1
|
Gao W, Li Z, Liu T, Wang Y. Production of high-concentration fermentable sugars from lignocellulosic biomass by using high solids fed-batch enzymatic hydrolysis. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
2
|
Mamleeva NA, Kharlanov AN, Kupreenko SY, Chukhchin DG. Main Pathways of the Transformations of Lignocellulosic Material under the Action of Ozone. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421110133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Investigation of alkaline hydrogen peroxide pretreatment to enhance enzymatic hydrolysis and phenolic compounds of oil palm trunk. 3 Biotech 2020; 10:179. [PMID: 32231960 DOI: 10.1007/s13205-020-02169-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/16/2020] [Indexed: 10/24/2022] Open
Abstract
Alkaline hydrogen peroxide (AHP) as a pretreatment effectively enhances the increasing enzymatic digestibility of oil palm trunk (OPT) for conversion to biofuels and bioproducts in the biorefinery processes. The effect of hydrogen peroxide concentration (1-5%), temperature (50-90 °C), and time (30-90 min) were studied to find out the optimum condition for the removal of lignin. The optimum condition attained at 70 °C, 30 min, and 3% H2O2 g /g of biomass not only increased the cellulose content from 38.67% in raw material to 73.96% but also removed lignin and hemicellulose up to 50% and 57.12%, respectively. The AHP-treated fibers subjected to enzyme hydrolysis showed significant improvement in glucose concentration that increased from 11.77 (± 0.84) g/L (raw material) to 46.15 (± 0.32) g/L with 59.82% enzyme digestibility at 96 h. Scanning electron microscopy (SEM) and Fourier transformation infrared (FT-IR) were employed to analyze the morphology and structural changes of untreated and AHP-treated fibers. SEM results showed disruption of the intact OPT structure resulting in increase of enzyme accessibility to cellulose. The FT-IR identified changes in peaks which indicated structural transformation and dissolution of both lignin and hemicellulose molecules caused by AHP treatment. The black liquor obtained from AHP treatment contained about 5.13 mg gallic acid equivalent (GAE)/g of dry sample of total phenolic content (TPC) and an antioxidant activity of 59.80% and 65.51% inhibitions of DPPH and ABTS assays, respectively. Hence, it is a sustainable approach to utilize waste for the recovery of multiple value-added products during pretreatment process.
Collapse
|
4
|
Abstract
As a by-product of lignocellulosic depolymerization for furfural production, furfural residue (FR) is composed of residual cellulose, lignin, humic acid, and other small amounts of materials, which have high reuse value. However, due to the limitation of furfural production scale and production technology, the treatment of FR has many problems such as high yield, concentrated stacking, strong acidity, and difficult degradation. This leads to the limited treatment methods and high treatment cost of furfural residue. At present, most of the furfural enterprises can only be piled up at will, buried in soil, or directly burned. The air, soil, and rivers are polluted and the ecological balance is destroyed. Therefore, how to deal with furfural residue reasonably needs to be solved. In this review, value-added products for furfural residue conversion are described in detail in the fields of soil culture, catalytic hydrolysis, thermal decomposition, and porous adsorption. The future studies reporting the FR to convert value-added products could find guidance from this review to achieve specific goals.
Collapse
|
5
|
Shi X, Zhao B, Zhou H, Tian Y, Qiao Y, Ji B. Direct Saccharification and Fermentation for High Glucose and Ethanol Production from Non‐Detoxified Furfural Residue Without Any Pretreatment. ChemistrySelect 2019. [DOI: 10.1002/slct.201901367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xinxin Shi
- Key Laboratory of Low Carbon Energy and Chemical EngineeringCollege of Chemical and Environmental EngineeringShandong University of Science and Technology Qingdao 277590 China
| | - Baofu Zhao
- Key Laboratory of Low Carbon Energy and Chemical EngineeringCollege of Chemical and Environmental EngineeringShandong University of Science and Technology Qingdao 277590 China
| | - Haifeng Zhou
- Key Laboratory of Low Carbon Energy and Chemical EngineeringCollege of Chemical and Environmental EngineeringShandong University of Science and Technology Qingdao 277590 China
| | - Yuanyu Tian
- Key Laboratory of Low Carbon Energy and Chemical EngineeringCollege of Chemical and Environmental EngineeringShandong University of Science and Technology Qingdao 277590 China
| | - Yingyun Qiao
- State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum (East China) Qingdao 266580 China
| | - Bei Ji
- Key Laboratory of Low Carbon Energy and Chemical EngineeringCollege of Chemical and Environmental EngineeringShandong University of Science and Technology Qingdao 277590 China
| |
Collapse
|
6
|
Ren S, Lu A, Guo X, Zhang Q, Wang Y, Guo X, Wang L, Zhang B. Effects of co-composting of lincomycin mycelia dregs with furfural slag on lincomycin degradation, degradation products, antibiotic resistance genes and bacterial community. BIORESOURCE TECHNOLOGY 2019; 272:83-91. [PMID: 30316195 DOI: 10.1016/j.biortech.2018.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
This study explored the effects of co-composting of lincomycin mycelia dregs (LMDs) with furfural slag on variations in antibiotic resistance genes (ARGs) and the bacterial community. The results showed that more than 99% lincomycin was reduced after composting. Moreover, the total absolute and relative abundance of ARGs increased by 180 and 5 times, respectively. The gene lnuA was detected in the LMDs compost and it was proved to participate in lincomycin biodegradation based on the analysis of Pearson's correlation and the lincomycin degradation byproducts. Redundancy analysis showed the succession of the bacterial community had a greater influence than the environmental parameters (residual lincomycin, C/N, pH and temperature) on the variation of ARGs during composting. Composting was not effective in reducing most of the ARGs and intI1 and thus the LMDs compost is dangerous to the ecological environment.
Collapse
Affiliation(s)
- Shengtao Ren
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Aqian Lu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Xiaoying Guo
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Qianqian Zhang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Yan Wang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Xiali Guo
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| | - Lianzhong Wang
- Henan Xinxiang Hua Xing Pharmaceutical Factory, Xinxiang 453731, Henan, PR China
| | - Baobao Zhang
- Henan Xinxiang Hua Xing Pharmaceutical Factory, Xinxiang 453731, Henan, PR China
| |
Collapse
|
7
|
Yue F, Zhang J, Pedersen CM, Wang Y, Zhao T, Wang P, Liu Y, Qian G, Qiao Y. Valorization of Furfural Residue by Hydrothermal Carbonization: Processing Optimization, Chemical and Structural Characterization. ChemistrySelect 2017. [DOI: 10.1002/slct.201602026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fen Yue
- School of Environmental and Chemical Engineering; Shanghai University; Shangda Road 99 Shanghai 200444 PR China
- Analytical Instrumentation Center; Institute of Coal Chemistry, Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001 P. R. China
| | - Jia Zhang
- School of Environmental and Chemical Engineering; Shanghai University; Shangda Road 99 Shanghai 200444 PR China
| | | | - Yingxiong Wang
- State Key Laboratory of Coal Conversion; Institute of Coal Chemistry, Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001 P. R. China
| | - Tingting Zhao
- Analytical Instrumentation Center; Institute of Coal Chemistry, Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001 P. R. China
| | - Pengfei Wang
- Analytical Instrumentation Center; Institute of Coal Chemistry, Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001 P. R. China
| | - Yequn Liu
- Analytical Instrumentation Center; Institute of Coal Chemistry, Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001 P. R. China
| | - Guangren Qian
- School of Environmental and Chemical Engineering; Shanghai University; Shangda Road 99 Shanghai 200444 PR China
| | - Yan Qiao
- Analytical Instrumentation Center; Institute of Coal Chemistry, Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001 P. R. China
- State Key Laboratory of Coal Conversion; Institute of Coal Chemistry, Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001 P. R. China
| |
Collapse
|
8
|
Li K, Qin JC, Liu CG, Bai FW. Optimization of pretreatment, enzymatic hydrolysis and fermentation for more efficient ethanol production by Jerusalem artichoke stalk. BIORESOURCE TECHNOLOGY 2016; 221:188-194. [PMID: 27639238 DOI: 10.1016/j.biortech.2016.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Jerusalem artichoke (JA) is a potential energy crop for biorefinery due to its unique agronomic traits such as resistance to environmental stresses and high biomass yield in marginal lands. Although JA tubers have been explored for inulin extraction and biofuels production, there is little concern on its stalk (JAS). In this article, the pretreatment of JAS by alkaline hydrogen peroxide was optimized using the response surface methodology to improve sugars yield and reduce chemicals usage. Scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis were applied to characterize the structures of the pretreated JAS to evaluate the effectiveness of the pretreatment. Furthermore, the feeding of the pretreated JAS and cellulase was performed for high solid uploading (up to 30%) to increase ethanol titer, and simultaneous saccharification and fermentation with 55.6g/L ethanol produced, 36.5% more than that produced through separate hydrolysis and fermentation, was validated to be more efficient.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jin-Cheng Qin
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116023, China.
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116023, China.
| |
Collapse
|
9
|
He J, Zhang W, Liu X, Xu N, Xiong P. Optimization of prehydrolysis time and substrate feeding to improve ethanol production by simultaneous saccharification and fermentation of furfural process residue. J Biosci Bioeng 2016; 122:563-569. [DOI: 10.1016/j.jbiosc.2016.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 02/07/2023]
|
10
|
Chen C, Zhu M, Li M, Fan Y, Sun RC. Epoxidation and etherification of alkaline lignin to prepare water-soluble derivatives and its performance in improvement of enzymatic hydrolysis efficiency. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:87. [PMID: 27087854 PMCID: PMC4832561 DOI: 10.1186/s13068-016-0499-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/01/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND Due to the depletion of fossil resources and their environmental impact, woody biomass has received much attention as an alternative resource. Lignin, as the third most abundant biopolymer from biomass, is now considered as an excellent alternative feedstock for chemicals and materials. The conversion of lignin to the value-added products is a key process to achieve an integrated biorefinery of woody biomass. Among these value-added products, lignin-based derivatives with good surface activity can be applied to enhance the conversion of cellulose into fermentable sugars, which not only decrease the cost of bioethanol production, but also reduce the environmental pollution and green house effect resulting from the burning of fossil resources. RESULTS Water-soluble alkaline lignin was synthesized by the reaction between polyethylene glycols (PEG600 and PEG1000) and epoxy lignin. FT-IR and NMR analyses indicated that PEGs were successively introduced into epoxy alkaline lignin using potassium persulfate as a catalyst. Emulsification and surface activity tests indicated that the surface tension of the prepared lignin derivative solution was 43.30 mN/m at the critical micelle concentration (1.03 %). A stable emulsions layer was formed with hexanes and the emulsion particle diameter in the emulsion phase for all products was observed at 10-50 μm. The results of enzymatic hydrolysis indicated that the products derived from PEG1000-grafted lignin resulted in the highest increasing rate of 18.6 % of glucose yield during the enzymatic hydrolysis of hardwood bleached pulp. The results of fermentation experiments suggested that the product had no toxicity for fermentation micro-organisms. CONCLUSION Water-soluble alkaline lignin derivatives were prepared through epoxidation and etherification, which are promising feedstocks for detergents, emulsifier, and additive to enhance enzymatic hydrolysis efficiency and ethanol fermentation.
Collapse
Affiliation(s)
- Changzhou Chen
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Mingqiang Zhu
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
- />College of Forestry, Northwest A&F University, Yangling, 712100 China
| | - Mingfei Li
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Yongming Fan
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Run-Cang Sun
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
11
|
Romero I, López-Linares JC, Delgado Y, Cara C, Castro E. Ethanol production from rape straw by a two-stage pretreatment under mild conditions. Bioprocess Biosyst Eng 2015; 38:1469-78. [DOI: 10.1007/s00449-015-1389-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/17/2015] [Indexed: 11/24/2022]
|
12
|
Lin K, Ma B, Sun Y, Liu W. Comparison between liquid and solid acids catalysts on reducing sugars conversion from furfural residues via pretreatments. BIORESOURCE TECHNOLOGY 2014; 167:133-136. [PMID: 24976491 DOI: 10.1016/j.biortech.2014.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 06/05/2014] [Accepted: 06/07/2014] [Indexed: 06/03/2023]
Abstract
Liquid sulphuric acid is adopted and compared with carbon-based sulfonated solid acids (coal tar-based and active carbon-based) for furfural residues conversion into reducing sugars. The optimum hydrolysis conditions of liquid acid are at 4% of sulphuric acid, 25:1 of liquid and solid ratio, 175°C of reaction temperature and 120 min of reaction time. The reducing sugar yields are reached over 60% on liquid acid via NaOH/H2O2, NaOH/microwave and NaOH/ultrasonic pretreatments, whereas only over 30% on solid acids. The TOFs (turnover number frequency) via NaOH/H2O2 pretreatments are 0.093, 0.020 and 0.023 h(-1) for liquid sulphuric acid, coal tar-based and active carbon-based solid acids catalysts, respectively. Considering the efficiency, cost and environment factors, the liquid and solid acids have their own advantages of potential commercial application values.
Collapse
Affiliation(s)
- Keying Lin
- State Key Laboratory Cultivation Base of Natural Gas Conversion, College of Chemistry, Ningxia University, Yinchuan 750021, China
| | - Baojun Ma
- State Key Laboratory Cultivation Base of Natural Gas Conversion, College of Chemistry, Ningxia University, Yinchuan 750021, China.
| | - Yuan Sun
- State Key Laboratory Cultivation Base of Natural Gas Conversion, College of Chemistry, Ningxia University, Yinchuan 750021, China
| | - Wanyi Liu
- State Key Laboratory Cultivation Base of Natural Gas Conversion, College of Chemistry, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
13
|
Chen CZ, Li MF, Wu YY, Sun RC. Integration of Ambient Formic Acid Process and Alkaline Hydrogen Peroxide Post-Treatment of Furfural Residue To Enhance Enzymatic Hydrolysis. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502303s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chang-Zhou Chen
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ming-Fei Li
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yu-Ying Wu
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Run-Cang Sun
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
14
|
Zhang L, You T, Zhang L, Yang H, Xu F. Enhanced fermentability of poplar by combination of alkaline peroxide pretreatment and semi-simultaneous saccharification and fermentation. BIORESOURCE TECHNOLOGY 2014; 164:292-8. [PMID: 24862006 DOI: 10.1016/j.biortech.2014.04.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 05/16/2023]
Abstract
To improve ethanol productivity with few inhibitors generated, a novel process of combined alkaline peroxide (AP) pretreatment and semi-simultaneous saccharification and fermentation (SSSF) was developed in this work. Pretreatment with 10% (g H2O2/g wood) H2O2 at 160°C for 2h followed by SSSF was found to be the optimal combination with remarkably increased ethanol yield. The proposed process resulted in 63.1% of ethanol yield, which was about five times more than that of the untreated sample that was processed using conventional simultaneous saccharification and fermentation (SSF). The efficient conversion was ascribed to the high delignification efficiency (64.9%) of AP pretreatment, which led to incompact structure and generation of fewer inhibitors during SSSF (c. 6g/L of lactic acid) than SSF (c. 10 g/L of lactic acid). This combined approach was proved to be an effective method for the promotion of the bioconversion of lignocellulosic materials.
Collapse
Affiliation(s)
- Liming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Lu Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Haiyan Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
15
|
Gu H, Zhang J, Bao J. Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues. BIORESOURCE TECHNOLOGY 2014; 157:6-13. [PMID: 24518544 DOI: 10.1016/j.biortech.2014.01.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/12/2014] [Accepted: 01/15/2014] [Indexed: 05/23/2023]
Abstract
Industrial waste corncob residues (CCR) are rich in cellulose and can be hydrolyzed directly without pretreatment. However, a poor fermentation performance was frequently observed in the simultaneous saccharification and ethanol fermentation (SSF) of CCR, although the furans and organic acid inhibitors were very low. In this study, the high level of water-insoluble phenolic compounds such as 2-furoic acid, ferulic acid, p-coumaric acid, guaiacol, and p-hydroxybenzoic acid were detected in CCR and inhibited the growth and metabolism of Saccharomyces cerevisiae DQ1. An evolutionary adaptation strategy was developed by culturing the S. cerevisiae DQ1 strain in a series of media with the gradual increase of CCR hydrolysate. The high ethanol concentration (62.68g/L) and the yield (55.7%) were achieved in the SSF of CCR using the adapted S. cerevisiae DQ1. The results provided a practical method for improving performance of simultaneous saccharification and ethanol production from CCR.
Collapse
Affiliation(s)
- Hanqi Gu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, Henan 473000, China.
| |
Collapse
|
16
|
Ma BJ, Sun Y, Lin KY, Li B, Liu WY. Physicochemical pretreatments and hydrolysis of furfural residues via carbon-based sulfonated solid acid. BIORESOURCE TECHNOLOGY 2014; 156:189-194. [PMID: 24508657 DOI: 10.1016/j.biortech.2014.01.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
Potential commercial physicochemical pretreatment methods, NaOH/microwave and NaOH/ultrasound were developed, and the carbon-based sulfonated solid acid catalysts were prepared for furfural residues conversion into reducing sugars. After the two optimum pretreatments, both the content of cellulose increased (74.03%, 72.28%, respectively) and the content of hemicellulose (94.11%, 94.17% of removal rate, respectively) and lignin (91.75%, 92.09% of removal rate, respectively) decreased in furfural residues. The reducing sugar yields of furfural residues with the two physicochemical pretreatments on coal tar-based solid acid reached 33.94% and 33.13%, respectively, higher than that pretreated via NaOH alone (27%) and comparable to that pretreated via NaOH/H2O2 (35.67%). The XRD patterns, IR spectra and SEM images show microwave and ultrasound improve the pretreatment effect. The results demonstrate the carbon-based sulfonated solid acids and the physicochemical pretreatments are green, effective, low-cost for furfural residues conversion.
Collapse
Affiliation(s)
- Bao Jun Ma
- State Key Laboratory Cultivation Base of Natural Gas Conversion, College of Chemistry, Ningxia University, Yinchuan 750021, China.
| | - Yuan Sun
- State Key Laboratory Cultivation Base of Natural Gas Conversion, College of Chemistry, Ningxia University, Yinchuan 750021, China
| | - Ke Ying Lin
- State Key Laboratory Cultivation Base of Natural Gas Conversion, College of Chemistry, Ningxia University, Yinchuan 750021, China
| | - Bing Li
- State Key Laboratory Cultivation Base of Natural Gas Conversion, College of Chemistry, Ningxia University, Yinchuan 750021, China
| | - Wan Yi Liu
- State Key Laboratory Cultivation Base of Natural Gas Conversion, College of Chemistry, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
17
|
Yang H, Chen Q, Wang K, Sun RC. Correlation between hemicelluloses-removal-induced hydrophilicity variation and the bioconversion efficiency of lignocelluloses. BIORESOURCE TECHNOLOGY 2013; 147:539-544. [PMID: 24012850 DOI: 10.1016/j.biortech.2013.08.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 05/11/2023]
Abstract
In order to establish the correlation between hemicelluloses removal and bioconversion efficiency of cellulose, fractionation process with increasing NaOH concentration selectively released the hemicellulosic polymers with increasing molecular weight and decreasing degree of substitution. Not only the initial hydrolysis rates also the concentrations of glucose and ethanol were significantly enhanced from 5.93 and 8.39 g/L to the range of 8.67-9.60 g/L and 11.53-13.71 g/L after alkaline treatment, respectively. However, the maximum conversions of cellulose to glucose (61.9%) and ethanol (64.6%) were achieved as 33.0% hemicelluloses was still remained. Excluding the negligible effect on the crystal transformation of cellulose, the improvement of bioconversion efficiency was resulted from the synergetical effects of surface exposure, multi-layers collapse and the hydrophilic property of the cellulosic substrate. It is critical task to balance these factors by the partial removal of hemicellulosic component, not complete.
Collapse
Affiliation(s)
- Haiyan Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Qian Chen
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Kun Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Run-Cang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|