1
|
Sharafi R, Salehi Jouzani G, Karimi E, Ghanavati H, Kowsari M. Integrating bioprocess and metagenomics studies to enhance humic acid production from rice straw. World J Microbiol Biotechnol 2024; 40:173. [PMID: 38630379 DOI: 10.1007/s11274-024-03959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Rice straw burning annually (millions of tons) leads to greenhouse gas emissions, and an alternative solution is producing humic acid with high added-value. This study aimed to examine the influence of a microbial consortium and other additives (chicken manure, urea, olive mill waste, zeolite, and biochar) on the composting process of rice straw and the subsequent production of humic acid. Results showed that among the fungal species, Thermoascus aurantiacus exhibited the most prominent impact in expediting maturation and improving compost quality, and Bacillus subtilis was the most abundant bacterial species based on metagenomics analysis. The highest temperature, C/N ratio reduction, and amount of humic acid production (Respectively in lab 61 °C, 54.67%, 298 g kg-1 and in pilot level 65 °C, 72.11%, 310 g kg-1) were related to treatments containing these microorganisms and other additives except urea. Consequently, T. aurantiacus and B. subtilis can be employed on an industrial scale as compost additives to further elevate quality. Functional analysis showed that the bacterial enzymes in the treatments had the highest metabolic activities, including carbohydrate and amino acid metabolism compared to the control. The maximum enzymatic activities were in the thermophilic phase in treatments which were significantly higher than that in the control. The research emphasizes the importance of identifying and incorporating enzymatically active strains that are suitable for temperature conditions, alongside the native strains in decomposing materials. This strategy significantly improves the composting process and yields high-quality humic acid during the thermophilic phase.
Collapse
Grants
- 2-05-05-017-960740 Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO)
- 2-05-05-017-960740 Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO)
- 2-05-05-017-960740 Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO)
- 2-05-05-017-960740 Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO)
- 2-05-05-017-960740 Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO)
Collapse
Affiliation(s)
- Reza Sharafi
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Fahmideh Blvd, P.O. Box, Karaj, 31535-1897, Iran
| | - Gholamreza Salehi Jouzani
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Fahmideh Blvd, P.O. Box, Karaj, 31535-1897, Iran.
| | - Ebrahim Karimi
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Fahmideh Blvd, P.O. Box, Karaj, 31535-1897, Iran
| | - Hosein Ghanavati
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Fahmideh Blvd, P.O. Box, Karaj, 31535-1897, Iran
| | - Mojegan Kowsari
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Fahmideh Blvd, P.O. Box, Karaj, 31535-1897, Iran
| |
Collapse
|
2
|
Gao Y, Liu S, Wang N, Wang YZ. Humic acid biosynthesis and bacterial community evolution during aerobic composting of rice straw. Appl Microbiol Biotechnol 2024; 108:177. [PMID: 38277012 PMCID: PMC10817993 DOI: 10.1007/s00253-023-12994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/11/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024]
Abstract
In this study, the effects of inoculum ratio, substrate particle size and aeration rate on humic acid (HA) biosynthesis during aerobic composting of rice straw were investigated, respectively. The contents of total organic carbon, total nitrogen and HA, as well as lignocellulose degradation in the composting were evaluated, respectively. It is found that the maximal HA yield of 356.9 g kg-1 was obtained at an inoculum ratio of 20%, a substrate particle size of 0.83 mm and an aeration rate of 0.3 L·kg-1 DM min-1 in the process of composting. The changes of microbial communities and metabolic functions at different stages of the composting were also analyzed through high-throughput sequencing. The result demonstrates that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the dominant phyla and their relative abundance significantly varied over time (p < 0.05), and Rhizobium, Phenylobacterium, Pseudoxanthomonas and Paenibacillus were positively related to HA content in the compost. Furthermore, the metabolic function profiles of bacterial community indicate that these functional genes in carbohydrate metabolism and amino acid metabolism were involved in lignocellulose biodegradation and HA biosynthesis. This work may be conducive to explore new regulation strategy to improve bioconversion efficiency of agricultural residues to applicable biofertilizers. KEY POINTS: • Temperature, pH, TOC, TN and C/N caused a great influence on humic acids synthesis • The succession of the microbial community during the composting were evaluated • The metabolisms of carbohydrate and amino acids were involved in HA synthesis.
Collapse
Affiliation(s)
- Yuwei Gao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400030, China
| | - Shuai Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400030, China
| | - Nan Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400030, China
| | - Yong-Zhong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
3
|
Xing CM, He ZL, Lan T, Yan B, Zhao Q, Wu QL, Wang HZ, Wang CX, Guo WQ. Enhanced humus synthesis from Chinese medicine residues composting by lignocellulose-degrading bacteria stimulation: Upregulation of key enzyme activity and neglected indirect effects on humus formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167754. [PMID: 37879479 DOI: 10.1016/j.scitotenv.2023.167754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Chinese medicine residues (CMHRs) resource is attracting widespread attention, as it is expected to be produced into Humus-rich fertilizer for soil application. This study aimed to promote effective humus (HS) production through lignocellulose-degrading bacteria (LDB) addition and explore the biological regulation mechanism of LDB affecting lignocellulose-to-humus conversion. The results showed higher HS production was achieved, with 109.73 and 111.44 g·kg-1, and HA/FA was raised by 12.70-16.02 % in compost products by LDB addition stimulation. Significant upregulation of β-glucanase and xylanase activities catalyzed higher decomposition of lignocellulose toward more HS potential precursors supply. Furthermore, exogenous LDB intervention induced microbial community restructure and microbial network establishment via enriching synergism functional bacteria, i.e., Thermobifida, Paenibacillus, Nonomuraea, etc. Mantel test results showed that it was variation of cellulose, hemicellulose and HS that affected microbial community succession (p < 0.01, r > 0.6), which represented the positive action of LDB addition stimulation on HS synthesis upregulation. Further exploration suggested LDB had an indirect effect on HS formation by enhanced lignin and hemicellulose conversion based on the Random Forest model and Partial least-squares path modeling results. This research provides new insights into the trigger effects of LDB introduction on upregulating HS synthesis and is expected to propose new perspectives for HS efficient production in CMHRs composting.
Collapse
Affiliation(s)
- Chuan-Ming Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Lin He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tian Lan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bo Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hua-Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Cai-Xia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Wang SP, Li XX, Sun ZY, Shuai WL, Xia ZY, Xie CY, Gou M, Tang YQ. Evaluation of physicochemical properties, bacterial community, and product fertility during rice straw composting supplemented with different nitrogen-rich wastes. BIORESOURCE TECHNOLOGY 2023; 369:128462. [PMID: 36503087 DOI: 10.1016/j.biortech.2022.128462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
This study evaluated the compostability of rice straw as the main feedstock (75 % in dry weight), supplemented with three different nitrogen-rich wastes, namely food waste (FW), dairy manure (DM), and sewage sludge (SS). Organic matter (OM) degradation, maturity and fertility of the end-product, and bacterial community structure during the composting processes were compared. All composting processes generated mature end-product within 51 days. Notably, FW addition was more effective to accelerate rice straw OM degradation and significantly improved end-product fertility with a high yield of Chinese cabbage. The succession of the bacterial community was accelerated with FW supplementation. Genera Geobacillus, Chryseolinea, and Blastocatella were significantly enriched during the composting of rice straw with FW supplementation. Finally, temperature, total nitrogen, moisture, pH, and total carbon were the key factors affecting microorganisms. This study provides a promising alternative method to enhance the disposal of larger amounts of rice straw in a shorter time.
Collapse
Affiliation(s)
- Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiao-Xing Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Wen-Liang Shuai
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
5
|
Grenier V, Gonzalez E, Brereton NJB, Pitre FE. Dynamics of bacterial and archaeal communities during horse bedding and green waste composting. PeerJ 2023; 11:e15239. [PMID: 37159830 PMCID: PMC10163874 DOI: 10.7717/peerj.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
Organic waste decomposition can make up substantial amounts of municipal greenhouse emissions during decomposition. Composting has the potential to reduce these emissions as well as generate sustainable fertilizer. However, our understanding of how complex microbial communities change to drive the chemical and biological processes of composting is still limited. To investigate the microbiota associated with organic waste decomposition, initial composting feedstock (Litter), three composting windrows of 1.5 months (Young phase), 3 months (Middle phase) and 12 months (Aged phase) old, and 24-month-old mature Compost were sampled to assess physicochemical properties, plant cell wall composition and the microbial community using 16S rRNA gene amplification. A total of 2,612 Exact Sequence Variants (ESVs) included 517 annotated as putative species and 694 as genera which together captured 57.7% of the 3,133,873 sequences, with the most abundant species being Thermobifida fusca, Thermomonospora chromogena and Thermobifida bifida. Compost properties changed rapidly over time alongside the diversity of the compost community, which increased as composting progressed, and multivariate analysis indicated significant variation in community composition between each time-point. The abundance of bacteria in the feedstock is strongly correlated with the presence of organic matter and the abundance of plant cell wall components. Temperature and pH are the most strongly correlated parameters with bacterial abundance in the thermophilic and cooling phases/mature compost respectively. Differential abundance analysis revealed 810 ESVs annotated as species significantly varied in relative abundance between Litter and Young phase, 653 between the Young and Middle phases, 1182 between Middle and Aged phases and 663 between Aged phase and mature Compost. These changes indicated that structural carbohydrates and lignin degrading species were abundant at the beginning of the thermophilic phase, especially members of the Firmicute and Actinobacteria phyla. A high diversity of species capable of putative ammonification and denitrification were consistently found throughout the composting phases, whereas a limited number of nitrifying bacteria were identified and were significantly enriched within the later mesophilic composting phases. High microbial community resolution also revealed unexpected species which could be beneficial for agricultural soils enriched with mature compost or for the deployment of environmental and plant biotechnologies. Understanding the dynamics of these microbial communities could lead to improved waste management strategies and the development of input-specific composting protocols to optimize carbon and nitrogen transformation and promote a diverse and functional microflora in mature compost.
Collapse
Affiliation(s)
- Vanessa Grenier
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
- Institut de Recherche en Biologie Végétale, Montréal, Québec, Canada
| | - Emmanuel Gonzalez
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Canadian Centre for Computational Genomics, McGill Genome Centre, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Nicholas JB Brereton
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Frederic E. Pitre
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
- Institut de Recherche en Biologie Végétale, Montréal, Québec, Canada
- Montreal Botanical Garden, Montréal, Québec, Canada
| |
Collapse
|
6
|
Supriatna J, Setiawati MR, Sudirja R, Suherman C, Bonneau X. Composting for a More Sustainable Palm Oil Waste Management: A Systematic Literature Review. ScientificWorldJournal 2022; 2022:5073059. [PMID: 36408196 PMCID: PMC9671718 DOI: 10.1155/2022/5073059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 01/12/2025] Open
Abstract
Palm oil production has increased significantly, specifically in Indonesia and Malaysia. However, this growth has raised environmental concerns due to the high discharge of empty fruit bunches, palm oil mill effluents, and other solid wastes. Therefore, this study aims to examine the treatment of palm oil waste by composting and systematically review insights into its application through a systematic literature review approach. Among the 1155 articles, a total of 135 were selected for a systematic review of palm oil waste management developments and their applications, while 14 were used for determining compost quality according to the criteria and requirements established in the systematic literature review. Moreover, using Egger's test, JAMOVI 1.6.23 software was used to analyze random effects models with 95% confidence intervals and publication bias. The results showed that palm oil waste was optimally treated by composting, which is considered as a sustainable technology for protecting the environment, human safety, and economic value. The in-vessel method with a controlled composting chamber is the best system with a minimum time of 14 days. However, it requires tight control and provides a final product with a high microbial colony form outdoors and indoors compared to the windrow system. This study is useful to see the bias of research results and helps to find new studies that need to be developed, especially in this case related to the management of palm oil waste into organic compost fertilizer and its application methods in the field. It is suggested that applying palm oil waste or compost is mainly performed by mulching. In contrast, new challenges for better processing to produce organic fertilizers and applicable technologies for sustainable waste management are recommended. The method must be affordable, efficient, and practical, combining compost quality with maximum nutrient recovery.
Collapse
Affiliation(s)
- Jajang Supriatna
- Agricultural Science, Faculty of Agriculture, Padjadjaran University, Bandung 45363, Indonesia
- ANJ Research Center, PT. Austindo Nusantara Jaya Tbk., Belitung 33561, Indonesia
| | | | - Rija Sudirja
- Soil Science, Faculty of Agriculture, Padjadjaran University, Bandung 45363, Indonesia
| | - Cucu Suherman
- Agronomy Department, Faculty of Agriculture, Padjadjaran University, Bandung 45363, Indonesia
| | - Xavier Bonneau
- Perennial Crops Department, AbSys Research Unit, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier 34398, France
| |
Collapse
|
7
|
Zainudin MHM, Singam JT, Sazili AQ, Shirai Y, Hassan MA. Indigenous cellulolytic aerobic and facultative anaerobic bacterial community enhanced the composting of rice straw and chicken manure with biochar addition. Sci Rep 2022; 12:5930. [PMID: 35396465 PMCID: PMC8993872 DOI: 10.1038/s41598-022-09789-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Microbial degradation of organic matters is crucial during the composting process. In this study, the enhancement of the composting of rice straw and chicken manure with biochar was evaluated by investigating the indigenous cellulolytic bacterial community structure during the composting process. Compared with control treatment, composting with biochar recorded higher temperature (74 °C), longer thermophilic phase (> 50 °C for 18 days) and reduced carbon (19%) with considerable micro- and macronutrients content. The bacterial community succession showed that composting with biochar was dominated by the cellulolytic Thermobifida and Nocardiopsis genera, which play an important role in lignocellulose degradation. Twenty-three cellulolytic bacterial strains were successfully isolated at different phases of the composting with biochar. The 16S rRNA gene sequencing similarity showed that they were related to Bacilluslicheniformis, Bacillussubtilis,Bacillusaerius, and Bacillushaynesii, which were known as cellulolytic bacteria and generally involved in lignocellulose degradation. Of these isolated bacteria, Bacilluslicheniformis, a facultative anaerobe, was the major bacterial strain isolated and demonstrated higher cellulase activities. The increase in temperature and reduction of carbon during the composting with biochar in this study can thus be attributed to the existence of these cellulolytic bacteria identified.
Collapse
Affiliation(s)
- Mohd Huzairi Mohd Zainudin
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| | - Jamuna Thurai Singam
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Awis Qurni Sazili
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.,Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Yoshihito Shirai
- Department of Biological Function and Engineering, Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Fukuoka, 808-0196, Japan
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.,Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Cheng Y, Huang M, Shen X, Jiang C. Enhanced cornstalk decomposition by a psychrotrophic bacterial consortium comprising cellulose, hemicellulose, and lignin degraders with biochar as a carrier for carbonneutrality. BIORESOURCE TECHNOLOGY 2022; 344:126259. [PMID: 34775050 DOI: 10.1016/j.biortech.2021.126259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
To explore an effective approach for accelerating cornstalk decomposition and return under low temperature, nine psychrotrophic cellulose-, hemicellulose-, and lignin-degrading bacterial strains were used with biochar as the carrier to prepare a novel psychrotrophic stalk-degrading bacterial consortium (PSBC). With PSBC, the maximum cornstalk degradation rate reached 59.3% after 50 d at 10-15 °C, which accelerated cornstalk decomposition, resulting in increases in organic matter, phosphorus, and potassium in the soil. Microbial community analysis demonstrated that PSBC enhanced microbial community diversity and altered specific selection. Genera Arthrobacter, Pseudomonas, and Pantoea in PSBC became dominant in the soil microbiota, which benefited cornstalk degradation. Therefore, this work provides a promising strategy to facilitate the degradation of cornstalks in cold regions, which has potential application value for carbon neutrality.
Collapse
Affiliation(s)
- Yi Cheng
- College of Science, China Agricultural University, Beijing 100083, PR China
| | - Mingyan Huang
- Jiangsu hengrui medicine Co., Ltd., Jiangsu 222002, PR China
| | - Xiaohui Shen
- College of Life Sciences and Resources and Environment, Yichun University, Yichun 336000, Jiangxi, PR China
| | - Cheng Jiang
- College of Life Sciences and Resources and Environment, Yichun University, Yichun 336000, Jiangxi, PR China.
| |
Collapse
|
9
|
Gong X, Zhang Z, Wang H. Effects of Gleditsia sinensis pod powder, coconut shell biochar and rice husk biochar as additives on bacterial communities and compost quality during vermicomposting of pig manure and wheat straw. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113136. [PMID: 34214797 DOI: 10.1016/j.jenvman.2021.113136] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/06/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the effectiveness of Gleditsia sinensis pod powder (GSPP), coconut shell biochar (CSB), rice husk biochar (RHB) and their mixtures on vermicomposting of pig manure and wheat straw using Eisenia fetida. The results indicated that the addition of GSPP or/and CSB and RHB could greatly enhance the relative abundance of Bacteroidetes, Actinobacteria, and Firmicutes, as well as the activities of celluloses, protease, and alkaline phosphatase. However, the earthworm biomass was increased in the GSPP and/or CSB addition treatments but decreased in RHB addition treatments compared with the control. Compared with the control, addition of 4%GSPP+8%CSB significantly (P < 0.05) accelerated the degradation of organic matter and increased the concentration of nutrients (total N, P, K), NO3--N in final vermicompost. Germination and growth of tomato seedings were also higher (P < 0.05) in vermicompost produced with the addition of 4%GSPP+8%CSB than in control. Consequently, 4%GSPP+8%CSB addition was suggested as an efficient method to improve the vermicomposting of pig manure and wheat straw.
Collapse
Affiliation(s)
- Xiaoqiang Gong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zuotao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Cotta SPM, Marins MS, Marriel IE, Lana UGP, Gomes EA, Figueiredo JEF, Oliveira-Paiva CA. Thermo-resistant enzyme-producing microorganisms isolated from composting. BRAZ J BIOL 2021; 83:e244205. [PMID: 34468511 DOI: 10.1590/1519-6984.244205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/27/2021] [Indexed: 11/21/2022] Open
Abstract
Organo-mineral fertilizers supplemented with biological additives are an alternative to chemical fertilizers. In this study, thermoresistant microorganisms from composting mass were isolated by two-step procedures. First, samples taken at different time points and temperatures (33 days at 52 ºC, 60 days at 63 ºC, and over 365 days at 26 ºC) were pre-incubated at 80 oC for 30 minutes. Second, the microbial selection by in vitro culture-based methods and heat shock at 60 oC and 100 oC for 2h and 4h. Forty-one isolates were able to grow at 60 °C for 4h; twenty-seven at 100 °C for 2h, and two at 100 °C for 4h. The molecular identification by partial sequencing of the 16S ribosomal gene using universal primers revealed that thirty-five isolates were from eight Bacillus species, one Brevibacillus borstelensis, three Streptomyces thermogriseus, and two fungi (Thermomyces lanuginosus and T. dupontii). Data from amylase, phytase, and cellulase activity assays and the enzymatic index (EI) showed that 38 of 41 thermo-resistant isolates produce at least one enzyme. For amylase activity, the highest EI value was observed in Bacillus licheniformis (isolate 21C2, EI= 4.11), followed by Brevibacillus borstelensis (isolate 6C2, EI= 3.66), Bacillus cereus (isolate 18C2, EI= 3.52), and Bacillus paralicheniformis (isolate 20C2, EI= 3.34). For phytase, the highest EI values were observed for Bacillus cereus (isolate 18C2, EI= 2.30) and Bacillus licheniformis (isolate 3C1, EI= 2.15). Concerning cellulose production, B. altitudinis (isolate 6C1) was the most efficient (EI= 6.40), followed by three Bacillus subtilis (isolates 9C1, 16C2, and 19C2) with EI values of 5.66, 5.84, and 5.88, respectively, and one B. pumilus (isolate 27C2, EI= 5.78). The selected microorganisms are potentially useful as a biological additive in organo-mineral fertilizers and other biotechnological processes.
Collapse
Affiliation(s)
- S P M Cotta
- Programa de Mestrado Profissional em Biotecnologia e Gestão da Inovação, Departamento de Ciências Biológicas, Centro Universitário de Sete Lagoas, UNIFEMM, Sete Lagoas, MG, Brasil
| | - M S Marins
- Programa de Microbiologia Agrícola, Departamento de Biologia, Universidade Federal de Lavras - UFLA, Lavras, MG, Brasil
| | - I E Marriel
- Laboratório de Microbiologia e Biologia Molecular Embrapa Milho e Sorgo, CNPMS/Embrapa, Sete Lagoas, MG, Brasil
| | - U G P Lana
- Laboratório de Microbiologia e Biologia Molecular Embrapa Milho e Sorgo, CNPMS/Embrapa, Sete Lagoas, MG, Brasil
| | - E A Gomes
- Laboratório de Microbiologia e Biologia Molecular Embrapa Milho e Sorgo, CNPMS/Embrapa, Sete Lagoas, MG, Brasil
| | - J E F Figueiredo
- Laboratório de Microbiologia e Biologia Molecular Embrapa Milho e Sorgo, CNPMS/Embrapa, Sete Lagoas, MG, Brasil
| | - C A Oliveira-Paiva
- Laboratório de Microbiologia e Biologia Molecular Embrapa Milho e Sorgo, CNPMS/Embrapa, Sete Lagoas, MG, Brasil
| |
Collapse
|
11
|
Pham VHT, Ahn JY, Ro YH, Ravindran B, Kim JS, Chang SW, Shim JH, Chung WJ. The efficiency of potential food waste-degrading bacteria under harsh conditions. J Appl Microbiol 2021; 132:340-350. [PMID: 33900007 DOI: 10.1111/jam.15119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
AIMS Investigate the impact of highly adapted bacterial strains and their ability in waste degradation under a wide range of temperatures. METHODS AND RESULTS Bacteria isolated from soil and food waste were grown in various media under fluctuated temperatures. After screening for organic compound degradation, the seven strongest bacterial strains have been selected for further experiments. Their enzyme activities were expressed in terms of the size of the hydrolysis zone in a wide temperature range of 2.5-70 ºC. The enzyme production assay was carried out for each protease, cellulase, and amylase. The waste degradation was determined with a maximum 80% decrease in the volume of food waste in 21 days compared to the control in lab-scale with enriched bacterial cultures and soil bacteria as additives at room temperature around 18 ºC-20 ºC. CONCLUSION These seven bacteria are promising candidates for food waste biodegradation in composting especially in the winter without heating expense for maintaining ambient temperature. SIGNIFICANCE AND IMPACT OF THE STUDY It is necessary to coax the uncultured bacteria from the various environments into the laboratory for investigating their valuable functions. Herein, using enrichment culture of consortium and additive of soil have illustrated the significant mean in food waste degradation.
Collapse
Affiliation(s)
- Van Hong Thi Pham
- Environmental Remediation Laboratory, Department of Environmental Energy Engineering, Kyonggi University, South Korea
| | - Jeong Yoon Ahn
- Environmental Remediation Laboratory, Department of Environmental Energy Engineering, Kyonggi University, South Korea
| | - Yeon Hee Ro
- Environmental Remediation Laboratory, Department of Environmental Energy Engineering, Kyonggi University, South Korea
| | - Balasubramani Ravindran
- Environmental Remediation Laboratory, Department of Environmental Energy Engineering, Kyonggi University, South Korea
| | - Jai Soo Kim
- Microbial Ecology Laboratory, Department of Life Science, Kyonggi University, South Korea
| | - Soon Woong Chang
- Environmental Remediation Laboratory, Department of Environmental Energy Engineering, Kyonggi University, South Korea
| | - Jea Hong Shim
- Fertilizer Resources Lab, Soil and Fertilizer Management Division, National Institute of Agricultural Science, Rural Development Administration
| | - Woo Jin Chung
- Environmental Remediation Laboratory, Department of Environmental Energy Engineering, Kyonggi University, South Korea
| |
Collapse
|
12
|
Bandini F, Misci C, Taskin E, Cocconcelli PS, Puglisi E. Biopolymers modulate microbial communities in municipal organic waste digestion. FEMS Microbiol Ecol 2021; 96:5902845. [PMID: 32897356 DOI: 10.1093/femsec/fiaa183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/04/2020] [Indexed: 11/15/2022] Open
Abstract
The development of biopolymers has raised issues about their recalcitrance in the environment. Their disposal is mainly carried out with the organic fraction of municipal solid waste (OFMSW) through thermophilic anaerobic digestion and aerobic composting, bioprocesses aimed at turning organic matter into biogas and compost. However, the effects of biopolymers on OFMSW treatment, on the final compost and on the microbial communities involved are partly unexplored. In this study, the OFMSW treatment was reproduced on a laboratory-scale respecting real plant conditions and testing the impacts of mixing polylactic acid (PLA) and starch-based bioplastic (SBB) separately. The dynamics of bacterial, archaeal and fungal communities during the process was screened by high-throughput sequencing (HTS) of phylogenetic amplicons. Starch-based bioplastic showed a minor and heterogeneous microbial diversity between the anaerobic and aerobic phases. Contrariwise, PLA treatment resulted in wider and more diverse bacterial and fungal communities for the compost and the aerobic biofilm. Since the biodiversity in compost may play a crucial role in its stability and safety, the modulation of environmental microbial communities induced by higher concentrations of PLA in OFMSW treatment can pose relevant issues.
Collapse
Affiliation(s)
- Francesca Bandini
- Dipartimento di Scienze e Tecnologie Alimentari per la sostenibilità della filiera agro-alimentare (DISTAS), Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Chiara Misci
- Dipartimento di Scienze e Tecnologie Alimentari per la sostenibilità della filiera agro-alimentare (DISTAS), Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Eren Taskin
- Dipartimento di Scienze e Tecnologie Alimentari per la sostenibilità della filiera agro-alimentare (DISTAS), Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Pier Sandro Cocconcelli
- Dipartimento di Scienze e Tecnologie Alimentari per la sostenibilità della filiera agro-alimentare (DISTAS), Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Edoardo Puglisi
- Dipartimento di Scienze e Tecnologie Alimentari per la sostenibilità della filiera agro-alimentare (DISTAS), Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
13
|
Bakhtiyarifar M, Enayatizamir N, Mehdi Khanlou K. Biochemical and molecular investigation of non-rhizobial endophytic bacteria as potential biofertilisers. Arch Microbiol 2021; 203:513-521. [PMID: 32965526 DOI: 10.1007/s00203-020-02038-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/29/2020] [Accepted: 09/12/2020] [Indexed: 11/29/2022]
Abstract
This study was performed to isolate non-rhizobial endophytic bacteria from the root nodules of Glycine max (soybean), Vigna radiata (mung bean) and Vigna unguiculata (cowpea). The bacteria were characterized for plant growth promoting properties such as indole acetic acid production, phosphate and zinc solubilisation, nitrogen fixation and hydrogen cyanide production. Phylogenetic identification was performed using the Neighbour-Joining method on16S rRNA gene sequences. The impact of salt tolerant isolates on some properties of wheat cv. Chamran was evaluated by a completely randomised factorial design. Nine isolates having some characteristics related to plant growth promotion were identified as Staphylococcus hominis 7E, Streptomyces sp. 11E, Bacillus sp. 13E, Acinetobacter sp. 19E, from mung bean, Bacillus endophyticus 1E from cowpea, Staphylococcus hominis 9E, Bacillus endophyticus 14E, Brevundimonas sp. 16E and Kocuria sp. 26E from soybean nodules. Isolates 7E and 19E caused maximum growth inhibition of Fusarium on PDA plate. All isolates were able to grow at salinity levels of mixtures containing up to 400 mM of NaCl, CaCl2 and MgCl2, but their growth was inhibited by increasing salinity level. Only the growth of isolate 14E increased at three levels of salinity compared with control. Some isolates, i.e. 7E, 14E, 19E and 26E had higher colony diameter at 45 °C after 48 h of incubation compared to the growth at 30 and 40 °C. Inoculation of soil with isolate 1E and isolate 26E caused to ameliorate salinity stress in wheat and increased the weight of 1000-grains as compared with non-inoculated treatments.
Collapse
Affiliation(s)
- Marzieh Bakhtiyarifar
- Soil Science & Engineering Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Naeimeh Enayatizamir
- Soil Science & Engineering Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Khosro Mehdi Khanlou
- Production Engineering & Plant Genetics Department, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
14
|
Santra B, Ramrakhiani L, Kar S, Ghosh S, Majumdar S. Ceramic membrane-based ultrafiltration combined with adsorption by waste derived biochar for textile effluent treatment and management of spent biochar. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:973-992. [PMID: 33312617 PMCID: PMC7721960 DOI: 10.1007/s40201-020-00520-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/05/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE Effluents produced in the textile industries are important sources of water pollution due to the presence of toxic dyes, auxiliary chemicals, organic substances etc. Recycling of such industrial wastewater is one major aspect of sustainable water management; hence present study is focused on an eco-friendly process development for reclamation of higher loading textile wastewater. METHOD Industrial effluent samples with varying loading were collected from textile processing units located in and around Kolkata city. Vegetable waste collected from local market was utilized to prepare an efficient biochar for elimination of the recalcitrant dyes. Prior to adsorption, ceramic ultrafiltration (UF) process was used for reduction of the organic loading and other suspended and dissolved components. RESULTS A remarkably high BET surface area of 1216 m2g-1 and enhanced pore volume of 1.139 cm3g-1 was observed for biochar. The maximum adsorption capacity obtained from the Langmuir isotherm was about 300 mg.g-1. The combined process facilitated >99% removal of dyes and 77-80% removal of chemical oxygen demand (COD) from the various samples of effluent. The treated effluent was found suitable to discharge or reuse in other purposes. About 95% of dye recovery was achieved during biochar regeneration with acetone solution. The dye loaded spent biochar was composted with dry leaves and garden soil as bulking agent. Prepared compost could achieve the recommended parameters with high nutritional value after 45 days. CONCLUSIONS The overall study showed potential of the proposed process towards treatment of toxic dye loaded textile effluent in an environment friendly and sustainable approach.
Collapse
Affiliation(s)
- Bhaskar Santra
- Water Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700032 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Lata Ramrakhiani
- Water Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700032 India
| | - Susmita Kar
- Water Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700032 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Sourja Ghosh
- Water Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700032 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Swachchha Majumdar
- Water Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700032 India
| |
Collapse
|
15
|
Biological hydrogen production from palm oil mill effluent (POME) by anaerobic consortia and Clostridium beijerinckii. J Biotechnol 2020; 323:17-23. [DOI: 10.1016/j.jbiotec.2020.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 04/02/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022]
|
16
|
Harindintwali JD, Zhou J, Yu X. Lignocellulosic crop residue composting by cellulolytic nitrogen-fixing bacteria: A novel tool for environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136912. [PMID: 32014770 DOI: 10.1016/j.scitotenv.2020.136912] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Lignocellulosic crop residue (LCCR) composting is a cost-effective and sustainable approach for addressing environmental pollution associated with open biomass burning and application of chemical fertilizers in agriculture. The value-added bio-product of the composting process contributes to the improvement of the soil properties and plant growth in an environment-friendly way. However, the conventional process employed for composting LCCRs is slow and becomes an impediment for farmers who plant two or three crops a year. This concern has led to the development of different techniques for rapid composting of LCCRs. The use of cellulolytic nitrogen-fixing microorganisms for composting has emerged as a promising method for enhancing LCCR composting and quality of the compost. Therefore, this review addresses the recent progress on the potential use of cellulolytic nitrogen-fixing bacteria (CNFB) for LCCR composting and discusses various applications of nutrient-rich compost for sustainable agriculture to increase crop yields in a nature-friendly way. This knowledge of bacteria with both cellulose-degrading and nitrogen-fixing activities is significant with respect to rapid composting, soil fertility, plant growth and sustainable management of the lignocellulosic agricultural waste and it provides a means for the development of new technology for sustainability.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi 214122, China
| | - Jianli Zhou
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi 214122, China
| | - Xiaobin Yu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi 214122, China.
| |
Collapse
|
17
|
A highly thermostable crude endoglucanase produced by a newly isolated Thermobifida fusca strain UPMC 901. Sci Rep 2019; 9:13526. [PMID: 31537863 PMCID: PMC6753106 DOI: 10.1038/s41598-019-50126-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/06/2019] [Indexed: 01/22/2023] Open
Abstract
A thermophilic Thermobifida fusca strain UPMC 901, harboring highly thermostable cellulolytic activity, was successfully isolated from oil palm empty fruit bunch compost. Its endoglucanase had the highest activity at 24 hours of incubation in carboxymethyl-cellulose (CMC) and filter paper. A maximum endoglucanase activity of 0.9 U/mL was achieved at pH 5 and 60 °C using CMC as a carbon source. The endoglucanase properties were further characterized using crude enzyme preparations from the culture supernatant. Thermal stability indicated that the endoglucanase activity was highly stable at 70 °C for 24 hours. Furthermore, the activity was found to be completely maintained without any loss at 50 °C and 60 °C for 144 hours, making it the most stable than other endoglucanases reported in the literature. The high stability of the endoglucanase at an elevated temperature for a prolonged period of time makes it a suitable candidate for the biorefinery application.
Collapse
|
18
|
Vegetative growth enhancement of organic fertilizer from anaerobically-treated palm oil mill effluent (POME) supplemented with chicken manure in food-energy-water nexus challenge. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Zhu L, Zhao Y, Zhang W, Zhou H, Chen X, Li Y, Wei D, Wei Z. Roles of bacterial community in the transformation of organic nitrogen toward enhanced bioavailability during composting with different wastes. BIORESOURCE TECHNOLOGY 2019; 285:121326. [PMID: 30986627 DOI: 10.1016/j.biortech.2019.121326] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to explore the roles of bacterial community in the transformation of bioavailable organic-N (BON) during different wastes composting. BON fractions with different forms and molecular weights were identified in this study. Results indicated that core bacterial communities improved the availability of BON by degrading high molecular weights BON into low molecular weights BON during different wastes composting. A total of fifty-two core bacterial genera involved in BON transformation were identified by network analysis. Three types of high molecular weights BON fractions (amino acid-N, amine-N and amino sugar-N) were degraded by bacteria during chicken manure and garden waste composting, while only amine-N was degraded during municipal solid waste composting. Finally, moisture, C/N and pH were identified as the key operational parameters affecting BON transformation mediated by microorganisms, which can be used to improve bioavailability of organic-N and reduce N loss during composting.
Collapse
Affiliation(s)
- Longji Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenshuai Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Haixuan Zhou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yingjun Li
- Beijing Vocational College of Agriculture, Beijing 100012, China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
20
|
Meng Q, Xu X, Zhang W, Men M, Xu B, Deng L, Bello A, Jiang X, Sheng S, Wu X. Bacterial community succession in dairy manure composting with a static composting technique. Can J Microbiol 2019; 65:436-449. [DOI: 10.1139/cjm-2018-0560] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qingxin Meng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Wenhao Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Mengqi Men
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Benshu Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xin Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Siyuan Sheng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiaotong Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
21
|
Zhang L, Ding L, He X, Ma H, Fu H, Wang J, Ren H. Effect of continuous and intermittent electric current on lignin wastewater treatment and microbial community structure in electro-microbial system. Sci Rep 2019; 9:805. [PMID: 30692563 PMCID: PMC6349836 DOI: 10.1038/s41598-018-34379-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
In this study, complex structured soluble lignin wastewater was treated by electro-microbial system (EMS) using different direct current (DC) application modes (CR (continuous ON), IR12h (12 h-ON/12 h-OFF) and IR2h (2 h-ON/2 h-OFF)), and physiological characteristics and microbial communities were investigated. Results showed that CR, IR12h and IR2h had higher lignin removals, which were almost two times that of the control reactor (R0′, no current), and IR2h performed best and stably. Furthermore, IR2h exhibited the lowest ohmic resistance (Rs) of electrode biofilms, which could be explained by its higher abundance of electroactive bacteria. In the activated sludge of EMS, the concentration of dehydrogenase activity (DHA) and electronic transport system (ETS) in IR2h were the highest (1.48 and 1.28 times of R0′), which contributed to its high content of adenosine triphosphate (ATP). The viability of activated sludge was not affected by different DC application modes. Phospholipid fatty acids (PLFA) analysis indicated that IR2h had the maximum content of C15:1 anteiso A, C16:0 and C18:0; CR increased the content of C15:0 anteiso and decreased the content of saturated fatty acids. Genus-level results revealed that lignin-degrading bacteria, Pseudoxanthomonas and Mycobacterium, could be enriched in IR2h and CR, respectively.
Collapse
Affiliation(s)
- Lulu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Xuemeng He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Haijun Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Huimin Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
22
|
Zhang D, Luo W, Yuan J, Li G. Co-biodrying of sewage sludge and organic fraction of municipal solid waste: Role of mixing proportions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 77:333-340. [PMID: 29705044 DOI: 10.1016/j.wasman.2018.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/10/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the performance of co-biodrying sewage sludge and organic fraction of municipal solid waste (OFMSW) at different proportions. Cornstalk was added at 15% (of total wet weight) as the bulking agent. Results show that increasing OFMSW percentage promoted the biodegradation of organic matter, thus enhancing the temperature integration value and water removal to above 75% during sludge and OFMSW co-biodrying. In particular, adding more OFMSW accelerated the biodegradation of soluble carbohydrates, lignins, lipids, and amylums, resulting in more organic loss and thus lower biodrying index (3.3-3.7 for 55-85% OFMSW). Water balance calculation indicated that evaporation was the main mechanism for water removal. Heat used for water evaporation was 37.7-48.6% of total heat consumption during co-biodrying. Our results suggest that sludge and OFMSW should be mixed equally for their efficient co-biodrying.
Collapse
Affiliation(s)
- Difang Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Chin CFS, Furuya Y, Zainudin MHM, Ramli N, Hassan MA, Tashiro Y, Sakai K. Novel multifunctional plant growth–promoting bacteria in co-compost of palm oil industry waste. J Biosci Bioeng 2017; 124:506-513. [DOI: 10.1016/j.jbiosc.2017.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 01/04/2023]
|
24
|
Complete Genome Sequence of Ureibacillus thermosphaericus A1, a Thermophilic Bacillus Isolated from Compost. GENOME ANNOUNCEMENTS 2017; 5:5/38/e00910-17. [PMID: 28935726 PMCID: PMC5609405 DOI: 10.1128/genomea.00910-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Ureibacillus thermosphaericus A1 was isolated from compost collected in Munakata City, Fukuoka Prefecture, Japan. Here, we report the first complete genome sequence of U. thermosphaericus. The complete genome of this strain consists of 3,488,104 bp with a GC content of 36.3% and comprises 3,362 predicted coding sequences.
Collapse
|
25
|
Ali SS, Abomohra AEF, Sun J. Effective bio-pretreatment of sawdust waste with a novel microbial consortium for enhanced biomethanation. BIORESOURCE TECHNOLOGY 2017; 238:425-432. [PMID: 28458176 DOI: 10.1016/j.biortech.2017.03.187] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 05/25/2023]
Abstract
Anaerobic digestion (AD) is considered an efficient cost-effective technology for sustainable biogas production from lignocellulosic wastes. A novel lignocellulosic degradation microbial consortium (LCDC) was isolated from rotten sawdust, and further used for sawdust pretreatment prior to AD. Results showed that pretreatment of sawdust for 10days led to significant reduction in cellulose, hemicelluloses, and lignin contents by 37.5%, 39.6%, and 56.7%, respectively, with respect to the control. In addition, the pretreatment enhanced cumulative biogas yield, which reached its maximum value of 312.0Lkg-1VS after 28days of AD (25.6% higher than the corresponding control). Moreover, the maximum significant cumulative methane yield was recorded after 28days of AD of the pretreated sawdust (155.2Lkg-1VS), which represented 72.6% higher than the corresponding control. Significantly higher biomethane yield from sawdust pretreated with LCDC confirms that this process is more economical than the previous reports.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 212013 Zhenjiang, China; Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Abd El-Fatah Abomohra
- School of Energy and Power Engineering, Jiangsu University, 212013 Zhenjiang, China; Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 212013 Zhenjiang, China.
| |
Collapse
|
26
|
Bacterial community shift for monitoring the co-composting of oil palm empty fruit bunch and palm oil mill effluent anaerobic sludge. ACTA ACUST UNITED AC 2017; 44:869-877. [DOI: 10.1007/s10295-017-1916-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/31/2017] [Indexed: 11/26/2022]
Abstract
Abstract
A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.
Collapse
|
27
|
Kazeem MO, Shah UKM, Baharuddin AS, AbdulRahman NA. Prospecting Agro-waste Cocktail: Supplementation for Cellulase Production by a Newly Isolated Thermophilic B. licheniformis 2D55. Appl Biochem Biotechnol 2017; 182:1318-1340. [PMID: 28176140 PMCID: PMC5534209 DOI: 10.1007/s12010-017-2401-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/09/2017] [Indexed: 01/17/2023]
Abstract
Bacteria isolated from thermophilic environment that can produce cellulase as well as utilise agro-waste biomass have a high potential for developing thermostable cellulase required in the biofuel industry. The cost for cellulase represents a significant challenge in converting lignocellulose to fermentable sugars for biofuel production. Among three potential bacteria examined, Bacillus licheniformis 2D55 (accession no. KT799651) was found to produce the highest cellulolytic activity (CMCase 0.33 U/mL and FPase 0.09 U/mL) at 18–24 h fermentation when grown on microcrystalline cellulose (MCC) as a carbon source in shake flask at 50 °C. Cellulase production process was further conducted on the untreated and NaOH pretreated rice straw (RS), rice husk (RH), sugarcane bagasse (BAG) and empty fruit bunch (EFB). Untreated BAG produced the highest FPase (0.160 U/mL), while the highest CMCase (0.150 U/mL) was supported on the pretreated RH. The mixture of untreated BAG and pretreated RH as agro-waste cocktail has remarkably improved CMCase (3.7- and 1.4-fold) and FPase (2.5- and 11.5-fold) compared to the untreated BAG and pretreated RH, respectively. The mechanism of cellulase production explored through SEM analysis and the location of cellulase enzymes of the isolate was also presented. Agro-waste cocktail supplementation provides an alternative method for an efficient production of cellulase.
Collapse
Affiliation(s)
- Muinat Olanike Kazeem
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Life Sciences, University of Ilorin, Ilorin, Kwara State, 1515, Nigeria
| | - Umi Kalsom Md Shah
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Azhari Samsu Baharuddin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nor' Aini AbdulRahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
28
|
Jia S, Han H, Hou B, Zhuang H. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of three-dimensional catalytic electro-Fenton and membrane bioreactor. BIORESOURCE TECHNOLOGY 2015; 198:918-921. [PMID: 26428576 DOI: 10.1016/j.biortech.2015.09.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Laboratorial scale experiments were conducted to investigate a novel system three-dimensional catalytic electro-Fenton (3DCEF, catalyst of sewage sludge based activated carbon which loaded Fe3O4) integrating with membrane bioreactor (3DCEF-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. The results indicated that 3DCEF-MBR represented high efficiencies in eliminating COD and total organic carbon, giving the maximum removal efficiencies of 80% and 75%, respectively. The integrated 3DCEF-MBR system significantly reduced the transmembrane pressure, giving 35% lower than conventional MBR after 30 days operation. The enhanced hydroxyl radical oxidation and bacteria self repair function were the mechanisms for 3DCEF-MBR performance. Therefore, the integrated 3DCEF-MBR was expected to be the promising technology for advanced treatment in engineering applications.
Collapse
Affiliation(s)
- Shengyong Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Baolin Hou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haifeng Zhuang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
29
|
Chen Y, Zhang Y, Zhang Q, Xu L, Li R, Luo X, Zhang X, Tong J. Earthworms modify microbial community structure and accelerate maize stover decomposition during vermicomposting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17161-17170. [PMID: 26139410 DOI: 10.1007/s11356-015-4955-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
In the present study, maize stover was vermicomposted with the epigeic earthworm Eisenia fetida. The results showed that, during vermicomposting process, the earthworms promoted decomposition of maize stover. Analysis of microbial communities of the vermicompost by high-throughput pyrosequencing showed more complex bacterial community structure in the substrate treated by the earthworms than that in the control group. The dominant microbial genera in the treatment with the earthworms were Pseudoxanthomonas, Pseudomonas, Arthrobacter, Streptomyces, Cryptococcus, Guehomyces, and Mucor. Compared to the control group, the relative abundance of lignocellulose degradation microorganisms increased. The results indicated that the earthworms modified the structure of microbial communities during vermicomposting process, activated the growth of lignocellulose degradation microorganisms, and triggered the lignocellulose decomposition.
Collapse
Affiliation(s)
- Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130025, China
- Key Laboratory of Biomimetic Engineering (Jilin University), Ministry of Education, Changchun, 130025, China
| | - Yufen Zhang
- Key Laboratory of Biodiversity Science and Ecological Engineering (Beijing Normal University), Ministry of Education, Beijing, 100875, China
| | - Quanguo Zhang
- Key Laboratory of Biodiversity Science and Ecological Engineering (Beijing Normal University), Ministry of Education, Beijing, 100875, China
| | - Lixin Xu
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130025, China
| | - Ran Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130025, China
| | - Xiaopei Luo
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130025, China
| | - Xin Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130025, China
| | - Jin Tong
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130025, China.
- Key Laboratory of Biomimetic Engineering (Jilin University), Ministry of Education, Changchun, 130025, China.
- Collaborative Innovation Center of Grain Production Capacity Improvement in Heilongjiang Province, Harbin, China.
| |
Collapse
|
30
|
Chen Y, Zhang Q, Zhang Y, Chen J, Zhang D, Tong J. Changes in fibrolytic enzyme activity during vermicomposting of maize stover by an anecic earthworm Amynthas hupeiensis. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Nuchdang S, Khemkhao M, Techkarnjanaruk S, Phalakornkule C. Comparative biochemical methane potential of paragrass using an unacclimated and an acclimated microbial consortium. BIORESOURCE TECHNOLOGY 2015; 183:111-119. [PMID: 25727758 DOI: 10.1016/j.biortech.2015.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 06/04/2023]
Abstract
The effect of inoculum sources on the anaerobic digestion of paragrass was investigated. Two types of sludge were used as the inoculums: an anaerobic sludge obtained from a domestic wastewater treatment plant (OS) and a sludge acclimated to fibrous substrates in raw palm oil mill effluent (AMC). Microbial activity assays showed that the AMC had hydrolytic and acetogenic activities two times greater than the activities of the OS. In addition, the production of methane from acetate by the AMC occurred without a lag phase, while it took 8 days for the OS to start producing methane from the same substrate. The biochemical methane potential after 80 days digestion was 316 ml STP/g VS(added) using the AMC, and 277 ml STP/g VS(added) using the OS. The methane potential of the paragrass was estimated to be 3337 Nm(3) CH4/ha a.
Collapse
Affiliation(s)
- Sasikarn Nuchdang
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand; The Research and Technology Center for Renewable Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Maneerat Khemkhao
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand; The Research and Technology Center for Renewable Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | | | - Chantaraporn Phalakornkule
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand; The Research and Technology Center for Renewable Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand; Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand.
| |
Collapse
|
32
|
Lv Y, Chen Y, Sun S, Hu Y. Interaction among multiple microorganisms and effects of nitrogen and carbon supplementations on lignin degradation. BIORESOURCE TECHNOLOGY 2014; 155:144-151. [PMID: 24445191 DOI: 10.1016/j.biortech.2013.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
The mutual interactions among the consortium constructed by four indigenous bacteria and five inter-kingdom fusants and the effects of nitrogen and carbon supplementations on lignin degradation and laccase activity were investigated. Analyzed by Plackett-Burman and central composite design, the microbial consortium were optimized, Bacillus sp. (B) and PE-9 and Pseudomonas putida (Pp) and PE-9 had significant interactions on lignin degradation based on a 5% level of significance. The nitrogen and carbon supplementations played an important role in lignin degradation and laccase production. The ultimate lignin degradation efficiency of 96.0% and laccase activity of 268U/L were obtained with 0.5g/L of ammonium chloride and 2g/L of sucrose. Results suggested that a stable and effective microbial consortium in alkalescent conditions was successfully achieved through the introduction of fusants, which was significant for its industrial application.
Collapse
Affiliation(s)
- Yuancai Lv
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640, China.
| | - Yuancai Chen
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640, China; Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Shiying Sun
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640, China
| | - Yongyou Hu
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640, China; Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
33
|
Wong YS, Teng TT, Ong SA, Morad N, Rafatullah M. Suspended growth kinetic analysis on biogas generation from newly isolated anaerobic bacterial communities for palm oil mill effluent at mesophilic temperature. RSC Adv 2014. [DOI: 10.1039/c4ra08483g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The anaerobic degradation of palm oil mill effluent (POME) was carried out under mesophilic temperature in an anaerobic suspended growth closed bioreactor (ASGCB).
Collapse
Affiliation(s)
- Yee-Shian Wong
- School of Industrial Technology
- Universiti Sains Malaysia
- 11600 Gelugor, Malaysia
- School of Environmental Engineering
- Universiti Malaysia Perlis
| | - Tjoon Tow Teng
- School of Industrial Technology
- Universiti Sains Malaysia
- 11600 Gelugor, Malaysia
| | - Soon-An Ong
- School of Environmental Engineering
- Universiti Malaysia Perlis
- 02600 Arau, Malaysia
| | - Norhashimah Morad
- School of Industrial Technology
- Universiti Sains Malaysia
- 11600 Gelugor, Malaysia
| | - Mohd Rafatullah
- School of Industrial Technology
- Universiti Sains Malaysia
- 11600 Gelugor, Malaysia
| |
Collapse
|