1
|
Priyadarshanee M, Das S. Multifaceted response surface methodology unravels competitive heavy metal adsorption affinity of immobilized biosorbent formulated from bacterial extracellular polymer of Pseudomonas aeruginosa OMCS-1. CHEMOSPHERE 2024; 368:143681. [PMID: 39510264 DOI: 10.1016/j.chemosphere.2024.143681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
A multifaceted experimental design, including factorial design, Face-centered composite design (FCCD), and mixture design, was implemented to explore competitive interaction and adsorption behavior of chromium [Cr(VI)], lead [Pb(II)], and cadmium [Cd(II)] by the immobilized extracellular polymer (EPS) based biosorbent of Pseudomonas aeruginosa OMCS-1, in single and ternary metal solution. The prepared biosorbent preferentially adsorbed Cr (47.6 mg/g), Pb (46.38 mg/g), and Cd (42.02 mg/g) in single metal system, and Pb (43.32 mg/g), Cr (40.03 mg/g) and Cd (35.9 mg/g) in multiple metal system. Adsorption behavior of all metals was successfully interpreted by the Freundlich isotherm model (R2 > 0.988), confirming multilayer sequestration. The Cr, Pb, and Cd biosorption rate followed second-order kinetics (R2 > 0.997), validating chemisorption as predominant mechanism in adsorption. The alternation in the structural morphology of EPS Ca-alginate beads and Cr, Pb, and Cd accumulation, suggesting heavy metal adsorption onto immobilized biosorbent. X-ray diffraction (XRD) pattern of multi-metal loaded biosorbent showed additional crystalline phases, indicating adsorption of metal ions. The significant (p < 0.0001; one-way ANOVA) increase in the zeta potential of Cr, Pb, and Cd loaded EPS Ca-alginate beads revealed the electrostatic interaction between biosorbent and metal ions. The hydroxyl, amine, carboxyl, and phosphate groups of formulated biosorbent contributed for metal sequestration. The adsorption-desorption efficiency retained by the biosorbent after fourth cycle was 35.41 ± 0.2% and 51.44 ± 0.98% for Cr, 51.58 ± 0.15% and 63.98 ± 0.24% for Pb, and 30.68 ± 0.13% and 60.39 ± 0.46% for Cd, respectively. The EPS Ca-alginate beads can potentially eliminate heavy metals from multi-metal contaminated water.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela- 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela- 769 008, Odisha, India.
| |
Collapse
|
2
|
Conde Molina D, Liporace F, Quevedo CV. Bioremediation of an industrial soil contaminated by hydrocarbons in microcosm system, involving bioprocesses utilizing co-products and agro-industrial wastes. World J Microbiol Biotechnol 2023; 39:323. [PMID: 37773232 DOI: 10.1007/s11274-023-03766-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
The present study describes practical implication of bioaugmentation and biostimulation processes for bioremediation of an industrial soil chronically contaminated by hydrocarbons. For this purpose, biomass production of six autochthonous hydrocarbon-degrading bacteria were evaluated as inoculum of bioaugmentation strategy, by testing carbon and nitrogen sources included co-products and agro-industrial waste as sustainable and low-cost components of the growth medium. Otherwise, biostimulation was approached by the addition of optimized concentration of nitrogen and phosphorus. Microcosm assays showed that total hydrocarbons (TH) were significantly removed from chronically contaminated soil undergoing bioremediation treatment. Systems Mix (bioaugmentation); N,P (biostimulation) and Mix + N,P (bioaugmentation and biostimulation) reached higher TH removal, being 89.85%, 91.00%, 93.04%, respectively, comparing to 77.83% of system C (natural attenuation) at 90 days. The increased heterotrophic aerobic bacteria and hydrocarbon degrading bacteria counts were according to TH biodegrading process during the experiments. Our results showed that biostimulation with nutrients represent a valuable alternative tool to treat a chronically hydrocarbon-contaminated industrial soil, while bioaugmentation with a consortium of hydrocarbon degrading bacteria would be justified when the soil has a low amount of endogenous degrading microorganisms. Furthermore, the production of inoculum for application in bioaugmentation using low-cost substrates, such as industrial waste, would lead to the development of an environmentally friendly and attractive process in terms of cost-benefit.
Collapse
Affiliation(s)
- Debora Conde Molina
- Grupo de Biotecnología y Nanotecnología Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, San Martín 1171, Campana, 2804, Buenos Aires, Argentina.
| | - Franco Liporace
- Grupo de Biotecnología y Nanotecnología Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, San Martín 1171, Campana, 2804, Buenos Aires, Argentina
| | - Carla V Quevedo
- Grupo de Biotecnología y Nanotecnología Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, San Martín 1171, Campana, 2804, Buenos Aires, Argentina
- Consejo de Investigaciones Científicas y Técnicas (CONICET), CABA (C1425FQB), 2290, Godoy Cruz, Argentina
| |
Collapse
|
3
|
Saravanan A, Kumar PS, Duc PA, Rangasamy G. Strategies for microbial bioremediation of environmental pollutants from industrial wastewater: A sustainable approach. CHEMOSPHERE 2023; 313:137323. [PMID: 36410512 DOI: 10.1016/j.chemosphere.2022.137323] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals are hazardous and bring about critical exposure risks to humans and animals, even at low concentrations. An assortment of approaches has been attempted to remove the water contaminants and keep up with water quality, for that microbial bioremediation is a promising way to mitigate these pollutants from the contaminated water. The flexibility of microorganisms to eliminate a toxic pollutant creates bioremediation an innovation that can be applied in various water and soil conditions. This review insight into the sources, occurrence of toxic heavy metals, and their hazardous human exposure risk. In this review, significant attention to microbial bioremediation for pollutant mitigation from various ecological lattices has been addressed. Mechanism of microbial bioremediation in the aspect of factors affecting, the role of microbes and interaction between the microbes and pollutants are the focal topics of this review. In addition, emerging strategies and technologies developed in the field of genetically engineered micro-organism and micro-organism-aided nanotechnology has shown up as powerful bioremediation tool with critical possibilities to eliminate water pollutants.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Ponnusamy Senthil Kumar
- Green Technology and Sustainable Development in Construction Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Pham Anh Duc
- Faculty of Safety Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
4
|
Xiang Y, Zhou Y, Yao B, Sun Y, Khan E, Li W, Zeng G, Yang J, Zhou Y. Vinasse-based biochar magnetic composites: adsorptive removal of tetracycline in aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8916-8927. [PMID: 35146603 DOI: 10.1007/s11356-022-19012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Highly efficient and cost-effective adsorbents for antibiotic removal are the key to mitigate pollution by industrial wastewaters. Pyrolyzing low-cost winemaking waste into biochar is a promising means for waste biomass utilization. This study assembled vinasse-derived biochar with manganese ferrite into vinasse-manganese ferrite biochar-magnetic composites (V-MFB-MCs) through simultaneous pyrolysis of waste biomass and metal (Mn and Fe) hydroxide precipitates. Batch experiments were conducted to evaluate the kinetics and isotherms of tetracycline (TC) adsorption as well as the influence of pH value, humic acid, and ionic strength. Morphological characterization showed that crystalline MnFe2O4 nanoparticles were impregnated within the framework of fabricated V-MFB-MCs. Superior TC adsorption capacity and fast pseudo-second-order kinetics could be achieved by the V-MFB-MCs-800 at pH 3.0. The TC adsorption onto V-MFB-MCs-800 was highly pH-dependent and controlled by the positive influence of ionic strength and humic acid. V-MFB-MCs-800 showed excellent adsorption performance in different natural water. Multiple interaction mechanisms including pore filling effect, π-π stacking interaction, and hydrogen bonding contribute to TC removal by V-MFB-MCs-800, which can be an innovative biowaste-derived material for industrial wastewater treatment.
Collapse
Affiliation(s)
- Yujia Xiang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yuzhou Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, USA
| | - Wei Li
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi, 562400, China
| | - Guihua Zeng
- Hunan Research Academy of Environmental Sciences, Changsha, 410002, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
5
|
Xing S, Yan Z, Song C, Tian H, Wang S. Limited Role of Rhamnolipids on Cadmium Resistance for an Endogenous-Secretion Bacterium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12555. [PMID: 36231857 PMCID: PMC9566264 DOI: 10.3390/ijerph191912555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Rhamnolipids, a type of biosurfactant, represent a potential strategy for both enhancing organismic resistance and in situ remediation of heavy metals contaminations. In-depth study of the mechanism of rhamnolipids synthesis in response to heavy metals stress, is indispensable for a wide use of biosurfactant-secreting microbes in bioremediation. In this study, we employed the wild-type and the rhlAB deficient strain (ΔrhlAB) of Pseudomonas aeruginosa, a prototypal rhamnolipids-producing soil microorganism, to investigate its responses to cadmium resistance based on its physicochemical, and physiological properties. Compared with the wild-type strain, the ΔrhlAB were more sensitive to Cd-stress at low Cd concentration (<50 mg/L), whereas there was little difference in sensitivity at higher Cd concentrations, as shown by spot titers and cell viability assays. Secreted rhamnolipids reduced intracellular Cd2+ accumulation to alleviate Cd2+ stress, whereas endogenous rhamnolipids played a limited role in alleviating Cd2+ stress. Synthesized rhamnolipids exhibited a higher critical micelle concentration (CMC) (674.1 mg/L) and lower emulsification index (4.7%) under high Cd-stress, while these parameters showed no obvious changes. High Cd-stress resulted in high hydrophilic wild-type bacterial surface and lower bioremediation ability. This study could advance a deeper understanding of the mechanism of cadmium resistance and provide a theoretical foundation for the application of biosurfactant and biosurfactant-secreted bacterium in contaminant bioremediation.
Collapse
Affiliation(s)
- Sufang Xing
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Huifang Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Oziegbe O, Oluduro AO, Oziegbe EJ, Ahuekwe EF, Olorunsola SJ. Assessment of heavy metal bioremediation potential of bacterial isolates from landfill soils. Saudi J Biol Sci 2021; 28:3948-3956. [PMID: 34220251 PMCID: PMC8241888 DOI: 10.1016/j.sjbs.2021.03.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/02/2022] Open
Abstract
Indiscriminate disposal of wastes on landfills has led to increase in heavy metal contamination in landfill soils. However, the ability of the indigenous microorganisms to remediate the polluted environment can be of great influence in reclamation of such soils. The objectives of this study were to assess the bioremediation potential of the screened indigenous bacteria and evaluate the effects of carbon source and pH in the enhancement of the bioremediation process. Bacterial isolates from landfill sites were screened for their capability to utilize heavy metal (Cd and Pb). Nutrient Agar was supplemented with five different concentrations of each metal (25 to 600 mgL-1). Viable counts of the isolates were taken four times at two days interval. Pseudomonas aeruginosa, Klebsiella edwardsii and Enterobacter cloacae were selected based on their tolerance to heavy metal for remediation process. Peptone broth was also supplemented using different concentrations of heavy metals. The remediation process was assessed by monitoring the growth of biomass using UV spectrophotometer at 600 nm and the residual heavy metal was evaluated after 8 days of incubation using AAS. Pseudomonas aeruginosa exhibited the highest bioremediation potential among the bacterial isolates with 58.80 and 33.67 remediation percentage in 50 mg Cd L-1 and 300 mg Pb L-1 . However, higher remediation percentage (79.87 and 92.41) was observed by Klebsiella edwardsii through addition of carbon source (5 g/L) and varying the pH (6) of the media in the heavy metal contaminated medium. The results of this study indicate that the effectiveness of the indigenous bacteria in remediation process can be enhanced through the addition of carbon source and increase pH for effective reclamation of contaminated soil.
Collapse
Affiliation(s)
- O Oziegbe
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - A O Oluduro
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - E J Oziegbe
- Department of Geosciences, University of Lagos, Akoka, Nigeria
| | - E F Ahuekwe
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - S J Olorunsola
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| |
Collapse
|
7
|
Wei Y, Zhao Y, Zhao X, Gao X, Zheng Y, Zuo H, Wei Z. Roles of different humin and heavy-metal resistant bacteria from composting on heavy metal removal. BIORESOURCE TECHNOLOGY 2020; 296:122375. [PMID: 31734063 DOI: 10.1016/j.biortech.2019.122375] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
This study aims to assess the roles of different humin and heavy-metal resistant bacterial community from composting on heavy metal removal. The results showed that the concentration of Cu2+, Zn2+, Ni2+, Pb2+, Cr3+ and Cd2+ decreased with adding the compost-derived humin, but the removal rates were relatively low (<30% on average). The heavy metal resistant bacteria from composting have better metal binding capacities than humin, and the combined addition of humin and bacteria could further stimulate the biosorption of heavy metals with 60-80% removal of metals and improve the diversity and biomass of bacterial community. There was obviously increased synergy between the humin from maturity phase and bacteria for metal biosorption ("1 + 1 > 2"). Structural equation modeling showed that microbial biomass and humin humification are the key factors for the biosorption of heavy metals. Combining humin from maturity phase with heavy-metal resistant bacteria was suggested to control heavy metal pollution in composts.
Collapse
Affiliation(s)
- Yuquan Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China; School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xintong Gao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yansi Zheng
- College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Huiduan Zuo
- College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
K KR, Sardar UR, Bhargavi E, Devi I, Bhunia B, Tiwari ON. Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: A critical review. Carbohydr Polym 2018; 199:353-364. [PMID: 30143139 DOI: 10.1016/j.carbpol.2018.07.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/18/2018] [Accepted: 07/12/2018] [Indexed: 02/04/2023]
Abstract
Extracellular polysaccharides or Exopolysaccharides (EPS) are extensively studied bacterial byproducts with high molecular weight attributed to several applications. In spite of their application in the field of food, pharmaceutical, nutraceutical, herbicidal and cosmeceutical industries they were well known for their efficiency in the bioremediation of water and soil tainted with heavy metals. These heavy metals are comparatively high in density than water and are involved in several biological processes. But slight increase in levels can create toxicological bias. The techniques like electrodialysis, chemical precipitation, ion exchange and membrane separation have a lot of disadvantages akin to high energy consumption, high cost, partial exclusion, and creation of poisonous mire. In this context, EPS has a top role to play in the bioremediation of heavy metals. This review gives the critical assessment of the extensive work done to deal this issue by different groups in the last five years. It also explains how different natural circumstances have attributed to the advancement of EPS production, thereby increasing the capacity of bioremediation to deal the issue of heavy metal contamination in both soil and water. A detailed discussion of the EPS formation by bacteria and fungi with their applicability was reported.
Collapse
Affiliation(s)
- Kranthi Raj K
- Department of H & S, MLR Institute of Technology, Dundigal, Hyderabad, Telangana, India.
| | - Usha R Sardar
- Department of H & S, MLR Institute of Technology, Dundigal, Hyderabad, Telangana, India.
| | - Erravelli Bhargavi
- CaroCure Discovery Solutions Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shameerpet, Hyderabad, Telangana, India.
| | - Indrama Devi
- DBT-Institute of Bioresources and Sustainable Development, Imphal, Manipur, India.
| | - Biswanath Bhunia
- Department of Bioengineering, National Institute of Technology, Agartala, India.
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilisation of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute (ICAR), New Delhi, 110012, India.
| |
Collapse
|
9
|
Radó J, Kaszab E, Petrovics T, Pászti J, Kriszt B, Szoboszlay S. Characterization of environmental Pseudomonas aeruginosa using multilocus sequence typing scheme. J Med Microbiol 2017; 66:1457-1466. [PMID: 28923132 DOI: 10.1099/jmm.0.000589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The objectives of this study were to examine environmental (hydrocarbon degrading) Pseudomonas aeruginosa isolates with Multilocus Sequence Typing (MLST) and to determine their relevant features, such as serotype, virulence genes, biofilm forming ability and hydrocarbon degrading capacity. METHODOLOGY The diversity of environmental isolates was assessed with an MLST scheme. Investigation of virulence determinants included serotyping, hemolytic activity test and the detection of virulence genes exoS, exoY, exoT, exoU, exoA. Biofilm forming ability was examined in a modified microtiter assay, hydrocarbon degrading capacity was determined with gravimetric methods. RESULTS The majority of environmental isolates shared the same MLST profiles with isolates of cystic fibrosis (CF). Virulence patterns and serotypes were slightly connected to the phylogenetic localization, but further clinically important features such as antibiotic resistance were not. At least one of the examined environmental isolates was multidrug-resistant, virulent and had biofilm forming ability such as nosocomial P. aeruginosa and retained its hydrocarbon degradation ability. CONCLUSION The current theses that distinguish isolates originating from different sources are questionable; environmental P. aeruginosa can be a potential risk to public health and cannot be excluded as an external (non-nosocomial) source of infections, especially in patients with CF. Further studies such as pulsed-field gel electrophoresis (PFGE) and the determination of other clinically important virulence factors are needed to confirm these findings.
Collapse
Affiliation(s)
- Júlia Radó
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter Károly u. 1., 2100, Gödöllő, Hungary
| | - Edit Kaszab
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter Károly u. 1., 2100, Gödöllő, Hungary
| | - Tünde Petrovics
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter Károly u. 1., 2100, Gödöllő, Hungary
| | - Judit Pászti
- National Center for Epidemiology, Albert Flórián út 2-6., 1097, Budapest, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter Károly u. 1., 2100, Gödöllő, Hungary
| | - Sándor Szoboszlay
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter Károly u. 1., 2100, Gödöllő, Hungary
| |
Collapse
|
10
|
Aghababaei A, Ncibi MC, Sillanpää M. Optimized removal of oxytetracycline and cadmium from contaminated waters using chemically-activated and pyrolyzed biochars from forest and wood-processing residues. BIORESOURCE TECHNOLOGY 2017; 239:28-36. [PMID: 28500886 DOI: 10.1016/j.biortech.2017.04.119] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
In the present investigation, the adsorptive removal of the antibiotic drug oxytetracycline (OTC) and toxic heavy metal cadmium (Cd) from aqueous solution was carried out using forest and wood-processing residues. Numerous biochars were prepared using different chemical agents (H3PO4, H2SO4, NaOH and KOH) and pyrolysis times and temperatures. Several elemental, chemical and structural characterizations were performed. The optimum conditions for pyrolysis to enable the production of biochars with well-developed porosity was 600°C for 1h, for both residues. The adsorption process using selected activated biochars was optimized with respect to reaction time, pH, temperature and initial load of pollutants. Under optimized operating conditions, and based on equilibrium modelling data, the biochars which showed the highest removal efficiencies of OTC and cadmium were "5M H3PO4 forest" (263.8mg/g) and "1M NaOH forest" (79.30mg/g), respectively. Compared to adsorbents reported in the literature, the efficiencies of those biochars are highly competitive.
Collapse
Affiliation(s)
- Aylin Aghababaei
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli, Finland
| | - Mohamed Chaker Ncibi
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli, Finland.
| | - Mika Sillanpää
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli, Finland; Department of Civil and Environmental Engineering, Florida International University, Miami FL-33174, USA
| |
Collapse
|
11
|
de Alencar FLS, Navoni JA, do Amaral VS. The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16545-16559. [PMID: 28540556 DOI: 10.1007/s11356-017-9129-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Metal pollution is a current environmental issue as a consequence of unregulated anthropic activiy. A wide range of bioremediation strategies have been successfully implemented to recover contaminated areas. Among them, bacterial bioremediation stands out as a promising tool to confront these types of concerns. This study aimed to compare and discuss worldwide scientific evolution of bacterial potential for metal bioremediation in aquatic ecosystems. The study consisted of a systematic review, elaborated through a conceptual hypothesis model, during the period from 2000 to 2016, using PubMed, MEDLINE, and SciELO databases as data resources. The countries with the largest number of reports included in this work were India and the USA. Industrial wastewater discharge was the main subject associated to metal contamination/pollution and where bacterial bioremediations have mostly been applied. Biosorption is the main bioremediation mechanism described. Bacterial adaptation to metal presence was discussed in all the selected studies, and chromium was the most researched bioremedied substrate. Gram-negative Pseudomonas aeruginosas and the Gram-positive Bacillus subtilis bacteria were microorganisms with the greatest applicability for metal bioremediation. Most reports involved the study of genes and/or proteins related to metal metabolism and/or resistence, and Chromobacterium violaceum was the most studied. The present work shows the relevance of metal bacterial bioremediation through the high number of studies aimed at understanding the microbiological mechanisms involved. Moreover, the developed processes applied in removal and/or reducing the resulting environmental metal contaminant/pollutant load have become a current and increasingly biotechnological issue for recovering impacted areas.
Collapse
Affiliation(s)
| | - Julio Alejandro Navoni
- Development and Environment, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Viviane Souza do Amaral
- Development and Environment, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
- Department of Cell Biology and Genetics, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil.
| |
Collapse
|
12
|
Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:693-703. [PMID: 26524994 DOI: 10.1016/j.scitotenv.2015.10.061] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/10/2015] [Accepted: 10/10/2015] [Indexed: 05/21/2023]
Abstract
Biological remediation technologies are an environmentally friendly approach for the treatment of polluted soils. This study evaluated through a pot experiment four bioremediation strategies: a) natural attenuation, b) phytoremediation with alfalfa (Medicago sativa L.), c) bioaugmentation with Pseudomonas aeruginosa and d) bioaugmentation-assisted phytoremediation, for the treatment of a co-contaminated soil presenting moderate levels of heavy metals (Cu, Pb and Zn at 87, 100 and 110mgkg(-1) DW, respectively) and petroleum hydrocarbons (3800mgkg(-1) DW). As demonstrated by plant biomass and selected physiological parameters alfalfa plants were able to tolerate and grow in the co-contaminated soil, especially when soil was inoculated with P. aeruginosa, which promoted plant growth (56% and 105% increase for shoots and roots, respectively) and appeared to alleviate plant stress. The content of heavy metals in alfalfa plants was limited and followed the order: Zn>Cu>Pb. Heavy metals were mainly concentrated in plant roots and were poorly translocated, favouring their stabilization in the root zone. Bioaugmentation of planted soil with P. aeruginosa generally led to a decrease of plant metal concentration and translocation. The highest degree of total petroleum hydrocarbon removal was obtained for bioaugmentation-assisted phytoremediation treatment (68%), followed by bioaugmentation (59%), phytoremediation (47%) and natural attenuation (37%). The results of this study demonstrated that the combined use of plant and bacteria was the most advantageous option for the treatment of the present co-contaminated soil, as compared to natural attenuation, bioaugmentation or phytoremediation applied alone.
Collapse
Affiliation(s)
- A C Agnello
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454 Marne-la-Vallée, France; Università degli Studi di Cassino e del Lazio Meridionale, Dipartimento di Ingegneria Civile e Meccanica, via Di Biasio 43, 03043 Cassino, FR, Italy
| | - M Bagard
- Université Paris-Est Créteil, Institut d'écologie et des sciences de l'environnement de Paris UMR 1392, Équipe Interactions plantes-environnement, Créteil Cedex, France
| | - E D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454 Marne-la-Vallée, France
| | - G Esposito
- Università degli Studi di Cassino e del Lazio Meridionale, Dipartimento di Ingegneria Civile e Meccanica, via Di Biasio 43, 03043 Cassino, FR, Italy
| | - D Huguenot
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454 Marne-la-Vallée, France.
| |
Collapse
|
13
|
Zhang JK, Wang ZH, Ye Y. Heavy Metal Resistances and Chromium Removal of a Novel Cr(VI)-Reducing Pseudomonad Strain Isolated from Circulating Cooling Water of Iron and Steel Plant. Appl Biochem Biotechnol 2016; 180:1328-1344. [DOI: 10.1007/s12010-016-2170-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/15/2016] [Indexed: 11/24/2022]
|
14
|
Eslamipour F, Hejazi P. Evaluating effective factors on the activity and loading of immobilized α-amylase onto magnetic nanoparticles using a response surface-desirability approach. RSC Adv 2016. [DOI: 10.1039/c5ra26140f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effects of different operational conditions of α-amylase covalent immobilization on magnetic nanoparticles were investigated using a central composite design.
Collapse
Affiliation(s)
- F. Eslamipour
- Biotechnology Research Laboratory
- School of Chemical Engineering
- Iran University of Science and Technology
- Tehran
- Iran
| | - P. Hejazi
- Biotechnology Research Laboratory
- School of Chemical Engineering
- Iran University of Science and Technology
- Tehran
- Iran
| |
Collapse
|
15
|
Roosa S, Wauven CV, Billon G, Matthijs S, Wattiez R, Gillan DC. The Pseudomonas community in metal-contaminated sediments as revealed by quantitative PCR: a link with metal bioavailability. Res Microbiol 2014; 165:647-56. [PMID: 25102022 DOI: 10.1016/j.resmic.2014.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 01/05/2023]
Abstract
Pseudomonas bacteria are ubiquitous Gram-negative and aerobic microorganisms that are known to harbor metal resistance mechanisms such as efflux pumps and intracellular redox enzymes. Specific Pseudomonas bacteria have been quantified in some metal-contaminated environments, but the entire Pseudomonas population has been poorly investigated under these conditions, and the link with metal bioavailability was not previously examined. In the present study, quantitative PCR and cell cultivation were used to monitor and characterize the Pseudomonas population at 4 different sediment sites contaminated with various levels of metals. At the same time, total metals and metal bioavailability (as estimated using an HCl 1 m extraction) were measured. It was found that the total level of Pseudomonas, as determined by qPCR using two different genes (oprI and the 16S rRNA gene), was positively and significantly correlated with total and HCl-extractable Cu, Co, Ni, Pb and Zn, with high correlation coefficients (>0.8). Metal-contaminated sediments featured isolates of the Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas lutea and Pseudomonas aeruginosa groups, with other bacterial genera such as Mycobacterium, Klebsiella and Methylobacterium. It is concluded that Pseudomonas bacteria do proliferate in metal-contaminated sediments, but are still part of a complex community.
Collapse
Affiliation(s)
- Stéphanie Roosa
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Université de Mons, 20 Place du Parc, B-7000 Mons, Belgium.
| | - Corinne Vander Wauven
- Institut de Recherches Microbiologiques JMW, 1 Av. E. Gryzon, 1070 Bruxelles, Belgium.
| | - Gabriel Billon
- Géosystèmes Lab, UFR de Chimie, Lille-1 University, Sciences and Technologies, 59655 Villeneuve d'Ascq, France.
| | - Sandra Matthijs
- Institut de Recherches Microbiologiques JMW, 1 Av. E. Gryzon, 1070 Bruxelles, Belgium.
| | - Ruddy Wattiez
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Université de Mons, 20 Place du Parc, B-7000 Mons, Belgium.
| | - David C Gillan
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Université de Mons, 20 Place du Parc, B-7000 Mons, Belgium.
| |
Collapse
|