1
|
Vezaro FD, Hollas SR, Colombo FA, Schulz A, Draszewski CP, de Castilhos F, Abaide ER, Mayer FD. Valorization of corn stover in a single experimental unit: The synergistic effects of steam explosion and semi-continuous subcritical water processing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 959:178268. [PMID: 39729845 DOI: 10.1016/j.scitotenv.2024.178268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Lignocellulosic waste, like corn stover (CS), is widely produced and serves as a key feedstock for biofuels and biochemicals. Semi-continuous subcritical water hydrolysis (SWH) is an eco-friendly method that breaks down cellulose and hemicellulose bonds. To boost fermentable sugar (FS) yields, steam explosion (SE) pretreatment was tested on CS, achieving a cellulose content of 74.06 % at 200 °C for 10 min. Hydrolysis of untreated (UCS) and pretreated (PCS) CS was conducted at temperatures of 230 °C and 260 °C, with solvent/biomass ratios (R-20, R-40). Maximum FS yields were 11.67 g/100 g for UCS and 19.28 g/100 g for PCS. Although SE increased FS yields, it also led to more inhibitors due to the higher sugar production. Overall, integrating SE with SWH improved FS yields.
Collapse
Affiliation(s)
- Francisco D Vezaro
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Suelly R Hollas
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Fernanda A Colombo
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Alex Schulz
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Crisleine P Draszewski
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Fernanda de Castilhos
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Ederson R Abaide
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Flávio D Mayer
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
2
|
Wang X, Zhao H, Wang Y, Wang Y, Cui Z, Guo L, Bu J, Guo Y, Liu Y, Lin N, Cao S, Liu N. Novel class of aldehyde reductases identified from Scheffersomyces stipitis for detoxification processes in cellulosic ethanol production industry. Int J Biol Macromol 2024; 282:136882. [PMID: 39454916 DOI: 10.1016/j.ijbiomac.2024.136882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The increase in industrialization has led to a significant energy crisis, sparking interest in lignocellulosic biomass for fuel ethanol production because of its renewable characteristics. The complex composition of this biomass requires pretreatment to reduce inhibitors like furfural and hydroxymethylfurfural (HMF), which hinder enzymatic hydrolysis and fermentation, ultimately decreasing ethanol yields. This study investigates the detoxification mechanisms of furan aldehydes in Scheffersomyces stipitis, particularly through the upregulation of genes SsOYE2.2, SsOYE2.7, and SsOYE3.1 under furfural and HMF stress. Enzyme characterization determined that SsOye3.3p is the most active enzyme for reducing both compounds using NADPH. Notably, SsOye2.6p showed the highest catalytic efficiency towards furfural, while SsOye2.8p was optimal for HMF. The study also established the optimal temperature and pH for these enzymatic reactions. Importantly, SsOye2.5p displayed broad substrate specificity, indicating its potential in detoxifying various aldehydes in microbial cells. The findings suggest that genes linked to enhanced enzymatic properties were not significantly induced, indicating that S. stipitis has more substantial potential for furan aldehyde detoxification and can be developed as a chassis organism exhibiting furan aldehyde tolerance. These insights facilitate the development of novel enzymes to counter furan aldehyde inhibitors and the creation of furan aldehyde-tolerant strains via genetic engineering.
Collapse
Affiliation(s)
- Xu Wang
- College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Huanhuan Zhao
- College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Yue Wang
- College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Yajie Wang
- College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Zheyuan Cui
- Liao Yuan Vocational Technical College, 136200 Liaoyuan, China
| | - Longfei Guo
- College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Jilei Bu
- College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Yazhen Guo
- College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Yanpei Liu
- College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Nan Lin
- College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China
| | - Shenquan Cao
- College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China.
| | - Na Liu
- College of Life Sciences, Henan Agricultural University, 450046 Zhengzhou, China.
| |
Collapse
|
3
|
Saravanan P, Rajeswari S, Divyabaskaran, López-Maldonado EA, Rajeshkannan R, Viswanathan S. Recent developments on sustainable biobutanol production: a novel integrative review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46858-46876. [PMID: 38981967 DOI: 10.1007/s11356-024-34230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
Renewable and sustainable biofuel production, such as biobutanol, is becoming increasingly popular as a substitute for non-renewable and depleted petrol fuel. Many researchers have studied how to produce butanol cheaply by considering appropriate feedstock materials and bioprocess technologies. The production of biobutanol through acetone-butanol-ethanol (ABE) is highly sought after around the world because of its sustainable supply and lack of competition with food. The purpose of this study is to present the current biobutanol production research and to analyse the biobutanol research conducted during 2006 to 2023. The keyword used in this study is "Biobutanol," and the relevant data was extracted from the Web of Science database (WoS). According to the results, institutions and scholars from the People's Republic of China, the USA, and India have the highest number of cited papers across a broad spectrum of topics including acetone-butanol-ethanol (ABE) fermentation, biobutanol, various pretreatment techniques, and pervaporation. The success of biobutanol fermentation from biomass depends on the ability of the fermentation operation to match the microbial behaviour along with the appropriate bioprocessing strategies to improve the entire process to be suitable for industrial scale. Based on the review data, we will look at the biobutanol technologies and appropriate strategies that have been developed to improve biobutanol production from renewable biomass.
Collapse
Affiliation(s)
- Panchamoorthy Saravanan
- Department of Petrochemical Technology, Anna University, UCE-BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Shanmugam Rajeswari
- Department in the Library, Anna University, Tamil Nadu, UCE-BIT Campus, Tiruchirappalli, 620024, India
| | - Divyabaskaran
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, 59626, South Korea
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, 22424, Tijuana, Baja California, Mexico.
| | - Rajan Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Chidambaram, 608001, Tamil Nadu, India
| | - Saravanan Viswanathan
- Department of Chemical Engineering, Annamalai University, Chidambaram, 608001, Tamil Nadu, India
| |
Collapse
|
4
|
Recent Advances in the Bioconversion of Waste Straw Biomass with Steam Explosion Technique: A Comprehensive Review. Processes (Basel) 2022. [DOI: 10.3390/pr10101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Waste straw biomass is an abundant renewable bioresource raw material on Earth. Its stubborn wooden cellulose structure limits straw lignocellulose bioconversion into value-added products (e.g., biofuel, chemicals, and agricultural products). Compared to physicochemical and other preprocessing techniques, the steam explosion method, as a kind of hydrothermal method, was considered as a practical, eco-friendly, and cost-effective method to overcome the above-mentioned barriers during straw lignocellulose bioconversion. Steam explosion pretreatment of straw lignocellulose can effectively improve the conversion efficiency of producing biofuels and value-added chemicals and is expected to replace fossil fuels and partially replace traditional chemical fertilizers. Although the principles of steam explosion destruction of lignocellulosic structures for bioconversion to liquid fuels and producing solid biofuel were well known, applications of steam explosion in productions of value-added chemicals, organic fertilizers, biogas, etc. were less identified. Therefore, this review provides insights into advanced methods of utilizing steam explosion for straw biomass conversion as well as their corresponding processes and mechanisms. Finally, the current limitations and prospects of straw biomass conversion with steam explosion technology were elucidated.
Collapse
|
5
|
de Medeiros Dantas JM, Beigbeder JB, Lavoie JM. Evaluation of physicochemical preservation techniques for the storage of sugar beet molasses followed by bioethanol production. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Wendt LM, Zhao H. Review on Bioenergy Storage Systems for Preserving and Improving Feedstock Value. Front Bioeng Biotechnol 2020; 8:370. [PMID: 32411689 PMCID: PMC7198811 DOI: 10.3389/fbioe.2020.00370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/02/2020] [Indexed: 11/26/2022] Open
Abstract
Long-term storage is a necessary unit operation in the biomass feedstock logistics supply chain, enabling biorefineries to run year-round despite daily, monthly, and seasonal variations in feedstock availability. At a minimum, effective storage approaches must preserve biomass. Uncontrolled loss of biomass due to microbial degradation is common when storage conditions are not optimized. This can lead to physical and mechanical challenges with biomass handling, size reduction, preprocessing, and ultimately conversion. This review summarizes the unit operations of dry and wet storage and how they may contribute to preserving or even improving feedstock value for biorefineries.
Collapse
Affiliation(s)
- Lynn M Wendt
- Environmental Science Program, University of Idaho, Idaho Falls, ID, United States.,Department of Biological and Chemical Science and Engineering, Idaho National Laboratory, Idaho Falls, ID, United States.,Department of Chemical and Materials Engineering, University of Idaho, Idaho Falls, ID, United States
| | - Haiyan Zhao
- Department of Chemical and Materials Engineering, University of Idaho, Idaho Falls, ID, United States
| |
Collapse
|
7
|
Lacerda MPF, Marcelino MY, Lourencetti NMS, Neto ÁB, Gattas EA, Mendes-Giannini MJS, Fusco-Almeida AM. Methodologies and Applications of Proteomics for Study of Yeast Strains: An Update. Curr Protein Pept Sci 2019; 20:893-906. [PMID: 31322071 DOI: 10.2174/1389203720666190715145131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022]
Abstract
Yeasts are one of the mostly used microorganisms as models in several studies. A wide range of applications in different processes can be attributed to their intrinsic characteristics. They are eukaryotes and therefore valuable expression hosts that require elaborate post-translational modifications. Their arsenal of proteins has become a valuable biochemical tool for the catalysis of several reactions of great value to the food (beverages), pharmaceutical and energy industries. Currently, the main challenge in systemic yeast biology is the understanding of the expression, function and regulation of the protein pool encoded by such microorganisms. In this review, we will provide an overview of the proteomic methodologies used in the analysis of yeasts. This research focuses on the advantages and improvements in their most recent applications with an understanding of the functionality of the proteins of these microorganisms, as well as an update of the advances of methodologies employed in mass spectrometry.
Collapse
Affiliation(s)
- Maria Priscila F Lacerda
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Mônica Yonashiro Marcelino
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Natália M S Lourencetti
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Álvaro Baptista Neto
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Engineering of Bioprocesses and Biotechnology, Araraquara, Brazil
| | - Edwil A Gattas
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Engineering of Bioprocesses and Biotechnology, Araraquara, Brazil
| | | | - Ana Marisa Fusco-Almeida
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| |
Collapse
|
8
|
Hu M, Yu H, Li Y, Li A, Cai Q, Liu P, Tu Y, Wang Y, Hu R, Hao B, Peng L, Xia T. Distinct polymer extraction and cellulose DP reduction for complete cellulose hydrolysis under mild chemical pretreatments in sugarcane. Carbohydr Polym 2018; 202:434-443. [PMID: 30287020 DOI: 10.1016/j.carbpol.2018.08.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/27/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
In this study, liquid hot water (LHW) and chemical (H2SO4, NaOH, CaO) pretreatments were performed in Saccharum species including sugarcane bagasse. In comparison, the LHW and CaO pretreatments significantly enhanced biomass enzymatic hydrolysis, leading to much high bioethanol yield obtained at 19% (% dry matter) with an almost complete hexoses-ethanol conversion in the desirable So5 bagasse sample. Despite the LHW and CaO are distinctive for extracting hemicellulose and lignin, both pretreatments largely reduced cellulose degree of polymerization for enhanced lignocellulose enzymatic saccharification. Further chemical analysis indicated that the pretreated So5 sample had much lower cellulose crystalline index, hemicellulosic Xyl/Ara and lignin S/H ratio than those of other biomass samples, which explained that the So5 had the highest bioethanol yield among Saccharum species. Therefore, a mechanism model was proposed to elucidate how mild pretreatments could enhance biomass enzymatic saccharification for a high bioethanol production in the desirable sugarcane bagasse.
Collapse
Affiliation(s)
- Meng Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hua Yu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou 510316, China.
| | - Ao Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qiuming Cai
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Peng Liu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuanyuan Tu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ruofei Hu
- College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang City, Hubei Province 441053, China.
| | - Bo Hao
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tao Xia
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Kushwaha D, Srivastava N, Mishra I, Upadhyay SN, Mishra PK. Recent trends in biobutanol production. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0041] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Finite availability of conventional fossil carbonaceous fuels coupled with increasing pollution due to their overexploitation has necessitated the quest for renewable fuels. Consequently, biomass-derived fuels are gaining importance due to their economic viability and environment-friendly nature. Among various liquid biofuels, biobutanol is being considered as a suitable and sustainable alternative to gasoline. This paper reviews the present state of the preprocessing of the feedstock, biobutanol production through fermentation and separation processes. Low butanol yield and its toxicity are the major bottlenecks. The use of metabolic engineering and integrated fermentation and product recovery techniques has the potential to overcome these challenges. The application of different nanocatalysts to overcome the existing challenges in the biobutanol field is gaining much interest. For the sustainable production of biobutanol, algae, a third-generation feedstock has also been evaluated.
Collapse
Affiliation(s)
- Deepika Kushwaha
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Ishita Mishra
- Green Brick Eco Solutions, Okha Industrial Area , New Delhi 110020 , India
| | - Siddh Nath Upadhyay
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| |
Collapse
|
10
|
Wendt LM, Murphy JA, Smith WA, Robb T, Reed DW, Ray AE, Liang L, He Q, Sun N, Hoover AN, Nguyen QA. Compatibility of High-Moisture Storage for Biochemical Conversion of Corn Stover: Storage Performance at Laboratory and Field Scales. Front Bioeng Biotechnol 2018; 6:30. [PMID: 29632861 PMCID: PMC5879930 DOI: 10.3389/fbioe.2018.00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Wet anaerobic storage of corn stover can provide a year-round supply of feedstock to biorefineries meanwhile serving an active management approach to reduce the risks associated with fire loss and microbial degradation. Wet logistics systems employ particle size reduction early in the supply chain through field-chopping which removes the dependency on drying corn stover prior to baling, expands the harvest window, and diminishes the biorefinery size reduction requirements. Over two harvest years, in-field forage chopping was capable of reducing over 60% of the corn stover to a particle size of 6 mm or less. Aerobic and anaerobic storage methods were evaluated for wet corn stover in 100 L laboratory reactors. Of the methods evaluated, traditional ensiling resulted in <6% total solid dry matter loss (DML), about five times less than the aerobic storage process and slightly less than half that of the anaerobic modified-Ritter pile method. To further demonstrate the effectiveness of the anaerobic storage, a field demonstration was completed with 272 dry tonnes of corn stover; DML averaged <5% after 6 months. Assessment of sugar release as a result of dilute acid or dilute alkaline pretreatment and subsequent enzymatic hydrolysis suggested that when anaerobic conditions were maintained in storage, sugar release was either similar to or greater than as-harvested material depending on the pretreatment chemistry used. This study demonstrates that wet logistics systems offer practical benefits for commercial corn stover supply, including particle size reduction during harvest, stability in storage, and compatibility with biochemical conversion of carbohydrates for biofuel production. Evaluation of the operational efficiencies and costs is suggested to quantify the potential benefits of a fully-wet biomass supply system to a commercial biorefinery.
Collapse
Affiliation(s)
- Lynn M Wendt
- Idaho National Laboratory, Idaho Falls, ID, United States
| | | | | | - Thomas Robb
- Independent Researcher, Olathe, KS, United States
| | - David W Reed
- Idaho National Laboratory, Idaho Falls, ID, United States
| | - Allison E Ray
- Idaho National Laboratory, Idaho Falls, ID, United States
| | - Ling Liang
- Advanced Biofuels Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, United States
| | - Qian He
- Advanced Biofuels Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, United States
| | - Ning Sun
- Advanced Biofuels Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, United States
| | - Amber N Hoover
- Idaho National Laboratory, Idaho Falls, ID, United States
| | - Quang A Nguyen
- Idaho National Laboratory, Idaho Falls, ID, United States
| |
Collapse
|
11
|
|
12
|
Liu G, Li B, Li C, Yuan Y. Enhancement of Simultaneous Xylose and Glucose Utilization by Regulating ZWF1 and PGI1 in Saccharomyces Cerevisiae. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s12209-017-0048-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Qin LZ, Chen HZ. Evaluation of growth age for the diverse conversion of Ficus carica L. cut branches using steam explosion. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Qin L, Liu L, Li WC, Zhu JQ, Li BZ, Yuan YJ. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose. BIORESOURCE TECHNOLOGY 2016; 209:172-9. [PMID: 26970919 DOI: 10.1016/j.biortech.2016.02.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 05/07/2023]
Abstract
This study is aimed to examine the inhibition of soluble fraction (SF) and enzymatic residual fraction (ERF) in dry dilute acid (DDA), ethylenediamine (EDA) and steam explosion (SE) pretreated corn stover (CS) on the enzymatic digestibility of cellulose. SF of DDA, EDA and SE pretreated CS has high xylose, soluble lignin and xylo-oligomer content, respectively. SF of EDA pretreated CS leads to the highest inhibition, followed by SE and DDA pretreated CS. Inhibition of ERF of DDA and SE pretreated CS is higher than that of EDA pretreated CS. The inhibition degree (A0/A) of SF is 1.76 and 1.21 times to that of ERF for EDA and SE pretreated CS, respectively. The inhibition degree of ERF is 1.05 times to that of SF in DDA pretreated CS. The quantitative analysis shows that SF of EDA pretreated CS, SF and ERF of SE pretreated CS cause significant inhibition during enzymatic hydrolysis.
Collapse
Affiliation(s)
- Lei Qin
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China
| | - Li Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China
| | - Wen-Chao Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China
| | - Jia-Qing Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Weijin Road 92, Nankai District, Tianjin 300072, PR China
| |
Collapse
|
15
|
He XF, Yang L, Wu HJ, Liu N, Zhang YG, Zhou AN. Characterization and pyrolysis behaviors of sunflower stalk and its hydrolysis residue. ASIA-PAC J CHEM ENG 2016. [DOI: 10.1002/apj.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xin-fu He
- School of Chemistry and Chemical Engineering; Xi'an University of Science and Technology; Xi'an Shaanxi 710054 China
| | - Lei Yang
- School of Chemistry and Chemical Engineering; Xi'an University of Science and Technology; Xi'an Shaanxi 710054 China
| | - Hong-ju Wu
- School of Chemistry and Chemical Engineering; Xi'an University of Science and Technology; Xi'an Shaanxi 710054 China
| | - Na Liu
- School of Chemistry and Chemical Engineering; Xi'an University of Science and Technology; Xi'an Shaanxi 710054 China
| | - Ya-gang Zhang
- School of Chemistry and Chemical Engineering; Xi'an University of Science and Technology; Xi'an Shaanxi 710054 China
| | - An-ning Zhou
- School of Chemistry and Chemical Engineering; Xi'an University of Science and Technology; Xi'an Shaanxi 710054 China
| |
Collapse
|
16
|
Improve the Anaerobic Biodegradability by Copretreatment of Thermal Alkali and Steam Explosion of Lignocellulosic Waste. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2786598. [PMID: 27200370 PMCID: PMC4855000 DOI: 10.1155/2016/2786598] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/28/2016] [Accepted: 03/13/2016] [Indexed: 11/18/2022]
Abstract
Effective alteration of the recalcitrance properties like crystallization of cellulose, lignin shield, and interlinking of lignocellulosic biomass is an ideal way to utilize the full-scale potential for biofuel production. This study exhibited three different pretreatment effects to enhance the digestibility of corn stover (CS) for methane production. In this context, steam explosion (SE) and thermal potassium hydroxide (KOH-60°C) treated CS produced the maximal methane yield of 217.5 and 243.1 mL/gvs, which were 40.0% and 56.4% more than untreated CS (155.4 mL/gvs), respectively. Copretreatment of thermal potassium hydroxide and steam explosion (CPTPS) treated CS was highly significant among all treatments and improved 88.46% (292.9 mL/gvs) methane yield compared with untreated CS. Besides, CPTPS also achieved the highest biodegradability up to 68.90%. Three kinetic models very well simulated dynamics of methane production yield. Moreover, scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and X-ray diffraction (XRD) analyses declared the most effective changes in physicochemical properties after CPTPS pretreatment. Thus, CPTPS might be a promising approach to deconstructing the recalcitrance of lignocellulosic structure to improve the biodegradability for AD.
Collapse
|
17
|
Zhang J, Shao S, Bao J. Long term storage of dilute acid pretreated corn stover feedstock and ethanol fermentability evaluation. BIORESOURCE TECHNOLOGY 2016; 201:355-359. [PMID: 26639616 DOI: 10.1016/j.biortech.2015.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
This study reported a new solution of lignocellulose feedstock storage based on the distributed pretreatment concept. The dry dilute sulfuric acid pretreatment (DDAP) was conducted on corn stover feedstock, instead of ammonia fiber explosion pretreatment. Then the dry dilute acid pretreated corn stover was stored for three months during summer season with high temperature and humidity. No negative aspects were found on the physical property, composition, hydrolysis yield and ethanol fermentability of the long term stored pretreated corn stover, plus the additional merits including no chemicals recovery operation, anti-microbial contaminant environment from stronger acid and inhibitor contents, as well as the mild and slow hydrolysis in the storage. The new pretreatment method expanded the distributed pretreatment concept of feedstock storage with potential for practical application.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
18
|
Liu ZH, Chen HZ. Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility. BIORESOURCE TECHNOLOGY 2015; 193:345-56. [PMID: 26143002 DOI: 10.1016/j.biortech.2015.06.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/20/2015] [Accepted: 06/22/2015] [Indexed: 05/26/2023]
Abstract
A novel conversion process using steam explosion combined with enzymatic digestibility was exploited to increase sugar yield. Results showed that glucan and xylan recovery decreased with the increase of holding temperature and residence time in SE, respectively, while glucan and xylan conversion exhibited an opposite trend. The optimal conditions of steam explosion were 160 °C and 48 min, under which glucan and xylan recovery was 93.4% and 71.6%, respectively. Glucan and xylan conversion at 18% solid loading by periodic peristalsis increased by 3.4-5.8% and 4.5-6.2%, respectively, compared with that by water baths shaker. In the whole process, glucose, xylose and total sugar yield reached to 77.3%, 62.8% and 72.3%, respectively. The yield of hydroxymethyl furfural, furfural and lignin-derived products was 6.3 × 10(-2), 7.5 × 10(-2) and less than 3.7 × 10(-2) g/100 g feedstock, respectively. This novel conversion process increased sugar recovery, reduced degradation products formation, improved digestibility efficiency, and hence increased sugar yield.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Zhang Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Optimization and kinetic analysis on the sulfuric acid – Catalyzed depolymerization of wheat straw. Carbohydr Polym 2015; 129:79-86. [DOI: 10.1016/j.carbpol.2015.04.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 11/18/2022]
|
20
|
Zhao ZM, Wang L, Chen HZ. A novel steam explosion sterilization improving solid-state fermentation performance. BIORESOURCE TECHNOLOGY 2015; 192:547-555. [PMID: 26092067 DOI: 10.1016/j.biortech.2015.05.099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/29/2015] [Accepted: 05/30/2015] [Indexed: 06/04/2023]
Abstract
Traditional sterilization of solid medium (SM) requires lengthy time, degrades nutrients, and even sterilizes inadequately compared with that of liquid medium due to its low thermal conductivity. A novel sterilization strategy, high-temperature and short-time steam explosion (SE), was exploited for SM sterilization in this study. Results showed that SE conditions for complete sterilization were 172 °C for 2 min and 128 °C for 5 min. Glucose and xylose contents in medium after SE sterilization increased by 157% and 93% respectively compared with those after conventional sterilization (121 °C, 20 min) while fermentation inhibitors were not detected. FTIR spectra revealed that the mild SE conditions helped to release monosaccharides from the polysaccharides. Bacillus subtilis fermentation productivity on medium after SE sterilization was 3.83 times of that after conventional sterilization. Therefore, SE shortened sterilization time and improved SM nutrition, which facilitated fermentability of SM and should promote economy of solid-state fermentation.
Collapse
Affiliation(s)
- Zhi-Min Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Hong-Zhang Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
21
|
Yuan ZQ, Long JX, Wang TJ, Li YQ, Zhang Q, Ma LL. Cascade Enzymatic Hydrolysis Coupling with Ultrafine Grinding Pretreatment for Sugarcane Bagasse Saccharification. CHINESE J CHEM PHYS 2015. [DOI: 10.1063/1674-0068/28/cjcp1502014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
22
|
Chen HZ, Liu ZH. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol J 2015; 10:866-85. [DOI: 10.1002/biot.201400705] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/13/2015] [Accepted: 03/25/2015] [Indexed: 11/09/2022]
|
23
|
Challenges for the production of bioethanol from biomass using recombinant yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:89-125. [PMID: 26003934 DOI: 10.1016/bs.aambs.2015.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lignocellulose biomass, one of the most abundant renewable resources on the planet, is an alternative sustainable energy source for the production of second-generation biofuels. Energy in the form of simple or complex carbohydrates can be extracted from lignocellulose biomass and fermented by microorganisms to produce bioethanol. Despite 40 years of active and cutting-edge research invested into the development of technologies to produce bioethanol from lignocellulosic biomass, the process remains commercially unviable. This review describes the achievements that have been made in generating microorganisms capable of utilizing both simple and complex sugars from lignocellulose biomass and the fermentation of these sugars into ethanol. We also provide a discussion on the current "roadblocks" standing in the way of making second-generation bioethanol a commercially viable alternative to fossil fuels.
Collapse
|
24
|
Cheng YS, Chen KY, Chou TH. Concurrent calcium peroxide pretreatment and wet storage of water hyacinth for fermentable sugar production. BIORESOURCE TECHNOLOGY 2015; 176:267-272. [PMID: 25461012 DOI: 10.1016/j.biortech.2014.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
In the present study, a novel concurrent process of pretreatment and wet storage was developed and investigated by applying calcium peroxide for preservation and conversion of fresh water hyacinth biomass to fermentable sugars. The effects of CaO2 loading concentration and moisture content on the lignin reduction, carbohydrate preservation and enzymatic saccharification of water hyacinth biomass were evaluated by experimental design using a response surface methodology. The data showed that the concurrent process could conserve 70% carbohydrates and remove 40% lignin from biomass of water hyacinth at the best condition in this study. The enzymatic digestibility and reducing sugar yield from the best condition of concurrent process were around 93% and 325mg/g (dry weight) of fresh biomass, respectively. The result suggested that the concurrent process developed in this work could be a potential alternative to consolidate the pretreatment and storage of aquatic plant biomass for fermentable sugar production.
Collapse
Affiliation(s)
- Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan.
| | - Kuan-Yu Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan
| | - Tzung-Han Chou
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan
| |
Collapse
|
25
|
Shen MH, Song H, Li BZ, Yuan YJ. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae. Biotechnol Lett 2014; 37:1031-6. [PMID: 25548118 DOI: 10.1007/s10529-014-1759-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/15/2014] [Indexed: 11/30/2022]
Abstract
Simultaneous co-utilization of xylose and glucose is a key issue in engineering microbes for cellulosic ethanol production. We coupled xylose utilization with glucose metabolism by deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) through pentose phosphate pathway flux. Simultaneous utilization of xylose and glucose then occurred in the engineered Saccharomyces cerevisiae strain with the xylose utilization pathway. Xylose consumption occurred at the beginning of glucose consumption by the engineered yeast without RPE1 in a mixed sugar fermentation. About 3.2 g xylose l(-1) was utilized simultaneously with consumption of 40.2 g glucose l(-1) under O2-limited conditions. In addition, an approximate ratio (~1:10) for xylose and glucose consumption was observed in the fermentation with different sugar concentration by the engineered strain without RPE1. Simultaneous utilization of xylose is realized by the coupling of glucose metabolism and xylose utilization through RPE1 deletion in xylose-utilizing S. cerevisiae.
Collapse
Affiliation(s)
- Ming-Hua Shen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China,
| | | | | | | |
Collapse
|
26
|
Perspective and prospective of pretreatment of corn straw for butanol production. Appl Biochem Biotechnol 2014; 172:840-53. [PMID: 24122704 DOI: 10.1007/s12010-013-0548-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
Corn straw, lignocellulosic biomass, is a potential substrate for microbial production of bio-butanol. Bio-butanol is a superior second generation biofuel among its kinds. Present researches are focused on the selection of butanol tolerant clostridium strain(s) to optimize butanol yield in the fermentation broth because of toxicity of bio-butanol to the clostridium strain(s) itself. However, whatever the type of the strain(s) used, pretreatment process always affects not only the total sugar yield before fermentation but also the performance and growth of microbes during fermentation due to the formation of hydroxyl-methyl furfural, furfural and phenolic compounds. In addition, the lignocellulosic biomasses also resist physical and biological attacks. Thus, selection of best pretreatment process and its parameters is crucial. In this context, worldwide research efforts are increased in past 12 years and researchers are tried to identify the best pretreatment method, pretreatment conditions for the actual biomass. In this review, effect of particle size, status of most common pretreatment method and enzymatic hydrolysis particularly for corn straw as a substrate is presented. This paper also highlights crucial parameters necessary to consider during most common pretreatment processes such as hydrothermal, steam explosion, ammonia explosion, sulfuric acid, and sodium hydroxide pretreatment. Moreover, the prospective of pretreatment methods and challenges is discussed.
Collapse
|
27
|
Zhu JQ, Qin L, Li BZ, Yuan YJ. Simultaneous saccharification and co-fermentation of aqueous ammonia pretreated corn stover with an engineered Saccharomyces cerevisiae SyBE005. BIORESOURCE TECHNOLOGY 2014; 169:9-18. [PMID: 25016219 DOI: 10.1016/j.biortech.2014.06.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
Co-fermentation of glucose and xylose from lignocelluloses is an efficient approach to increasing ethanol production. Simultaneous saccharification and co-fermentation (SSCF) of corn stover pretreated with aqueous ammonia was performed using engineered yeast with xylose utilization pathway. Thus far, the effect of the several key factors on SSCF was investigated, including temperature, inoculation size, pre-hydrolysis and pH. Ethanol concentration was achieved to 36.5 g/L during SSCF process with 6% glucan loading. The addition of Tween 20 reduced enzyme loading, i.e., from 15 to 7.5 FPU/gglucan with the same final ethanol concentration. The ethanol concentration was achieved to 70.1g/L at 12% glucan loading. Yeast feeding, combined with substrate and enzyme feeding, was proved to be an efficient approach for SSCF with high solid loading.
Collapse
Affiliation(s)
- Jia-Qing Zhu
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Lei Qin
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
28
|
Baral NR, Shah A. Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 2014; 98:9151-72. [DOI: 10.1007/s00253-014-6106-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/26/2022]
|
29
|
Chen J, Zhang W, Zhang H, Zhang Q, Huang H. Screw extrude steam explosion: a promising pretreatment of corn stover to enhance enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2014; 161:230-235. [PMID: 24709536 DOI: 10.1016/j.biortech.2014.02.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 06/03/2023]
Abstract
A screw extrude steam explosion (SESE) apparatus was designed and introduced to pretreat corn stover continuously for its following enzymatic hydrolysis. SESE parameters temperature (100, 120, 150°C) and residence time (1, 2, 3min) were investigated. The enzymatic hydrolysis of corn stover pretreated by SESE and steam explosion (SE) process was carried out and analyzed systematically. A serial of analysis methods were established, and the corn stover before/after the pretreatment were characterized by scanning electron microscope (SEM), X-ray Diffraction (XRD) and Thermal Gravity/Derivative Thermal Gravity Analysis (TG/DTG). After treated by SESE pretreatment at the optimum condition (150°C, 2min), the pretreated corn stover exhibited highest enzymatic hydrolysis yield (89%), and rare fermentation inhibitors formed. Characterization results indicated that the highest yield could be attributed to the effective removal of lignin/hemicellulose and destruction of cellulose structure by SESE pretreatment.
Collapse
Affiliation(s)
- Jingwen Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 210009, China; College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
| | - Wengui Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 210009, China; College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
| | - Hongman Zhang
- Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, China
| | - Qiuxiang Zhang
- Electrical and Mechanical Engineering College - Safety Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 210009, China; College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China.
| |
Collapse
|
30
|
Sun YG, Ma Y, Wang Z, Yao J. Evaluating and optimizing pretreatment technique for catalytic hydrogenolysis conversion of corn stalk into polyol. BIORESOURCE TECHNOLOGY 2014; 158:307-312. [PMID: 24632408 DOI: 10.1016/j.biortech.2014.02.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/11/2014] [Accepted: 02/14/2014] [Indexed: 06/03/2023]
Abstract
A combinative pretreatment technology of steam explosion (SE) and alkali was applied to enhance hydrogenolysis conversion of corn stalk into polyol with Ni-W2C or Fe-Mn-K catalyst. The results showed that treatments corn stalk with 0.4 MPa SE and alkali removed 84.16 wt% of hemicellulose and 71.83 wt% of lignin and thereby increased the cellulose content from 31.54 to 80.41 wt%. But the glucose loss was insignificant during pretreatment. Data from catalytic hydrogenolysis showed that pretreatment corn stalk with 0.4 MPa SE and alkali improved the yield of polyol, and about 20.38 wt% of ethylene glycol and 52.36 wt% of glycerol were produced after catalysis with Ni-W2C/(coconut shell activated carbon, CSAC). Based on the yield of polyol, the catalytic performance of Ni-W2C/CSAC was significantly better than those of Ni-W2C/(coal-based activated carbon) and Fe-Mn-K/(amorphous carbon).
Collapse
Affiliation(s)
- Yong Gang Sun
- State Key Laboratory Cultivation Base of Energy Sources and Chemical Engineering, Ningxia University, Yinchuan 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yulong Ma
- State Key Laboratory Cultivation Base of Energy Sources and Chemical Engineering, Ningxia University, Yinchuan 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Zheng Wang
- State Key Laboratory Cultivation Base of Energy Sources and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Junkang Yao
- State Key Laboratory Cultivation Base of Energy Sources and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
31
|
Qiu W, Zhang W, Chen H. Natural laccase mediators separated from water-washed solution of steam exploded corn straw by nanofiltration and organic solvent fractionation. BIORESOURCE TECHNOLOGY 2014; 156:368-371. [PMID: 24513027 DOI: 10.1016/j.biortech.2014.01.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 06/03/2023]
Abstract
Artificially synthetic mediators of laccase had the limitation of high cost and possible toxicity. The separation of natural laccase mediators from water-washed solution (WWS) of steam exploded corn straw (SECS) was studied using nano-filtration and successive organic solvents extraction. Results indicated that the UV absorption intensity of nano-filtrated WWS was significantly enhanced. The UV absorption intensity of each extractive from WWS could be ranked as ether extractive (EE)>ethyl acetate extractive (EAE)>chloroform extractive (CE). Decoloration of crystal violet catalyzed by laccase/EE was higher than that by laccase/ABTS, which was 66.95% and 61.9% at 8h, respectively. All the decoloration rates of malachite green at 60min using EE, EAE and ABTS as mediator were both more than 80%. This research would benefit for broaden the source of laccase mediator and reduce the using cost of laccase/mediator system.
Collapse
Affiliation(s)
- Weihua Qiu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wenyan Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hongzhang Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
32
|
Chen H, Li G, Li H. Novel pretreatment of steam explosion associated with ammonium chloride preimpregnation. BIORESOURCE TECHNOLOGY 2014; 153:154-159. [PMID: 24362247 DOI: 10.1016/j.biortech.2013.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/04/2013] [Accepted: 11/10/2013] [Indexed: 06/03/2023]
Abstract
Improving nitrogen content and enhancing enzymatic hydrolysis are key processes involved in cellulosic ethanol production. Steam explosion (SE) associated with NH4Cl preimpregnation was carried out to investigate effects of the pretreatment on nitrogen content, enzymatic digestibility, and ethanol production. Results showed that nitrogen content in pretreated samples increased, which can be used as nitrogen resource for ethanol fermentation. The highest glucose yield of sample pretreated by 1.4MPa SE with 90g/l NH4Cl preimpregnation was 62.64%, which was 2.1 and 0.2 times higher than that of untreated sample and 1.4MPa SE pretreated sample, respectively. Ethanol yield of sample pretreated by 1.1MPa SE with 135g/l NH4Cl preimpregnation resulted in 1.93 and 0.69 times higher than that of untreated sample and 1.1MPa SE pretreated sample, respectively. This novel pretreatment improved nitrogen content and enhanced enzymatic digestibility under mild conditions, and could be recommended to further industrial application.
Collapse
Affiliation(s)
- Hongzhang Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Guanhua Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongqiang Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
33
|
Lv YJ, Wang X, Ma Q, Bai X, Li BZ, Zhang W, Yuan YJ. Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress. Appl Microbiol Biotechnol 2014; 98:2207-21. [PMID: 24442506 DOI: 10.1007/s00253-014-5519-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/20/2013] [Accepted: 12/28/2013] [Indexed: 11/24/2022]
Abstract
Toxic compounds including acids, furans, and phenols (AFP) were generated from the pretreatment of lignocellulose. We cultivated Saccharomyces cerevisiae cells in a batch mode, besides the cell culture of original yeast strain in AFP-free medium which was referred as C0, three independent subcultures were cultivated under multiple inhibitors AFP and were referred as C1, C2, and C3 in time sequence. Comparing to C0, the cell density was lowered while the ethanol yield was maintained stably in the three yeast cultures under AFP stress, and the lag phase of C1 was extended while the lag phases of C2 and C3 were not extended. In proteomic analysis, 194 and 215 unique proteins were identified as differently expressed proteins at lag phase and exponential phase, respectively. Specifically, the yeast cells co-regulated protein folding and protein synthesis process to prevent the generation of misfolded proteins and to save cellular energy, they increased the activity of glycolysis, redirected metabolic flux towards phosphate pentose pathway and the biosynthesis of ethanol instead of the biosynthesis of glycerol and acetic acid, and they upregulated several oxidoreductases especially at lag phase and induced programmed cell death at exponential phase. When the yeast cells were cultivated under AFP stress, the new metabolism homeostasis in favor of cellular energy and redox homeostasis was generated in C1, then it was inherited and optimized in C2 and C3, enabling the yeast cells in C2 and C3 to enter the exponential phase in a short period after inoculation, which thus significantly shortened the fermentation time.
Collapse
Affiliation(s)
- Ya-Jin Lv
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Liu ZH, Qin L, Zhu JQ, Li BZ, Yuan YJ. Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:167. [PMID: 25516770 PMCID: PMC4267439 DOI: 10.1186/s13068-014-0167-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/10/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Simultaneous saccharification and fermentation (SSF) is a promising process for bioconversion of lignocellulosic biomass. High glucan loading for hydrolysis and fermentation is an efficient approach to reduce the capital costs for bio-based products production. The SSF of steam-exploded corn stover (SECS) for ethanol production at high glucan loading and high temperature was investigated in this study. RESULTS Glucan conversion of corn stover biomass pretreated by steam explosion was maintained at approximately 71 to 79% at an enzyme loading of 30 filter paper units (FPU)/g glucan, and 74 to 82% at an enzyme loading of 60 FPU/g glucan, with glucan loading varying from 3 to 12%. Glucan conversion decreased obviously with glucan loading beyond 15%. The results indicated that the mixture was most efficient in enzymatic hydrolysis of SECS at 3 to 12% glucan loading. The optimal SSF conditions of SECS using a novel Saccharomyces cerevisiae were inoculation optical density (OD)600 = 4.0, initial pH 4.8, 50% nutrients added, 36 hours pre-hydrolysis time, 39°C, and 12% glucan loading (20% solid loading). With the addition of 2% Tween 20, glucan conversion, ethanol yield, final ethanol concentration reached 78.6%, 77.2%, and 59.8 g/L, respectively, under the optimal conditions. The results suggested that the solid and degradation products' inhibitory effect on the hydrolysis and fermentation of SECS were also not obvious at high glucan loading. Additionally, glucan conversion and final ethanol concentration in SSF of SECS increased by 13.6% and 18.7%, respectively, compared with separate hydrolysis and fermentation (SHF). CONCLUSIONS Our research suggested that high glucan loading (6 to 12% glucan loading) and high temperature (39°C) significantly improved the SSF performance of SECS using a thermal- and ethanol-tolerant strain of S. cerevisiae due to the removal of degradation products, sugar feedback, and solid's inhibitory effects. Furthermore, the surfactant addition obviously increased ethanol yield in SSF process of SECS.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
| | - Lei Qin
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
| | - Jia-Qing Zhu
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
| | - Bing-Zhi Li
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
| | - Ying-Jin Yuan
- />Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
- />SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District Tianjin, 300072 China
| |
Collapse
|
35
|
Chen HZ, Liu ZH. Multilevel composition fractionation process for high-value utilization of wheat straw cellulose. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:137. [PMID: 25426164 PMCID: PMC4240850 DOI: 10.1186/s13068-014-0137-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 09/03/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND Biomass refining into multiple products has gained considerable momentum due to its potential benefits for economic and environmental sustainability. However, the recalcitrance of biomass is a major challenge in bio-based product production. Multilevel composition fractionation processes should be beneficial in overcoming biomass recalcitrance and achieving effective conversion of multiple compositions of biomass. The present study concerns the fractionation of wheat straw using steam explosion, coupled with ethanol extraction, and that this facilitates the establishment of sugars and lignin platform and enables the production of regenerated cellulose films. RESULTS The results showed that the hemicellulose fractionation yield was 73% under steam explosion at 1.6 MPa for 5.2 minutes, while the lignin fractionation yield was 90% by ethanol extraction at 160°C for 2 hours and with 60% ethanol (v/v). The cellulose yield reached up to 93% after steam explosion coupled with ethanol extraction. Therefore, cellulose sugar, hemicellulose sugar, and lignin platform were established effectively in the present study. Long fibers (retained by a 40-mesh screening) accounted for 90% of the total cellulose fibers, and the glucan conversion of short fibers was 90% at 9.0 hours with a cellulase loading of 25 filter paper units/g cellulose in enzymatic hydrolysis. Regenerated cellulose film was prepared from long fibers using [bmim]Cl, and the tensile strength and breaking elongation was 120 MPa and 4.8%, respectively. The cross-section of regenerated cellulose film prepared by [bmim]Cl displayed homogeneous structure, which indicated a dense architecture and a better mechanical performance. CONCLUSIONS Multilevel composition fractionation process using steam explosion followed by ethanol extraction was shown to be an effective process by which wheat straw could be fractionated into different polymeric fractions with high yields. High-value utilization of wheat straw cellulose was achieved by preparing regenerated cellulose film using [bmim]Cl.
Collapse
Affiliation(s)
- Hong-Zhang Chen
- />State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Zhongguancun North Second Street, Haidian District Beijing, 100190 PR China
| | - Zhi-Hua Liu
- />State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Zhongguancun North Second Street, Haidian District Beijing, 100190 PR China
- />University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District Beijing, 100049 PR China
| |
Collapse
|
36
|
Zhang J, Wang Y, Zhang L, Zhang R, Liu G, Cheng G. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. BIORESOURCE TECHNOLOGY 2014; 151:402-5. [PMID: 24269347 DOI: 10.1016/j.biortech.2013.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 05/05/2023]
Abstract
X-ray diffraction (XRD) was used to understand the interactions of cellulose in lignocellulosic biomass with ionic liquids (ILs). The experiment was designed in such a way that the process of swelling and solubilization of crystalline cellulose in plant cell walls was followed by XRD. Three different feedstocks, switchgrass, corn stover and rice husk, were pretreated using 1-butyl-3-methylimidazolium acetate ([C4mim][OAc]) at temperatures of 50-130°C for 6h. At a 5 wt.% biomass loading, increasing pretreatment temperature led to a drop in biomass crystallinity index (CrI), which was due to swelling of crystalline cellulose. After most of the crystalline cellulose was swollen with IL molecules, a low-order structure was found in the pretreated samples. Upon further increasing temperature, cellulose II structure started to form in the pretreated biomass samples as a result of solubilization of cellulose in [C4mim][OAc] and subsequent regeneration.
Collapse
Affiliation(s)
- Jiafu Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | | | | | | | | | | |
Collapse
|
37
|
Jin M, Bothfeld W, Austin S, Sato TK, La Reau A, Li H, Foston M, Gunawan C, LeDuc RD, Quensen JF, Mcgee M, Uppugundla N, Higbee A, Ranatunga R, Donald CW, Bone G, Ragauskas AJ, Tiedje JM, Noguera DR, Dale BE, Zhang Y, Balan V. Effect of storage conditions on the stability and fermentability of enzymatic lignocellulosic hydrolysate. BIORESOURCE TECHNOLOGY 2013; 147:212-220. [PMID: 23999256 DOI: 10.1016/j.biortech.2013.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/01/2013] [Accepted: 08/03/2013] [Indexed: 05/21/2023]
Abstract
To minimize the change of lignocellulosic hydrolysate composition during storage, the effects of storage conditions (temperature, pH and time) on the composition and fermentability of hydrolysate prepared from AFEX™ (Ammonia Fiber Expansion - a trademark of MBI, Lansing, MI) pretreated corn stover were investigated. Precipitates formed during hydrolysate storage increased with increasing storage pH and time. The precipitate amount was the least when hydrolysate was stored at 4 °C and pH 4.8, accounting for only 0.02% of the total hydrolysate weight after 3-month storage. No significant changes of NMR (Nuclear Magnetic Resonance) spectra and concentrations of sugars, minerals and heavy metals were observed after storage under this condition. When pH was adjusted higher before fermentation, precipitates also formed, consisting of mostly struvite (MgNH4PO4·6H2O) and brushite (CaHPO4·2H2O). Escherichia coli and Saccharomyces cerevisiae fermentation studies and yeast cell growth assays showed no significant difference in fermentability between fresh hydrolysate and stored hydrolysate.
Collapse
Affiliation(s)
- Mingjie Jin
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, 3900 Collins Road, Lansing, MI 48910, United States; DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, United States.
| | - William Bothfeld
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave., Madison, WI 53706, United States
| | - Samantha Austin
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave., Madison, WI 53706, United States; Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Trey K Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave., Madison, WI 53706, United States
| | - Alex La Reau
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave., Madison, WI 53706, United States
| | - Haibo Li
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave., Madison, WI 53706, United States
| | - Marcus Foston
- DOE BioEnergy Science Center, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, United States
| | - Christa Gunawan
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, 3900 Collins Road, Lansing, MI 48910, United States; DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Richard D LeDuc
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave., Madison, WI 53706, United States
| | - John F Quensen
- Center for Microbial Ecology, Michigan State University, 540 Plant and Soil Science Bldg, East Lansing, MI 48824, United States
| | - Mick Mcgee
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave., Madison, WI 53706, United States
| | - Nirmal Uppugundla
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, 3900 Collins Road, Lansing, MI 48910, United States; DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Alan Higbee
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave., Madison, WI 53706, United States
| | - Ruwan Ranatunga
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave., Madison, WI 53706, United States
| | - Charles W Donald
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, 3900 Collins Road, Lansing, MI 48910, United States; DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Gwen Bone
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave., Madison, WI 53706, United States
| | - Arthur J Ragauskas
- DOE BioEnergy Science Center, Georgia Institute of Technology, 500 10th Street, Atlanta, GA 30332, United States
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, 540 Plant and Soil Science Bldg, East Lansing, MI 48824, United States
| | - Daniel R Noguera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave., Madison, WI 53706, United States; Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Bruce E Dale
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, 3900 Collins Road, Lansing, MI 48910, United States; DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Yaoping Zhang
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave., Madison, WI 53706, United States.
| | - Venkatesh Balan
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, 3900 Collins Road, Lansing, MI 48910, United States; DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
38
|
Qin L, Liu ZH, Jin M, Li BZ, Yuan YJ. High temperature aqueous ammonia pretreatment and post-washing enhance the high solids enzymatic hydrolysis of corn stover. BIORESOURCE TECHNOLOGY 2013; 146:504-511. [PMID: 23968841 DOI: 10.1016/j.biortech.2013.07.099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 05/09/2023]
Abstract
Aqueous ammonia pretreatment was optimized and the limiting factors in high solids enzymatic hydrolysis were assessed. The recommended pretreatment condition to achieve high enzymatic yield was: 180 °C, 20% (w/w) ammonia, 30 min, and 20% solids content. FT-IR and GC-MS results indicated that most of the lignin was degraded to soluble fragments after pretreatment. The pretreated solids after post-washing showed higher enzymatic digestibility at high solids loading than that without washing. The washed solids required lower cellulase and xylanase dosage than unwashed solids to achieve high sugar yield. Enzymatic conversions were declined with the increased solids loading of pretreated solids, pretreated-washed solids, and filter papers. The results indicated that solids loading in enzymatic hydrolysis was an important factor affecting sugar yield. The increasing concentration of glucose and ligno-phenolics mainly inhibited the enzymatic hydrolysis of aqueous ammonia pretreated corn stover.
Collapse
Affiliation(s)
- Lei Qin
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhi-Hua Liu
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Mingjie Jin
- Biomass Conversion Research Lab, Department of Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910, USA
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
39
|
Wang N, Chen HZ. Manufacture of dissolving pulps from cornstalk by novel method coupling steam explosion and mechanical carding fractionation. BIORESOURCE TECHNOLOGY 2013; 139:59-65. [PMID: 23644071 DOI: 10.1016/j.biortech.2013.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 05/25/2023]
Abstract
In order to solve the inhomogeneity of cornstalk as fiber material to manufacture dissolving pulp, a novel method of steam explosion coupling mechanical carding was put forward to fractionate cornstalk long fiber for the production of cornstalk dissolving pulp. The fractionated long fiber had homogeneous structure and low hemicellulose and ash content. The fiber cell content was up to 85% in area, and the hemicellulose and ash content was 8.34% and 1.10% respectively. The α-cellulose content of cornstalk dissolving pulps was up to 93.10-97.10%, the viscosity was 14.37-23.96 mPas, and the yields of cornstalk dissolving pulps were from 10.11% to 12.44%. In addition, the fractionated short fiber was to be hydrolyzed by enzyme to build sugar platform. The constructed method of steam explosion coupling mechanical carding achieved the fractionation of cornstalk into long fiber and short fiber cleanly and effectively, and provided a new way for cornstalk integrated refinery.
Collapse
Affiliation(s)
- Ning Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | | |
Collapse
|
40
|
Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2013. [DOI: 10.1155/2013/719607] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pretreatment of lignocellulose has received considerable research globally due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. Some of the most promising pretreatment methods require the application of chemicals such as acids, alkali, salts, oxidants, and solvents. Thus, advances in research have enabled the development and integration of chemical-based pretreatment into proprietary ethanol production technologies in several pilot and demonstration plants globally, with potential to scale-up to commercial levels. This paper reviews known and emerging chemical pretreatment methods, highlighting recent findings and process innovations developed to offset inherent challenges via a range of interventions, notably, the combination of chemical pretreatment with other methods to improve carbohydrate preservation, reduce formation of degradation products, achieve high sugar yields at mild reaction conditions, reduce solvent loads and enzyme dose, reduce waste generation, and improve recovery of biomass components in pure forms. The use of chemicals such as ionic liquids, NMMO, and sulphite are promising once challenges in solvent recovery are overcome. For developing countries, alkali-based methods are relatively easy to deploy in decentralized, low-tech systems owing to advantages such as the requirement of simple reactors and the ease of operation.
Collapse
|