer C, Ferrier D, Yoo CG. Inhibition of cellulase activity by liquid hydrolysates from hydrothermally pretreated soybean straw. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1004240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The one-pot biomass conversion process is a promising strategy to minimize potential product loss and reduce processing costs. However, this strategy has technical limitations due to the inhibitory effects of biomass components like lignin as well as the generated inhibitors (e.g., furans, phenols) during biomass processing. In this study, the inhibitory effects of liquid hydrolysates formed by hydrothermal pretreatment of soybean straw with either sodium hydroxide (NaOH) or hydrogen peroxide (H2O2) on cellulolytic enzyme activity were investigated. Hydrothermal pretreatment of soybean straw (10% w/v) was carried out with either sodium hydroxide (1% v/v) or hydrogen peroxide (1% v/v) at 121°C for 60 min to evaluate the effect of water-soluble inhibitors released from soybean pretreatment on cellulolytic enzyme activity. The fraction of cellulose in pretreated solids (1% w/v glucan) was enzymatically hydrolyzed for 72 h with 45 IU/g glucan (corresponding to 25 mg enzyme protein/g glucan) in the presence of either buffer or liquid hydrolysate generated from the pretreatments. Hydrolysis of NaOH and H2O2 pretreated solids resulted in 57% and 39% of glucose yields in buffer, respectively. In the presence of the liquid hydrolysates, NaOH and H2O2 pretreated biomass showed 20% and 30% glucose yield, respectively, indicating the enzyme suppression by inhibitors in the liquid hydrolysates. Of the enzyme activities in hydrolysates tested, NaOH hydrolysate showed a higher inhibitory effect on enzyme activities (mainly β-glucosidase) compared to H2O2 liquid, where enzyme deactivation has a first-order correlation and the manner in which the vacuum-filtered inhibitors were generated from pretreated soybean straw.
Collapse
|
7
|
Ling R, Wei W, Jin Y. Pretreatment of sugarcane bagasse with acid catalyzed ethylene glycol-water to improve the cellulose enzymatic conversion. BIORESOURCE TECHNOLOGY 2022; 361:127723. [PMID: 35914671 DOI: 10.1016/j.biortech.2022.127723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
In this work, HCl catalyzed ethylene glycol-water pretreatment (HCl/EG-H2O) of sugarcane bagasse (SCB) was explored with response surface methodology (RSM) and single factor analysis, which aim to investigate the influence of pretreatment variable on pretreated solid cellulose enzymatic conversion. The result showed that HCl/EG-H2O pretreatment could selectively extract ∼89.9 % xylan and ∼61.2 % lignin in SCB, meanwhile maintain a relatively high cellulose retention (∼86.8 %). Pretreatment of SCB at 120 °C for 60 min with 1.00 % HCl and 90 % EG obtained the pretreated solid having maximum cellulose enzymatic conversion of 88.7 % under 10 FPU/g enzyme dosage, this enhancement of cellulose enzymatic conversion mainly attributed to structure change of SCB in pretreatment. The adding of enzymatic additives into the hydrolysis process could not only improve hydrolysis efficiency but also lower the enzyme dosage. Besides, the linear relationship between substrate characteristic parameters (such cellulose content, lignin removal rate etc.) and cellulose conversion were observed.
Collapse
Affiliation(s)
- Rongxin Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China
| | - Weiqi Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
8
|
Guo H, Zhao Y, Chang JS, Lee DJ. Inhibitor formation and detoxification during lignocellulose biorefinery: A review. BIORESOURCE TECHNOLOGY 2022; 361:127666. [PMID: 35878776 DOI: 10.1016/j.biortech.2022.127666] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
For lignocellulose biorefinery, pretreatment is needed to maximize the cellulose accessibility, frequently generating excess inhibitory substances to decline the efficiency of the subsequent fermentation processes. This mini-review updates the current research efforts to detoxify the adverse impacts of generated inhibitors on the performance of biomass biorefinery. The lignocellulose pretreatment processes are first reviewed. The generation of inhibitors, furans, furfural, phenols, formic acid, and acetic acid, from the lignocellulose, with their action mechanisms, are listed. Then the detoxification processes are reviewed, from which the biological detoxification processes are noted as promising and worth further study. The challenges and prospects for applying biological detoxification in lignocellulose biorefinery are outlined. Integrated studies considering the entire biorefinery should be performed on a case-by-case basis.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhao
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
9
|
Balasundaram G, Banu R, Varjani S, Kazmi AA, Tyagi VK. Recalcitrant compounds formation, their toxicity, and mitigation: Key issues in biomass pretreatment and anaerobic digestion. CHEMOSPHERE 2022; 291:132930. [PMID: 34800498 DOI: 10.1016/j.chemosphere.2021.132930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/04/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Increasing energy demands and environmental issues have stressed the importance of sustainable methods of energy production. Anaerobic digestion (AD) of the biodegradable waste, i.e., agricultural residues, organic fraction of municipal solid waste (OFMSW), sewage sludge, etc., results in the production of biogas, which is a sustainable and cost feasible technique that reduces the dependence on fossil fuels and also overcomes the problems associated with biomass waste management. To solubilize the organic matter and enhance the susceptibility of hardly biodegradable fraction (i.e., lignocellulosic) for hydrolysis and increase methane production, several pretreatments, including physical, chemical, biological, and hybrid methods have been studied. However, these pretreatment methods under specific operating conditions result in the formation of recalcitrant compounds, such as sugars (xylose, Xylo-oligomers), organic acids (acetic, formic, levulinic acids), and lignin derivatives (poly and mono-phenolic compounds), causing significant inhibitory effects on anaerobic digestion. During the scaling up of these techniques from laboratory to industrial level, the focus on managing inhibitory compounds formed during pretreatment is envisaged to increase because of the need to use recalcitrant feedstocks in anaerobic digestion to increase biogas productivity. Therefore, it is crucial to understand the production mechanism of inhibitory compounds during pretreatment and work out the possible detoxification methods to improve anaerobic digestion. This paper critically reviews the earlier works based on the formation of recalcitrant compounds during feedstocks pretreatment under variable conditions, and their detrimental effects on process performance. The technologies to mitigate recalcitrant toxicity are also comprehensively discussed.
Collapse
Affiliation(s)
- Gowtham Balasundaram
- Environmental BioTechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology, Roorkee, Roorkee, 247667, India
| | - Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - A A Kazmi
- Environmental BioTechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology, Roorkee, Roorkee, 247667, India
| | - Vinay Kumar Tyagi
- Environmental BioTechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology, Roorkee, Roorkee, 247667, India.
| |
Collapse
|
10
|
Banu Jamaldheen S, Kurade MB, Basak B, Yoo CG, Oh KK, Jeon BH, Kim TH. A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion. BIORESOURCE TECHNOLOGY 2022; 346:126591. [PMID: 34929325 DOI: 10.1016/j.biortech.2021.126591] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Effective pretreatment of lignocellulosic biomass (LCB) is one of the most important steps in biorefinery, ensuring the quality and commercial viability of the overall bioprocess. Lignin recalcitrance in LCB is a major bottleneck in biological conversion as the polymerization of lignin with hemicellulose hinders enzyme accessibility and further bioconversion to fuels and chemicals. Therefore, there is a need to delignify LCB to ease further bioprocessing. The efficiency of delignification, quality and quantity of the desired products, and generation of inhibitors depend upon the type of pretreatment employed. This review summarizes different single and integrated physicochemical pretreatments for delignification. Additionally, conditions required for effective delignification and the advantages and drawbacks of each method were evaluated. Advances in overcoming the recalcitrance of residual lignin to saccharification and the methods to recover lignin after delignification are also discussed. Efficient lignin recovery and valorization strategies provide an avenue for the sustainable lignocellulose biorefinery.
Collapse
Affiliation(s)
- Sumitha Banu Jamaldheen
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Bikram Basak
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Kyeong Keun Oh
- Department of Chemical Engineering, Dankook University, Youngin 16890, Gyeonggi-do, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Tae Hyun Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
11
|
Chen F, Martín C, Lestander TA, Grimm A, Xiong S. Shiitake cultivation as biological preprocessing of lignocellulosic feedstocks - Substrate changes in crystallinity, syringyl/guaiacyl lignin and degradation-derived by-products. BIORESOURCE TECHNOLOGY 2022; 344:126256. [PMID: 34737055 DOI: 10.1016/j.biortech.2021.126256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Formulation of substrates based on three hardwood species combined with modulation of nitrogen content by whey addition (0-2%) was investigated in an experiment designed in D-optimal model for their effects on biological preproceesing of lignocellulosic feedstock by shiitake mushroom (Lentinula edodes) cultivation. Nitrogen loading was shown a more significant role than wood species for both mushroom production and lignocellulose degradation. The fastest mycelial colonisation occurred with no nitrogen supplementation, but the highest mushroom yields were achieved when 1% whey was added. Low nitrogen content resulted in increased delignification and minimal glucan consumption. Delignification was correlated with degradation of syringyl lignin unit, as indicated by a significant reduction (41.5%) of the syringyl-to-guaiacyl ratio after cultivation. No significant changes in substrate crystallinity were observed. The formation of furan aldehydes and aliphatic acids was negligible during the pasteurisation and fungal cultivation, while the content of soluble phenolics increased up to seven-fold.
Collapse
Affiliation(s)
- Feng Chen
- Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology, SE-901 83 Umeå, Sweden.
| | - Carlos Martín
- Umeå University, Department of Chemistry, SE-901 87 Umeå, Sweden; Inland Norway University of Applied Sciences, Department of Biotechnology, N-2317 Hamar, Norway
| | - Torbjörn A Lestander
- Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology, SE-901 83 Umeå, Sweden
| | - Alejandro Grimm
- Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology, SE-901 83 Umeå, Sweden
| | - Shaojun Xiong
- Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology, SE-901 83 Umeå, Sweden
| |
Collapse
|
12
|
Jaffur N, Jeetah P, Kumar G. A review on enzymes and pathways for manufacturing polyhydroxybutyrate from lignocellulosic materials. 3 Biotech 2021; 11:483. [PMID: 34790507 DOI: 10.1007/s13205-021-03009-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
Currently, major focus in the biopolymer field is being drawn on the exploitation of plant-based resources grounded on holistic sustainability trends to produce novel, affordable, biocompatible and environmentally safe polyhydroxyalkanoate biopolymers. The global PHA market, estimated at USD 62 Million in 2020, is predicted to grow by 11.2 and 14.2% between 2020-2024 and 2020-2025 correspondingly based on market research reports. The market is primarily driven by the growing demand for PHA products by the food packaging, biomedical, pharmaceutical, biofuel and agricultural sectors. One of the key limitations in the growth of the PHA market is the significantly higher production costs associated with pure carbon raw materials as compared to traditional polymers. Nonetheless, considerations such as consumer awareness on the toxicity of petroleum-based plastics and strict government regulations towards the prohibition of the use and trade of synthetic plastics are expected to boost the market growth rate. This study throws light on the production of polyhydroxybutyrate from lignocellulosic biomass using environmentally benign techniques via enzyme and microbial activities to assess its feasibility as a green substitute to conventional plastics. The novelty of the present study is to highlight the recent advances, pretreatment techniques to reduce the recalcitrance of lignocellulosic biomass such as dilute and concentrated acidic pretreatment, alkaline pretreatment, steam explosion, ammonia fibre explosion (AFEX), ball milling, biological pretreatment as well as novel emerging pretreatment techniques notably, high-pressure homogenizer, electron beam, high hydrostatic pressure, co-solvent enhanced lignocellulosic fractionation (CELF) pulsed-electric field, low temperature steep delignification (LTSD), microwave and ultrasound technologies. Additionally, inhibitory compounds and detoxification routes, fermentation downstream processes, life cycle and environmental impacts of recovered natural biopolymers, review green procurement policies in various countries, PHA strategies in line with the United Nations Sustainable Development Goals (SDGs) along with the fate of the spent polyhydroxybutyrate are outlined.
Collapse
Affiliation(s)
- Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Pratima Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
13
|
Yuan Y, Jiang B, Chen H, Wu W, Wu S, Jin Y, Xiao H. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:205. [PMID: 34670604 PMCID: PMC8527784 DOI: 10.1186/s13068-021-02054-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/10/2021] [Indexed: 05/19/2023]
Abstract
Enzymatic hydrolysis of lignocellulose for bioethanol production shows a great potential to remit the rapid consumption of fossil fuels, given the fact that lignocellulose feedstocks are abundant, cost-efficient, and renewable. Lignin results in low enzymatic saccharification by forming the steric hindrance, non-productive adsorption of cellulase onto lignin, and deactivating the cellulase. In general, the non-productive binding of cellulase on lignin is widely known as the major cause for inhibiting the enzymatic hydrolysis. Pretreatment is an effective way to remove lignin and improve the enzymatic digestibility of lignocellulose. Along with removing lignin, the pretreatment can modify the lignin structure, which significantly affects the non-productive adsorption of cellulase onto lignin. To relieve the inhibitory effect of lignin on enzymatic hydrolysis, enormous efforts have been made to elucidate the correlation of lignin structure with lignin-enzyme interactions but with different views. In addition, contrary to the traditional belief that lignin inhibits enzymatic hydrolysis, in recent years, the addition of water-soluble lignin such as lignosulfonate or low molecular-weight lignin exerts a positive effect on enzymatic hydrolysis, which gives a new insight into the lignin-enzyme interactions. For throwing light on their structure-interaction relationship during enzymatic hydrolysis, the effect of residual lignin in substrate and introduced lignin in hydrolysate on enzymatic hydrolysis are critically reviewed, aiming at realizing the targeted regulation of lignin structure for improving the saccharification of lignocellulose. The review is also focused on exploring the lignin-enzyme interactions to mitigate the negative impact of lignin and reducing the cost of enzymatic hydrolysis of lignocellulose.
Collapse
Affiliation(s)
- Yufeng Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Hui Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
- Laboratory of Wood Chemistry, Nanjing Forestry University, 159 Longpan Rd, Nanjing, 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 11 5A3, Canada
| |
Collapse
|
14
|
Kim D, Yoo CG, Schwarz J, Dhekney S, Kozak R, Laufer C, Ferrier D, Mackay S, Ashcraft M, Williams R, Kim S. Effect of lignin-blocking agent on enzyme hydrolysis of acid pretreated hemp waste. RSC Adv 2021; 11:22025-22033. [PMID: 35480814 PMCID: PMC9034124 DOI: 10.1039/d1ra03412j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/06/2021] [Indexed: 01/07/2023] Open
Abstract
Hemp wastes (stems and branches), fractionated after hemp flower extraction for the production of cannabidiol oil, were utilized as a potentially renewable resource for the sugar flatform process. Hydrolysis of cellulose from the acid pretreated hemp biomass using a commercial enzyme was tested and evaluated for its chemical composition, morphological change, and sugar recovery. Acid pretreated hemp stems and branches, containing 1% glucan (w/v) solids, were hydrolyzed for 72 h using 25 mg enzyme protein per g glucan. A 54% glucose conversion was achieved from the treated branches versus a 71% yield from the treated stems. Raw branches and stems yielded 35% and 38% glucose, respectively. Further tests with a lignin-blocking additive (e.g. bovine serum albumin) resulted in a 72% glucose yield increase for stem hydrolysis using 10 mg enzyme protein per g glucan. While pretreatment promotes amorphous hemicellulose decrease and cellulose decomposition, it causes enzyme inhibition/deactivation due to potential inhibitors (phenols and lignin-derived compounds). This study confirms the addition of non-catalytic proteins enhances the cellulose conversion by avoiding non-productive binding of enzymes to the lignin and lignin-derived molecules, with lignin content determining the degree of inhibition and conversion efficiency.
Collapse
Affiliation(s)
- Daehwan Kim
- Department of Biology, Hood College Frederick MD 21701 USA
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry Syracuse NY 13210 USA
| | - Jurgen Schwarz
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore Princess Anne MD 21853 USA
| | - Sadanand Dhekney
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore Princess Anne MD 21853 USA
| | - Robert Kozak
- Atlantic Biomass Conversions, LLC Frederick MD 21701 USA
| | - Craig Laufer
- Department of Biology, Hood College Frederick MD 21701 USA
| | - Drew Ferrier
- Department of Biology, Hood College Frederick MD 21701 USA
| | - Skylar Mackay
- Department of Biology, Hood College Frederick MD 21701 USA
| | | | | | - Sinyeon Kim
- MtheraPharma Co., Ltd. Seoul 07793 Republic of Korea
| |
Collapse
|
15
|
Almeida RMRG, Pimentel WRO, Santos-Rocha MSR, Buffo MM, Farinas CS, Ximenes EA, Ladisch MR. Protective effects of non-catalytic proteins on endoglucanase activity at air and lignin interfaces. Biotechnol Prog 2021; 37:e3134. [PMID: 33591633 DOI: 10.1002/btpr.3134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/09/2022]
Abstract
The manner in which added non-catalytic proteins during enzymatic hydrolysis of lignocellulosic substrates enhances hydrolysis mechanisms is not completely understood. Prior research has indicated that a reduction in the non-specific adsorption of enzymes on lignin, and deactivation of enzymes exposed to air-liquid interface provide rationale. This work investigated root causes including effects of the air-liquid interface on non-catalytic proteins, and effects of lignin on endoglucanase. Three different experimental designs and three variables (air-liquid interfacial area, the types of lignin (acid or enzymatic lignin), and the presence of non-enzymatic protein (bovine serum albumin [BSA] or soy proteins ) were used. The results showed that acid isolated lignin adsorbed almost all endoglucanase activity initially present in supernatant, independent of air interface conditions (25 or 250 ml flasks) with the presence of BSA preventing this effect. Endoglucanase lost 30%-50% of its activity due to an air-liquid interface in the presence of lignin while addition of non-enzymatic protein helped to preserve this enzyme's activity. Langmuir and Freundlich models applied to experimental data indicated that the adsorption increases with increasing temperature for both endoglucanase and BSA. Adsorption of the enzyme and protein were endothermic with an increase in entropy. These results, combined, show that hydrophobicity plays a strong role in the adsorption of both endoglucanase and BSA on lignin.
Collapse
Affiliation(s)
| | | | | | - Mariane M Buffo
- Graduate Program of Chemical Engineering Federal University of Sao Carlos, Sao Carlos, Sao Paulo, Brazil
| | - Cristiane Sanchez Farinas
- Graduate Program of Chemical Engineering Federal University of Sao Carlos, Sao Carlos, Sao Paulo, Brazil.,Embrapa Instrumentação, São Carlos, São Paulo, Brazil
| | - Eduardo A Ximenes
- Laboratory of Renewable Resources Engineering-Department of Agricultural Biological Engineering Purdue University, West Lafayette, Indiana, USA
| | - Michael R Ladisch
- Laboratory of Renewable Resources Engineering-Department of Agricultural Biological Engineering Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
16
|
Lignocellulosic Biomass as a Substrate for Oleaginous Microorganisms: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217698] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microorganisms capable of accumulating lipids in high percentages, known as oleaginous microorganisms, have been widely studied as an alternative for producing oleochemicals and biofuels. Microbial lipid, so-called Single Cell Oil (SCO), production depends on several growth parameters, including the nature of the carbon substrate, which must be efficiently taken up and converted into storage lipid. On the other hand, substrates considered for large scale applications must be abundant and of low acquisition cost. Among others, lignocellulosic biomass is a promising renewable substrate containing high percentages of assimilable sugars (hexoses and pentoses). However, it is also highly recalcitrant, and therefore it requires specific pretreatments in order to release its assimilable components. The main drawback of lignocellulose pretreatment is the generation of several by-products that can inhibit the microbial metabolism. In this review, we discuss the main aspects related to the cultivation of oleaginous microorganisms using lignocellulosic biomass as substrate, hoping to contribute to the development of a sustainable process for SCO production in the near future.
Collapse
|
17
|
Santos ACF, Ximenes E, Thompson D, Ray AE, Szeto R, Erk K, Dien BS, Ladisch MR. Effect of using a nitrogen atmosphere on enzyme hydrolysis at high corn stover loadings in an agitated reactor. Biotechnol Prog 2020; 36:e3059. [PMID: 32748574 DOI: 10.1002/btpr.3059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Antonio Carlos Freitas Santos
- Laboratory of Renewable Resources Engineering Purdue University West Lafayette Indiana USA
- Department of Agricultural and Biological Engineering Purdue University West Lafayette Indiana USA
| | - Eduardo Ximenes
- Laboratory of Renewable Resources Engineering Purdue University West Lafayette Indiana USA
- Department of Agricultural and Biological Engineering Purdue University West Lafayette Indiana USA
| | - David Thompson
- Energy and Environment Science & Technology Directorate Idaho National Laboratory Idaho Falls Idaho USA
| | - Allison E. Ray
- Energy and Environment Science & Technology Directorate Idaho National Laboratory Idaho Falls Idaho USA
| | - Ryan Szeto
- School of Materials Engineering Purdue University West Lafayette Indiana USA
| | - Kendra Erk
- School of Materials Engineering Purdue University West Lafayette Indiana USA
| | - Bruce S. Dien
- National Center for Agricultural Utilization Research ARS, USDA Peoria Illinois USA
| | - Michael R. Ladisch
- Laboratory of Renewable Resources Engineering Purdue University West Lafayette Indiana USA
- Department of Agricultural and Biological Engineering Purdue University West Lafayette Indiana USA
| |
Collapse
|
18
|
Bordignon SE, da Silva Delabona P, Lima D, Perrone O, da Silva Souza MG, Santos AS, da Cruz Pradella JG, Boscolo M, Gomes E, da Silva R. Induction of fungal cellulolytic enzymes using sugarcane bagasse and xylose-rich liquor as substrates. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1007/s43153-020-00055-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Steam Explosion Pretreatment of Beechwood. Part 2: Quantification of Cellulase Inhibitors and Their Effect on Avicel Hydrolysis. ENERGIES 2020. [DOI: 10.3390/en13143638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biomass pretreatment is a mandatory step for the biochemical conversion of lignocellulose to chemicals. During pretreatment, soluble compounds are released into the prehydrolyzate that inhibit the enzymatic hydrolysis step. In this work, we investigated how the reaction conditions in steam explosion pretreatment of beechwood (severity: 3.0–5.25; temperature: 160–230 °C) influence the resulting amounts of different inhibitors. Furthermore, we quantified the extent of enzyme inhibition during enzymatic hydrolysis of Avicel in the presence of the prehydrolyzates. The amounts of phenolics, HMF, acetic acid and formic acid increased with increasing pretreatment severities and maximal quantities of 21.6, 8.3, 43.7 and 10.9 mg/gbeechwood, respectively, were measured at the highest severity. In contrast, the furfural concentration peaked at a temperature of 200 °C and a severity of 4.75. The presence of the prehydrolyzates in enzymatic hydrolysis of Avicel lowered the glucose yields by 5–26%. Mainly, the amount of phenolics and xylose and xylooligomers contributed to the reduced yield. As the maximal amounts of these two inhibitors can be found at different conditions, a wide range of pretreatment severities led to severely inhibiting prehydrolyzates. This study may provide guidelines when choosing optimal pretreatment conditions for whole slurry enzymatic hydrolysis.
Collapse
|
20
|
Effective diffusion coefficients and bioconversion rates of inhibitory compounds in flocs of Saccharomyces cerevisiae. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Improvement of Anaerobic Digestion of Lignocellulosic Biomass by Hydrothermal Pretreatment. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183853] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lignocellulosic biomass, comprising of cellulose, hemicellulose, and lignin, is a difficult-to-degrade substrate when subjected to anaerobic digestion. Hydrothermal pretreatment of lignocellulosic biomass could enhance the process performance by increasing the generation of methane, hydrogen, and bioethanol. The recalcitrants (furfurals, and 5-HMF) could be formed at high temperatures during hydrothermal pretreatment of lignocellulosic biomass, which may hinder the process performance. However, the detoxification process involving the use of genetically engineered microbes may be a promising option to reduce the toxic effects of inhibitors. The key challenge lies in the scaleup of the hydrothermal process, mainly due to necessity of upholding high temperature in sizeable reactors, which may demand high capital and operational costs. Thus, more efforts should be towards the techno-economic feasibility of hydrothermal pre-treatment at full scale.
Collapse
|
22
|
Zhou X, Xu Y. Integrative process for sugarcane bagasse biorefinery to co-produce xylooligosaccharides and gluconic acid. BIORESOURCE TECHNOLOGY 2019; 282:81-87. [PMID: 30852335 DOI: 10.1016/j.biortech.2019.02.129] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 05/25/2023]
Abstract
An integrated and green process for co-producing xylooligosaccharides (XOS) and gluconic acid (GA), was developed by utilizing sugarcane bagasse as starting material. In this study, the highest XOS yield of 39.1% obtained from the prehydrolysis was achieved with 10% acetic acid at 150 °C for 45 min. Subsequently, 88.6% conversion of cellulose was achieved in a fed-batch enzymatic hydrolysis using a solid loading of 15%. Results of glucose fermentation suggested that inherent regulatory system of strain Gluconobacter oxydans ATCC 621H boosted GA accumulation without the requirement of pH control, leading to a good 96.3% of GA yield. Great performance of this strain offer an economically feasible option for the large-scale sustainable GA production from biomass. Overall, approximately 105 g XOS and 340 g GA were co-produced from 1 kg of dried sugarcane bagasse as feedstock; this integrated process might be a cost-effective option for the comprehensive utilization of sugarcane bagasse.
Collapse
Affiliation(s)
- Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
23
|
Kumar V, Patel SKS, Gupta RK, Otari SV, Gao H, Lee J, Zhang L. Enhanced Saccharification and Fermentation of Rice Straw by Reducing the Concentration of Phenolic Compounds Using an Immobilized Enzyme Cocktail. Biotechnol J 2019; 14:e1800468. [DOI: 10.1002/biot.201800468] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/28/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Virendra Kumar
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research InstituteFujian Agriculture and Forestry University Fuzhou Fujian Province 350002 P. R. China
- Department of Chemical EngineeringKonkuk UniversitySeoul 05029 South Korea
| | - Sanjay K. S. Patel
- Department of Chemical EngineeringKonkuk UniversitySeoul 05029 South Korea
| | - Rahul K. Gupta
- Department of Chemical EngineeringKonkuk UniversitySeoul 05029 South Korea
| | - Sachin V. Otari
- Department of Chemical EngineeringKonkuk UniversitySeoul 05029 South Korea
| | - Hui Gao
- Department of Chemical EngineeringKonkuk UniversitySeoul 05029 South Korea
| | - Jung‐Kul Lee
- Department of Chemical EngineeringKonkuk UniversitySeoul 05029 South Korea
| | - Liaoyuan Zhang
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research InstituteFujian Agriculture and Forestry University Fuzhou Fujian Province 350002 P. R. China
| |
Collapse
|
24
|
Brar KK, Agrawal D, Chadha BS, Lee H. Evaluating novel fungal secretomes for efficient saccharification and fermentation of composite sugars derived from hydrolysate and molasses into ethanol. BIORESOURCE TECHNOLOGY 2019; 273:114-121. [PMID: 30423494 DOI: 10.1016/j.biortech.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
This paper evaluates the ability of secretome from two thermotolerant fungal strains (Aspergillus terreus 9DR and Achaetomium strumarium 10DR) for boosting the hydrolytic efficiency of benchmark cellulolytic preparation (Cellic CTec2). Further we report enhanced saccharification of different agro-residues under semi-aerobic when compared to aerobic conditions. The mass spectroscopic analysis of the hydrolysates indicates the role of auxiliary oxidative enzymes present in A. terreus and A. strumarium secretomes for enhancing the capability of the cellulolytic cocktails. The paper further demonstrate positive effect of using the cocktails for enhanced saccharification and subsequent fermentation to ethanol of acid pre-treated rice straw, corn residues and sugarcane bagasse at higher substrate loading rates (20% w/v). The paper also reports co-utilization of composite sugars derived from molasses and enzymatic hydrolysate obtained from agnostic lignocellulosics for efficient bioconversion to ethanol applicable for developing BOLT-ON technology.
Collapse
Affiliation(s)
- K K Brar
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| | - D Agrawal
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| | - B S Chadha
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India.
| | - Hung Lee
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
25
|
Kinetic Parameters of Saccharomyces cerevisiae Alcohols Production Using Nepenthes mirabilis Pod Digestive Fluids-Mixed Agro-Waste Hydrolysates. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, microbial growth kinetics and modeling of alcohols production using Saccharomyces cerevisiae were evaluated using different hydrolysates in a single pot (batch) system. Mixed agro-waste hydrolysates from different pre-treatment methods, i.e., N. mirabilis/CP and HWP/DAP/CP, were used as the sole nutrient source in the fermentations used to produce the alcohols of interest. The maximum Saccharomyces cerevisiae concentration of 1.47 CFU/mL (×1010) was observed with HWP/DAP/CP hydrolysates, with a relative difference of 21.1% when compared to the N. mirabilis/CP cultures; the product yield based on biomass generation was relatively (20.2%) higher for the N. mirabilis/CP cultures. For the total residual phenolic compounds (TRPCs) generation, a relative difference (24.6%) between N. mirabilis/CP and HWP/DAP/CP pre-treatment systems was observed, suggesting that N. mirabilis/CP generates lower inhibition by-products. This was further evidenced by the lowest substrate utilization rate (3.3 × 10−4 g/(L·h)) for the N. mirabilis/CP cultures while achieving relatively similar product formation rates to those observed for the HWP/DAP/CP. A better correlation (R2 = 0.94) was obtained when predicting substrate utilization for the N. mirabilis/CP cultures. Generally, the pre-treatment of mixed agro-waste using N. mirabilis/CP seemed appropriate for producing hydrolysates which Saccharomyces cerevisiae can effectively use for alcohol production in the biorefinery industry.
Collapse
|
26
|
Dos Santos AC, Ximenes E, Kim Y, Ladisch MR. Lignin-Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass. Trends Biotechnol 2018; 37:518-531. [PMID: 30477739 DOI: 10.1016/j.tibtech.2018.10.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022]
Abstract
Lignin is central to overcoming recalcitrance in the enzyme hydrolysis of lignocellulose. While the term implies a physical barrier in the cell wall structure, there are also important biochemical components that direct interactions between lignin and the hydrolytic enzymes that attack cellulose in plant cell walls. Progress toward a deeper understanding of the lignin synthesis pathway - and the consistency between a range of observations over the past 40 years in the very extensive literature on cellulose hydrolysis - is resulting in advances in reducing a major impediment to cellulose conversion: the cost of enzymes. This review addresses lignin and its role in the hydrolysis of hardwood and other lignocellulosic residues.
Collapse
Affiliation(s)
- Antonio Carlos Dos Santos
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Eduardo Ximenes
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Youngmi Kim
- Department of Agricultural Engineering Technology, University of Wisconsin, River Falls, WI 54022, USA
| | - Michael R Ladisch
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; www.purdue.edu/LORRE.
| |
Collapse
|
27
|
Wang Z, Jönsson LJ. Comparison of catalytically non-productive adsorption of fungal proteins to lignins and pseudo-lignin using isobaric mass tagging. BIORESOURCE TECHNOLOGY 2018; 268:393-401. [PMID: 30099290 DOI: 10.1016/j.biortech.2018.07.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Catalytically non-productive adsorption of fungal enzymes to pseudo-lignin (PL) was compared to adsorption to lignin preparations derived from different sources (SL, spruce; BL, birch; OL, beech) using different methods [steam pretreatment/enzymatic saccharification (SL, BL) and organosolv processing (OL)]. The protein adsorption to the SL was more extensive than the adsorption to the hardwood lignins, which was relatively similar to the adsorption to the PL. The adsorption patterns of 13 individual proteins were studied using isobaric mass tagging with TMTsixplex reagent and LC-MS/MS analysis. The results suggest that, on an average, adsorption of proteins equipped with carbohydrate-binding modules, such as the cellulases CBHI, EGII, and EGIV, was less dependent on the quality of the lignin/PL than adsorption of other proteins, such as β-Xyl, Xyn-1, and Xyn-2, which are involved in xylan degradation.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Chemistry, KBC Chemical-Biological Centre, Umeå University, SE-901 87 Umeå, Sweden
| | - Leif J Jönsson
- Department of Chemistry, KBC Chemical-Biological Centre, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
28
|
Inhibitors Compounds on Sugarcane Bagasse Saccharification: Effects of Pretreatment Methods and Alternatives to Decrease Inhibition. Appl Biochem Biotechnol 2018; 188:29-42. [DOI: 10.1007/s12010-018-2900-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 11/25/2022]
|
29
|
Optimization and Scale-Up of Coffee Mucilage Fermentation for Ethanol Production. ENERGIES 2018. [DOI: 10.3390/en11040786] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Zanchetta A, Dos Santos ACF, Ximenes E, da Costa Carreira Nunes C, Boscolo M, Gomes E, Ladisch MR. Temperature dependent cellulase adsorption on lignin from sugarcane bagasse. BIORESOURCE TECHNOLOGY 2018; 252:143-149. [PMID: 29316500 DOI: 10.1016/j.biortech.2017.12.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 05/08/2023]
Abstract
Extents of adsorption of cellulolytic enzymes on lignin, derived from sugarcane bagasse, were an inverse function of incubation temperature and varied with type of lignin extraction. At 45 °C, lignin derived from acid hydrolyzed liquid hot water pretreated bagasse completely adsorbed cellulolytic enzymes from Trichoderma reesei within 90 min. Lignin derived from enzyme hydrolyzed liquid hot water pretreated bagasse adsorbed only 60% of T. reesei endoglucanase, exoglucanase and β-glucosidase activities. β-Glucosidase from Aspergillus niger was not adsorbed. At 30 °C, adsorption of all of the enzymes was minimal and enzyme hydrolysis at 30 °C approached that at 45 °C after 168 h. Hence, temperature provided an approach to decrease loss of enzyme activity by reducing enzyme adsorption on lignin. This helps to explain why simultaneous saccharification and fermentation (SSF) and consolidated bioprocessing (CBP), both carried out at 30-32 °C, could offer viable options for mitigating lignin-derived inhibition effects.
Collapse
Affiliation(s)
- Ariane Zanchetta
- Sao Paulo State University-Unesp, IBILCE, São José do Rio Preto, São Paulo, Brazil; Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN, USA
| | - Antonio Carlos Freitas Dos Santos
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Eduardo Ximenes
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Maurício Boscolo
- Sao Paulo State University-Unesp, IBILCE, São José do Rio Preto, São Paulo, Brazil
| | - Eleni Gomes
- Sao Paulo State University-Unesp, IBILCE, São José do Rio Preto, São Paulo, Brazil
| | - Michael R Ladisch
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
31
|
Maehara L, Pereira SC, Silva AJ, Farinas CS. One-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production using the whole solid-state fermentation medium of mixed filamentous fungi. Biotechnol Prog 2018; 34:671-680. [PMID: 29388389 DOI: 10.1002/btpr.2619] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/29/2018] [Indexed: 11/05/2022]
Abstract
The efficient use of renewable lignocellulosic feedstocks to obtain biofuels and other bioproducts is a key requirement for a sustainable biobased economy. This requires novel and effective strategies to reduce the cost contribution of the cellulolytic enzymatic cocktails needed to convert the carbohydrates into simple sugars, in order to make large-scale commercial processes economically competitive. Here, we propose the use of the whole solid-state fermentation (SSF) medium of mixed filamentous fungi as an integrated one-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production. Ten different individual and mixed cultivations of commonly used industrial filamentous fungi (Aspergillus niger, Aspergillus oryzae, Trichoderma harzianum, and Trichoderma reesei) were performed under SSF and the whole media (without the extraction step) were used in the hydrolysis of pretreated sugarcane bagasse. The cocultivation of T. reesei with A. oryzae increased the amount of glucose released by around 50%, compared with individual cultivations. The release of glucose and reducing sugars achieved using the whole SSF medium was around 3-fold higher than obtained with the enzyme extract. The addition of soybean protein (0.5% w/w) during the hydrolysis reaction further significantly improved the saccharification performance by blocking the lignin and avoiding unproductive adsorption of enzymes. The results of the alcoholic fermentation validated the overall integrated process, with a volumetric ethanol productivity of 4.77 g/L.h, representing 83.5% of the theoretical yield. These findings demonstrate the feasibility of the proposed one-pot integrated strategy using the whole SSF medium of mixed filamentous fungi for on-site enzymes production, biomass hydrolysis, and ethanol production. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:671-680, 2018.
Collapse
Affiliation(s)
- Larissa Maehara
- Embrapa Instrumentation, Rua XV de Novembro 1452, São Carlos, SP, 13561-260, Brazil.,Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Sandra C Pereira
- Embrapa Instrumentation, Rua XV de Novembro 1452, São Carlos, SP, 13561-260, Brazil
| | - Adilson J Silva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.,Dept. of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Cristiane S Farinas
- Embrapa Instrumentation, Rua XV de Novembro 1452, São Carlos, SP, 13561-260, Brazil.,Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
32
|
Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review. Molecules 2018; 23:molecules23020309. [PMID: 29389875 PMCID: PMC6017906 DOI: 10.3390/molecules23020309] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/18/2018] [Accepted: 01/30/2018] [Indexed: 11/20/2022] Open
Abstract
A pretreatment of lignocellulosic biomass to produce biofuels, polymers, and other chemicals plays a vital role in the biochemical conversion process toward disrupting the closely associated structures of the cellulose-hemicellulose-lignin molecules. Various pretreatment steps alter the chemical/physical structure of lignocellulosic materials by solubilizing hemicellulose and/or lignin, decreasing the particle sizes of substrate and the crystalline portions of cellulose, and increasing the surface area of biomass. These modifications enhance the hydrolysis of cellulose by increasing accessibilities of acids or enzymes onto the surface of cellulose. However, lignocellulose-derived byproducts, which can inhibit and/or deactivate enzyme and microbial biocatalysts, are formed, including furan derivatives, lignin-derived phenolics, and carboxylic acids. These generation of compounds during pretreatment with inhibitory effects can lead to negative effects on subsequent steps in sugar flat-form processes. A number of physico-chemical pretreatment methods such as steam explosion, ammonia fiber explosion (AFEX), and liquid hot water (LHW) have been suggested and developed for minimizing formation of inhibitory compounds and alleviating their effects on ethanol production processes. This work reviews the physico-chemical pretreatment methods used for various biomass sources, formation of lignocellulose-derived inhibitors, and their contributions to enzymatic hydrolysis and microbial activities. Furthermore, we provide an overview of the current strategies to alleviate inhibitory compounds present in the hydrolysates or slurries.
Collapse
|
33
|
Ladeira Ázar RI, Morgan T, dos Santos ACF, de Aquino Ximenes E, Ladisch MR, Guimarães VM. Deactivation and activation of lignocellulose degrading enzymes in the presence of laccase. Enzyme Microb Technol 2018; 109:25-30. [DOI: 10.1016/j.enzmictec.2017.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/31/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
34
|
Lee SC. Removal and recovery of acetic acid and two furans during sugar purification of simulated phenols-free biomass hydrolysates. BIORESOURCE TECHNOLOGY 2017; 245:116-122. [PMID: 28892680 DOI: 10.1016/j.biortech.2017.08.206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 05/12/2023]
Abstract
A cost-effective five-step sugar purification process involving simultaneous removal and recovery of fermentation inhibitors from biomass hydrolysates was first proposed here. Only the three separation steps (PB, PC and PD) in the process were investigated here. Furfural was selectively removed up to 98.4% from a simulated five-component hydrolysate in a cross-current three-stage extraction system with n-hexane. Most of acetic acid in a simulated four-component hydrolysate was selectively removed by emulsion liquid membrane, and it could be concentrated in the stripping solution up to 4.5 times its initial concentration in the feed solution. 5-Hydroxymethylfurfural was selectively removed from a simulated three-component hydrolysate in batch and continuous fixed-bed column adsorption systems with L-493 adsorbent. Also, 5-hydroxymethylfurfural could be concentrated to about 9 times its feed concentration in the continuous adsorption system through a fixed-bed column desorption experiment with aqueous ethanol solution. These results have shown that the proposed purification process was valid.
Collapse
Affiliation(s)
- Sang Cheol Lee
- Department of Chemical Engineering, Kunsan National University, 558 Daehak-ro, Gunsan, Jeollabuk-do 54150, Republic of Korea.
| |
Collapse
|
35
|
Kim D, Orrego D, Ximenes EA, Ladisch MR. Cellulose conversion of corn pericarp without pretreatment. BIORESOURCE TECHNOLOGY 2017; 245:511-517. [PMID: 28898851 DOI: 10.1016/j.biortech.2017.08.156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 05/25/2023]
Abstract
We report enzyme hydrolysis of cellulose in unpretreated pericarp at a cellulase loading of 0.25FPU/g pericarp solids using a phenol tolerant Aspergillus niger pectinase preparation. The overall protein added was 5mg/g and gave 98% cellulose conversion in 72h. However, for double the amount of enzyme from Trichoderma reesei, which is significantly less tolerant to phenols, conversion was only 16%. The key to achieving high conversion without pretreatment is combining phenol inhibition-resistant enzymes (such as from A. niger) with unground pericarp from which release of phenols is minimal. Size reduction of the pericarp, which is typically carried out in a corn-to-ethanol process, where corn is first ground to a fine powder, causes release of highly inhibitory phenols that interfere with cellulase enzyme activity. This work demonstrates hydrolysis without pretreatment of large particulate pericarp is a viable pathway for directly producing cellulose ethanol in corn ethanol plants.
Collapse
Affiliation(s)
- Daehwan Kim
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907-2022, United States; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2093, United States
| | - David Orrego
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907-2022, United States; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2093, United States
| | - Eduardo A Ximenes
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907-2022, United States; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2093, United States
| | - Michael R Ladisch
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907-2022, United States; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2093, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-2032, United States.
| |
Collapse
|
36
|
Li X, Zheng Y. Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Biotechnol Adv 2017; 35:466-489. [DOI: 10.1016/j.biotechadv.2017.03.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/19/2017] [Accepted: 03/23/2017] [Indexed: 01/23/2023]
|
37
|
Zhang H, Xu Y, Yu S. Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. BIORESOURCE TECHNOLOGY 2017; 234:343-349. [PMID: 28340439 DOI: 10.1016/j.biortech.2017.02.094] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 05/11/2023]
Abstract
A novel and green approach for the coproduction of xylooligosaccharides (XOS), in terms of a series of oligosaccharide components from xylobiose to xylohexose, and fermentable sugars was developed using the prehydrolysis of acetic acid that was fully recyclable and environmentally friendly, followed by enzymatic hydrolysis. Compared to hydrochloric acid and sulfuric acid, acetic acid hydrolysis provided the highest XOS yield of 45.91% and the highest enzymatic hydrolysis yield. More than 91% conversion of cellulose was achieved in a batch-hydrolysis using only a cellulase loading of 20FPU/g cellulose and even a high solid loading of 20% without any special strategies. The acetic acid pretreated corncob should be washed adequately before saccharification to achieve complete hydrolysis. Consequently, a mass balance analysis showed that 139.8g XOS, 328.1g glucose, 25.1g cellobiose, and 147.8g xylose were produced from 1000g oven dried raw corncob.
Collapse
Affiliation(s)
- Hongyu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| | - Shiyuan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| |
Collapse
|
38
|
Biotechnological route for sustainable succinate production utilizing oil palm frond and kenaf as potential carbon sources. Appl Microbiol Biotechnol 2017; 101:3055-3075. [PMID: 28280869 DOI: 10.1007/s00253-017-8210-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
Due to the world's dwindling energy supplies, greater thrust has been placed on the utilization of renewable resources for global succinate production. Exploration of such biotechnological route could be seen as an act of counterbalance to the continued fossil fuel dominance. Malaysia being a tropical country stands out among many other nations for its plenty of resources in the form of lignocellulosic biomass. To date, oil palm frond (OPF) contributes to the largest fraction of agricultural residues in Malaysia, while kenaf, a newly introduced fiber crop with relatively high growth rate, holds great potential for developing sustainable succinate production, apart from OPF. Utilization of non-food, inexhaustible, and low-cost derived biomass in the form of OPF and kenaf for bio-based succinate production remains largely untapped. Owing to the richness of carbohydrates in OPF and kenaf, bio-succinate commercialization using these sources appears as an attractive proposition for future sustainable developments. The aim of this paper was to review some research efforts in developing a biorefinery system based on OPF and kenaf as processing inputs. It presents the importance of the current progress in bio-succinate commercialization, in addition to describing the potential use of different succinate production hosts and various pretreatments-saccharifications under development for OPF and kenaf. Evaluations on the feasibility of OPF and kenaf as fermentation substrates are also discussed.
Collapse
|
39
|
Chen K, Hao S, Lyu H, Luo G, Zhang S, Chen J. Ion exchange separation for recovery of monosaccharides, organic acids and phenolic compounds from hydrolysates of lignocellulosic biomass. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Study of Chemical and Enzymatic Hydrolysis of Cellulosic Material to Obtain Fermentable Sugars. J CHEM-NY 2017. [DOI: 10.1155/2017/5680105] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to evaluate the chemical and enzymatic hydrolysis using a factorial experimental design (23) in order to obtain fermentable sugars from cellulose-based material (CBM) usually used as pet litter. In assessing chemical hydrolysis, we studied the effect of temperature, in addition to H2SO4 concentration and reaction time, on the production of total sugars, reducing sugars, soluble lignin, carbohydrate profile, furfural (F), and hydroxymethyl furfural (HMF). We performed a response surface analysis and found that, at 100°C, 1% acid concentration, and 60 min reaction time, the yields of 0.0033 g reducing sugar/g biomass and 0.0852 g total sugars/g biomass were obtained. Under the above conditions, F is not generated, while HMF is generated in such a concentration that does not inhibit fermentation. We pretreated the CBM with H2SO4, NaOH, CaO, or ozonolysis, in order to evaluate the effectiveness of the enzymatic hydrolysis from the pretreated biomass, using an enzymatic cocktail. Results showed that CBM with acid was susceptible to enzymatic attack, obtaining a concentration of 0.1570 g reducing sugars/g biomass and 0.3798 g total sugars/g biomass. We concluded that acid pretreatment was the best to obtain fermentable sugars from CBM.
Collapse
|
41
|
Cunha FM, Badino AC, Farinas CS. Effect of a novel method for in-house cellulase production on 2G ethanol yields. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
42
|
Pal S, Joy S, Trimukhe KD, Kumbhar PS, Varma AJ, Padmanabhan S. Pretreatment and enzymatic process modification strategies to improve efficiency of sugar production from sugarcane bagasse. 3 Biotech 2016; 6:126. [PMID: 28330198 PMCID: PMC4909031 DOI: 10.1007/s13205-016-0446-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/26/2016] [Indexed: 11/25/2022] Open
Abstract
Pretreatment and enzymatic hydrolysis play a critical role in the economic production of sugars and fuels from lignocellulosic biomass. In this study, we evaluated diverse pilot-scale pretreatments and different post-pretreatment strategies for the production of fermentable sugars from sugarcane bagasse. For the pretreatment of bagasse at pilot-scale level, steam explosion without catalyst and combination of sulfuric and oxalic acids at low and high loadings were used. Subsequently, to enhance the efficiency of enzymatic hydrolysis of the pretreated bagasse, three different post-pretreatment process schemes were investigated. In the first scheme (Scheme 1), enzymatic hydrolysis was conducted on the whole pretreated slurry, without treatments such as washing or solid–liquid separation. In the second scheme (Scheme 2), the pretreated slurry was first pressure filtered to yield a solid and liquid phase. Following filtration, the separated liquid phase was remixed with the solid wet cake to generate slurry, which was then subsequently used for enzymatic hydrolysis. In the third scheme (Scheme 3), the pretreated slurry was washed with more water and filtered to obtain a solid and liquid phase, in which only the former was subjected to enzymatic hydrolysis. A 10 % higher enzymatic conversion was obtained in Scheme 2 than Scheme 1, while Scheme 3 resulted in only a 5–7 % increase due to additional washing unit operation and solid–liquid separation. Dynamic light scattering experiments conducted on post-pretreated bagasse indicate decrease of particle size due to solid–liquid separation involving pressure filtration provided increased the yield of C6 sugars. It is anticipated that different process modification methods used in this study before the enzymatic hydrolysis step can make the overall cellulosic ethanol process effective and possibly cost effective.
Collapse
Affiliation(s)
- Siddhartha Pal
- Praj Matrix R&D Center, Urawade, Pune, Maharashtra India
- Department of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra India
| | - Shereena Joy
- Praj Matrix R&D Center, Urawade, Pune, Maharashtra India
| | - Kalpana D. Trimukhe
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, Maharashtra India
| | - Pramod S. Kumbhar
- Praj Matrix R&D Center, Urawade, Pune, Maharashtra India
- Department of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra India
| | - Anjani J. Varma
- Department of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra India
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, Maharashtra India
- Central University of Haryana, Post-Pali District, Mahendergarh, Haryana 123029 India
| | | |
Collapse
|
43
|
Zhao H, Li J, Wang J, Xu X, Xian M, Liu H, Zhang H. Calcium Supplementation Abates the Inhibition Effects of Acetic Acid on Saccharomyces cerevisiae. Appl Biochem Biotechnol 2016; 181:1573-1589. [PMID: 27878508 DOI: 10.1007/s12010-016-2303-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/23/2016] [Indexed: 11/25/2022]
Abstract
The toxic level of acetic acid could be released during the pretreatment of lignocellulosic biomass, and an economical method was reported to minimize the acidic stress on the fermentation of Saccharomyces cerevisiae by cation supplementation. A dose-dependent protection of Ca2+ was monitored, and the optimal concentration of Ca2+ was 8 mM under 4.5 g/L acetic acid stress. The activities of catalase and superoxide dismutase of yeast cells supplemented with optimal Ca2+ increased by 18.6 and 27.3 %, respectively, coupling with an obvious decrease of reactive oxygen species content. Cell viability also performed a significant increase from 52.4 % (without Ca2+ addition) to 73.56 % (with 8 mM Ca2+ addition). No significant improvements were found in the bioethanol yields by Ca2+ supplementation; however, the fermentation time was shortened by about 8 h obviously. Our results illustrated that the Ca2+ supplementation could be an economical method to make the bioethanol production more efficient and cost-effective.
Collapse
Affiliation(s)
- Hongwei Zhao
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, SP, People's Republic of China
| | - Jingyuan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, SP, People's Republic of China
| | - Jiming Wang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, SP, People's Republic of China
| | - Xin Xu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, SP, People's Republic of China
| | - Mo Xian
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, SP, People's Republic of China
| | - Huizhou Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, SP, People's Republic of China
| | - Haibo Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, SP, People's Republic of China.
| |
Collapse
|
44
|
Zheng Y, Wang Y, Zhang J, Pan J. Using tobacco waste extract in pre-culture medium to improve xylose utilization for l-lactic acid production from cellulosic waste by Rhizopus oryzae. BIORESOURCE TECHNOLOGY 2016; 218:344-50. [PMID: 27376833 DOI: 10.1016/j.biortech.2016.06.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
The aim of this work was to study the high-titer l-lactic acid production from cellulosic waste using Rhizopus oryzae. The tobacco waste water-extract (TWE) added with 5g/L glucose and 0.1g/L vitamin C was optimized as pre-culture medium for R. oryzae. Results found that compared to traditional pre-culture medium, it improved xylose consumption rate up to 2.12-fold and enhanced l-lactic acid yield up to 1.73-fold. The highest l-lactic acid concentration achieved was 173.5g/L, corresponding to volumetric productivity of 1.45g/Lh and yield of 0.860g/g total reducing sugar in fed-batch fermentation. This process achieves efficient production of polymer-grade l-lactic acid from cellulosic feedstocks, lowers the cost of fungal cell pre-culture and provides a novel way for re-utilization of tobacco waste.
Collapse
Affiliation(s)
- Yuxi Zheng
- Bioengineering College, Chongqing University, Chongqing 400044, China; Research Center for Tobacco Bioengineering and Technology, Chongqing Science and Technology Commission, Yubei District, Chongqing 401147, China
| | - Yuanliang Wang
- Bioengineering College, Chongqing University, Chongqing 400044, China; Research Center for Tobacco Bioengineering and Technology, Chongqing Science and Technology Commission, Yubei District, Chongqing 401147, China
| | - Jianrong Zhang
- Research Center for Tobacco Bioengineering and Technology, Chongqing Science and Technology Commission, Yubei District, Chongqing 401147, China
| | - Jun Pan
- Bioengineering College, Chongqing University, Chongqing 400044, China; Research Center for Tobacco Bioengineering and Technology, Chongqing Science and Technology Commission, Yubei District, Chongqing 401147, China.
| |
Collapse
|
45
|
Cai C, Qiu X, Lin X, Lou H, Pang Y, Yang D, Chen S, Cai K. Improving enzymatic hydrolysis of lignocellulosic substrates with pre-hydrolysates by adding cetyltrimethylammonium bromide to neutralize lignosulfonate. BIORESOURCE TECHNOLOGY 2016; 216:968-75. [PMID: 27343448 DOI: 10.1016/j.biortech.2016.06.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 05/24/2023]
Abstract
Two pretreatment methods to overcome recalcitrance of lignocelluloses, sulfite pretreatment (SPORL) and dilute acid (DA), were conducted to pretreat softwood masson pine and hardwood eucalyptus for enzymatic hydrolysis. In the presence of corresponding pre-hydrolysates, adding moderate cetyltrimethylammonium bromide (CTAB) could enhance the enzymatic hydrolysis of the SPORL-pretreated substrates, but had no enhancement for the DA-pretreated substrates. The results showed that sodium lignosulfonate (SL) in pre-hydrolysates and CTAB together had a strong enhancement on the enzymatic hydrolysis of lignocelluloses. The compound of commercial lignosulfonate SXSL and CTAB (SXSL-CTAB) could enhance the substrate enzymatic digestibility (SED) of SPORL-pretreated masson pine from 27.1% to 71.0%, and that of DA-pretreated eucalyptus from 37.6% to 67.9%. The mechanism that CTAB increased the adsorption of SL on lignin to form more effective steric hindrance and reduced the non-productive adsorption of cellulase on lignin by neutralizing the negative charge of SL was proposed.
Collapse
Affiliation(s)
- Cheng Cai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Xueqing Qiu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Xuliang Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China.
| | - Yuxia Pang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Siwei Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Kaifan Cai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
46
|
Aghazadeh M, Ladisch MR, Engelberth AS. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact onSaccharomyces cerevisiaebioethanol fermentation. Biotechnol Prog 2016; 32:929-37. [PMID: 27090191 DOI: 10.1002/btpr.2282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/08/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Mahdieh Aghazadeh
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette IN 47907
- Dept. of Agricultural and Biological Engineering; Purdue University; West Lafayette IN 47907
| | - Michael R. Ladisch
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette IN 47907
- Dept. of Agricultural and Biological Engineering; Purdue University; West Lafayette IN 47907
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN 47907
| | - Abigail S. Engelberth
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette IN 47907
- Dept. of Agricultural and Biological Engineering; Purdue University; West Lafayette IN 47907
- Div. of Environmental and Ecological Engineering; Purdue University; West Lafayette IN 47907
| |
Collapse
|
47
|
Florencio C, Cunha FM, Badino AC, Farinas CS, Ximenes E, Ladisch MR. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis. Enzyme Microb Technol 2016; 90:53-60. [PMID: 27241292 DOI: 10.1016/j.enzmictec.2016.04.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
Abstract
Cellulases and hemicellulases from Trichoderma reesei and Aspergillus niger have been shown to be powerful enzymes for biomass conversion to sugars, but the production costs are still relatively high for commercial application. The choice of an effective microbial cultivation process employed for enzyme production is important, since it may affect titers and the profile of protein secretion. We used proteomic analysis to characterize the secretome of T. reesei and A. niger cultivated in submerged and sequential fermentation processes. The information gained was key to understand differences in hydrolysis of steam exploded sugarcane bagasse for enzyme cocktails obtained from two different cultivation processes. The sequential process for cultivating A. niger gave xylanase and β-glucosidase activities 3- and 8-fold higher, respectively, than corresponding activities from the submerged process. A greater protein diversity of critical cellulolytic and hemicellulolytic enzymes were also observed through secretome analyses. These results helped to explain the 3-fold higher yield for hydrolysis of non-washed pretreated bagasse when combined T. reesei and A. niger enzyme extracts from sequential fermentation were used in place of enzymes obtained from submerged fermentation. An enzyme loading of 0.7 FPU cellulase activity/g glucan was surprisingly effective when compared to the 5-15 times more enzyme loadings commonly reported for other cellulose hydrolysis studies. Analyses showed that more than 80% consisted of proteins other than cellulases whose role is important to the hydrolysis of a lignocellulose substrate. Our work combined proteomic analyses and enzymology studies to show that sequential and submerged cultivation methods differently influence both titers and secretion profile of key enzymes required for the hydrolysis of sugarcane bagasse. The higher diversity of feruloyl esterases, xylanases and other auxiliary hemicellulolytic enzymes observed in the enzyme mixtures from the sequential fermentation could be one major reason for the more efficient enzyme hydrolysis that results when using the combined secretomes from A. niger and T. reesei.
Collapse
Affiliation(s)
- Camila Florencio
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, IN 47907, West Lafayette, IN, USA; Graduate Program of Biotechnology, Federal University of Sao Carlos, 13565-905, Sao Carlos, SP, Brazil; Embrapa Instrumentation, 1452 XV de Novembro Street, 13560-970, Sao Carlos, SP, Brazil
| | - Fernanda M Cunha
- Embrapa Instrumentation, 1452 XV de Novembro Street, 13560-970, Sao Carlos, SP, Brazil; Graduate Program of Chemical Engineering, Federal University of Sao Carlos, 13565-905, Sao Carlos, SP, Brazil
| | - Alberto C Badino
- Graduate Program of Biotechnology, Federal University of Sao Carlos, 13565-905, Sao Carlos, SP, Brazil; Graduate Program of Chemical Engineering, Federal University of Sao Carlos, 13565-905, Sao Carlos, SP, Brazil
| | - Cristiane S Farinas
- Graduate Program of Biotechnology, Federal University of Sao Carlos, 13565-905, Sao Carlos, SP, Brazil; Embrapa Instrumentation, 1452 XV de Novembro Street, 13560-970, Sao Carlos, SP, Brazil; Graduate Program of Chemical Engineering, Federal University of Sao Carlos, 13565-905, Sao Carlos, SP, Brazil
| | - Eduardo Ximenes
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, IN 47907, West Lafayette, IN, USA
| | - Michael R Ladisch
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, IN 47907, West Lafayette, IN, USA.
| |
Collapse
|
48
|
Liu ZH, Chen HZ. Periodic peristalsis releasing constrained water in high solids enzymatic hydrolysis of steam exploded corn stover. BIORESOURCE TECHNOLOGY 2016; 205:142-152. [PMID: 26826953 DOI: 10.1016/j.biortech.2016.01.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 06/05/2023]
Abstract
Periodic peristalsis was used to release water constraint and increase high solids enzymatic hydrolysis efficiency. Glucan and xylan conversion in periodic peristalsis enzymatic hydrolysis (PPEH) at 21% solid loading increased by 5.2-6.4% and 6.8-8.8% compared with that in incubator shaker enzymatic hydrolysis (ISEH), respectively. Hydrolysis kinetics suggested that sugars conversion significantly increased within 24h in PPEH compared with ISEH. The peak height of main water pool increased by 7.7-43.1% within 24h in PPEH compared with ISEH. The increases in peak height of main water pool were consistent with the increases in glucan conversion. Submicroscopic particulates and macro granule residues contributed greatly to water constraint compared with glucose, xylose, ethanol, and Tween 80. Smaller particle size and longer residence time resulted in lower water constraint and facilitated the enzymatic hydrolysis performance. Periodic peristalsis was an effective method to reduce water constraint and increase high solids enzymatic hydrolysis efficiency.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Graduate University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Zhang Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
49
|
Zhang L, Li X, Yong Q, Yang ST, Ouyang J, Yu S. Impacts of lignocellulose-derived inhibitors on L-lactic acid fermentation by Rhizopus oryzae. BIORESOURCE TECHNOLOGY 2016; 203:173-80. [PMID: 26724548 DOI: 10.1016/j.biortech.2015.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/28/2015] [Accepted: 12/08/2015] [Indexed: 05/23/2023]
Abstract
Inhibitors generated in the pretreatment and hydrolysis of corn stover and corn cob were identified. In general, they inhibited cell growth, lactate dehydrogenase, and lactic acid production but with less or no adverse effect on alcohol dehydrogenase and ethanol production in batch fermentation by Rhizopus oryzae. Furfural and 5-hydroxymethyl furfural (HMF) were highly toxic at 0.5-1 g L(-1), while formic and acetic acids at less than 4 g L(-1) and levulinic acid at 10 g L(-1) were not toxic. Among the phenolic compounds at 1 g L(-1), trans-cinnamic acid and syringaldehyde had the highest toxicity while syringic, ferulic and p-coumaric acids were not toxic. Although these inhibitors were present at concentrations much lower than their separately identified toxic levels, lactic acid fermentation with the hydrolysates showed much inferior performance compared to the control without inhibitor, suggesting synergistic or compounded effects of the lignocellulose-degraded compounds on inhibiting lactic acid fermentation.
Collapse
Affiliation(s)
- Li Zhang
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China; William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Xin Li
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| | - Qiang Yong
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| | - Jia Ouyang
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| | - Shiyuan Yu
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, PR China
| |
Collapse
|
50
|
Zakaria MR, Hirata S, Fujimoto S, Ibrahim I, Hassan MA. Soluble inhibitors generated during hydrothermal pretreatment of oil palm mesocarp fiber suppressed the catalytic activity of Acremonium cellulase. BIORESOURCE TECHNOLOGY 2016; 200:541-547. [PMID: 26524253 DOI: 10.1016/j.biortech.2015.10.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
Oil palm mesocarp fiber was subjected to hydrothermal pretreatment under isothermal and non-isothermal conditions. The pretreated slurries were separated by filtration, pretreated liquids and solids were characterized. An enzymatic digestibility study was performed for both pretreated slurries and solids to understand the effect of soluble inhibitors generated during the pretreatment process. The highest glucose yield obtained from pretreated slurries was 70.1%, and gradually decreased with higher pretreatment severities. The highest glucose yield obtained in pretreated solids was 100%, after pretreatment at 210°C for 20min. In order to study the inhibitory effects of compounds generated during pretreatment with cellulase, technical grade solutions that mimic the pretreated liquid were prepared and their effect on Acremonium cellulase activity was monitored using Avicel. Xylo-oligomers and tannic acid were identified as powerful inhibitors of Acremonium cellulase, and the lowest hydrolysis rate of Avicel of 0.18g/g-glucose released/L/h was obtained from tannic acid.
Collapse
Affiliation(s)
- Mohd Rafein Zakaria
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Satoshi Hirata
- Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Shinji Fujimoto
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Izzudin Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|