1
|
Yao ZY, Gong JS, Jiang JY, Su C, Zhao WH, Xu ZH, Shi JS. Unraveling the intricacies of glycosaminoglycan biosynthesis: Decoding the molecular symphony in understanding complex polysaccharide assembly. Biotechnol Adv 2024; 75:108416. [PMID: 39033835 DOI: 10.1016/j.biotechadv.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Glycosaminoglycans (GAGs) are extensively utilized in clinical, cosmetic, and healthcare field, as well as in the treatment of thrombosis, osteoarthritis, rheumatism, and cancer. The biological production of GAGs is a strategy that has garnered significant attention due to its numerous advantages over traditional preparation methods. In this review, we embark on a journey to decode the intricate molecular symphony that orchestrates the biosynthesis of glycosaminoglycans. By unraveling the complex interplay of related enzymes and thorough excavation of the intricate metabolic cascades involved, GAGs chain aggregation and transportation, which efficiently and controllably modulate GAGs sulfation patterns involved in biosynthetic pathway, we endeavor to offer a thorough comprehension of how these remarkable GAGs are intricately assembled and pushes the boundaries of our understanding in GAGs biosynthesis.
Collapse
Affiliation(s)
- Zhi-Yuan Yao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Wen-Han Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China; College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| |
Collapse
|
2
|
Mousavi S, Esfandiar R, Najafpour-Darzi G. Hyaluronic acid production by Streptococcus zooepidemicus MW26985 using potato peel waste hydrolyzate. Bioprocess Biosyst Eng 2024; 47:1003-1015. [PMID: 38811468 DOI: 10.1007/s00449-024-03007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/20/2024] [Indexed: 05/31/2024]
Abstract
In this research, we examined the production of hyaluronic acid (HA) by Streptococcus zooepidemicus strain MW26985 using different substrates and potato peel waste (PPW) as an affordable substrate. First, culture medium components, including carbon and nitrogen sources, were optimized for bacterial HA production. Five different carbon sources (glucose, sucrose, lactose, sago starch, and potato starch, at a concentration of 30 g/L) and three distinct nitrogen sources (peptone, yeast extract, and ammonium sulfate, at a concentration of 10 g/L) were investigated. Glucose, among the carbon sources, and yeast extract, among nitrogen sources, produced the most HA which was determined as 1.41 g/L. Afterward, potato peel sugars were extracted by dilute acid and enzymatic hydrolysis and then employed as a cost-effective carbon source for the growth of S. zooepidemicus. Based on the results, the fermentation process yielded 0.59 g/L HA from potato peel sugars through acid hydrolysis and 0.92 g/L HA from those released by enzymatic hydrolysis. The supplementation of both hydrolyzates with glucose as an additional carbon source enhanced HA production to 0.95 g/L and 1.18 g/L using acidic and enzymatic hydrolyzates, respectively. The cetyltrimethylammonium bromide (CTAB) turbidimetric method was used to evaluate the concentration of HA in the fermentation broth using the colorimetric method. Also, the peaks observed by Fourier transform infrared (FTIR) spectroscopy confirmed that the exopolysaccharide (EPS) was composed of HA. These observations demonstrate that potato peel residues can be a novel alternative as a carbon source for the economical production of HA by S. zooepidemicus.
Collapse
Affiliation(s)
- Seyedali Mousavi
- Biotechnology Research Laboratory, Department of Biochemical Engineering, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, P.O. Box 47148-71167, Babol, Iran
| | - Razieh Esfandiar
- Biotechnology Research Laboratory, Department of Biochemical Engineering, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, P.O. Box 47148-71167, Babol, Iran
| | - Ghasem Najafpour-Darzi
- Biotechnology Research Laboratory, Department of Biochemical Engineering, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, P.O. Box 47148-71167, Babol, Iran.
| |
Collapse
|
3
|
Wei M, Huang Y, Zhu J, Qiao Y, Xiao N, Jin M, Gao H, Huang Y, Hu X, Li O. Advances in hyaluronic acid production: Biosynthesis and genetic engineering strategies based on Streptococcus - A review. Int J Biol Macromol 2024; 270:132334. [PMID: 38744368 DOI: 10.1016/j.ijbiomac.2024.132334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Hyaluronic acid (HA), which is a highly versatile glycosaminoglycan, is widely applied across the fields of food, cosmetics, and pharmaceuticals. It is primary produced through Streptococcus fermentation, but the product presents inherent challenges concerning consistency and potential pathogenicity. However, recent strides in molecular biology have paved the way for genetic engineering, which facilitates the creation of high-yield, nonpathogenic strains adept at synthesizing HA with specific molecular weights. This comprehensive review extensively explores the molecular biology underpinning pivotal HA synthase genes, which elucidates the intricate mechanisms governing HA synthesis. Moreover, it delineates various strategies employed in engineering HA-producing strains.
Collapse
Affiliation(s)
- Mengmeng Wei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Ying Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Junyuan Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Yufan Qiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Na Xiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Mengying Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Han Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Yitie Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Xiufang Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Ou Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China.
| |
Collapse
|
4
|
Wang D, Hu L, Xu R, Zhang W, Xiong H, Wang Y, Du G, Kang Z. Production of different molecular weight glycosaminoglycans with microbial cell factories. Enzyme Microb Technol 2023; 171:110324. [PMID: 37742407 DOI: 10.1016/j.enzmictec.2023.110324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
Glycosaminoglycans (GAGs) are naturally occurring acidic polysaccharides with wide applications in pharmaceuticals, cosmetics, and health foods. The diverse biological activities and physiological functions of GAGs are closely associated with their molecular weights and sulfation patterns. Except for the non-sulfated hyaluronan which can be synthesized naturally by group A Streptococcus, all the other GAGs such as heparin and chondroitin sulfate are mainly acquired from animal tissues. Microbial cell factories provide a more effective platform for the production of structurally homogeneous GAGs. Enhancing the production efficiency of polysaccharides, accurately regulating the GAGs molecular weight, and effectively controlling the sulfation degree of GAGs represent the major challenges of developing GAGs microbial cell factories. Several enzymatic, metabolic engineering, and synthetic biology strategies have been developed to tackle these obstacles and push forward the industrialization of biotechnologically produced GAGs. This review summarizes the recent advances in the construction of GAGs synthesis cell factories, regulation of GAG molecular weight, and modification of GAGs chains. Furthermore, the challenges and prospects for future research in this field are also discussed.
Collapse
Affiliation(s)
- Daoan Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Haibo Xiong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
5
|
Cimini D, Bedini E, Schiraldi C. Biotechnological advances in the synthesis of modified chondroitin towards novel biomedical applications. Biotechnol Adv 2023; 67:108185. [PMID: 37290584 DOI: 10.1016/j.biotechadv.2023.108185] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Chondroitin sulfate (CS) is a well-known glycosaminoglycan present in a large variety of animal tissues, with an outstanding structural heterogeneity mainly related to molecular weight and sulfation pattern. Recently, few microorganisms, eventually engineered, proved able to synthesize the CS biopolymer backbone, composed of d-glucuronic acid and N-acetyl-d-galactosamine linked through alternating β-(1-3)- and β-(1-4)-glycosidic bonds, and secrete the biopolymers generally unsulfated and possibly decorated with other carbohydrates/molecules. Enzyme catalyzed/assisted methods and chemical tailored protocols allowed to obtain a variety of macromolecules not only resembling the natural extractive ones, but even enlarging the access to unnatural structural features. These macromolecules have been investigated for their bioactivity in vitro and in vivo establishing their potentialities in an array of novel applications in the biomedical field. This review aims to present an overview of the advancements in: i) the metabolic engineering strategies and the biotechnological processes towards chondroitin manufacturing; ii) the chemical approaches applied to obtain specific structural features and targeted decoration of the chondroitin backbone; iii) the biochemical and biological properties of the diverse biotechnological-sourced chondroitin polysaccharides reported so far, unraveling novel fields of applications.
Collapse
Affiliation(s)
- Donatella Cimini
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100 Caserta, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, I-80126 Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, School of Medicine, University of Campania "Luigi Vanvitelli", via L. de Crecchio 7, I-80138 Naples, Italy.
| |
Collapse
|
6
|
Yao ZY, Gong JS, Liu YR, Jiang JY, Zhang YS, Su C, Li H, Kang CL, Liu L, Xu ZH, Shi JS. Genetic variation reveals the enhanced microbial hyaluronan biosynthesis via atmospheric and room temperature plasma. Carbohydr Polym 2023; 312:120809. [PMID: 37059520 DOI: 10.1016/j.carbpol.2023.120809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
This study reveals the genetic and biochemical changes underlying the enhanced hyaluronan (HA) biosynthesis in Streptococcus zooepidemicus. After multiple rounds of atmospheric and room temperature plasma (ARTP) mutagenesis combined with novel bovine serum albumin/cetyltrimethylammonium bromide coupled high-throughput screening assay, the HA yield of the mutant was increased by 42.9% and reached 0.813 g L-1 with a molecular weight of 0.54 × 106 Da within 18 h by shaking flask culture. HA production was increased to 4.56 g L-1 by batch culture in 5-L fermenter. Transcriptome sequencing exhibits that distinct mutants have similar genetic changes. Regulation in direction of metabolic flow into the HA biosynthesis, by enhancing genes responsible for the biosynthesis of HA including hasB, glmU and glmM, weaking downstream gene (nagA and nagB) of UDP-GlcNAc and significantly down-regulating transcription of wall-synthesizing genes, resulting in the accumulation of precursors (UDP-GlcA and UDP-GlcNAc) increased by 39.74% and 119.22%, respectively. These associated regulatory genes may provide control point for engineering of the efficient HA-producing cell factory.
Collapse
Affiliation(s)
- Zhi-Yuan Yao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, PR China.
| | - Yu-Ru Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yue-Sheng Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chuan-Li Kang
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Lei Liu
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, PR China.
| |
Collapse
|
7
|
Serra M, Casas A, Toubarro D, Barros AN, Teixeira JA. Microbial Hyaluronic Acid Production: A Review. Molecules 2023; 28:molecules28052084. [PMID: 36903332 PMCID: PMC10004376 DOI: 10.3390/molecules28052084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Microbial production of hyaluronic acid (HA) is an area of research that has been gaining attention in recent years due to the increasing demand for this biopolymer for several industrial applications. Hyaluronic acid is a linear, non-sulfated glycosaminoglycan that is widely distributed in nature and is mainly composed of repeating units of N-acetylglucosamine and glucuronic acid. It has a wide and unique range of properties such as viscoelasticity, lubrication, and hydration, which makes it an attractive material for several industrial applications such as cosmetics, pharmaceuticals, and medical devices. This review presents and discusses the available fermentation strategies to produce hyaluronic acid.
Collapse
Affiliation(s)
- Mónica Serra
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
- Correspondence: (M.S.); or (A.N.B.)
| | - Ana Casas
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Duarte Toubarro
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus No 13, 9500-321 Ponta Delgada, Portugal
| | - Ana Novo Barros
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Correspondence: (M.S.); or (A.N.B.)
| | - José António Teixeira
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Hu L, Wang Y, Hu Y, Yin J, Wang L, Du G, Chen J, Kang Z. Biosynthesis of non-sulfated high-molecular-weight glycosaminoglycans and specific-sized oligosaccharides. Carbohydr Polym 2022; 295:119829. [DOI: 10.1016/j.carbpol.2022.119829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
|
9
|
Jeeva P, Jayaprakash SR, Jayaraman G. Hyaluronic acid production is enhanced by harnessing the heme-induced respiration in recombinant Lactococcus lactis cultures. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Couto MR, Rodrigues JL, Rodrigues LR. Heterologous production of chondroitin. BIOTECHNOLOGY REPORTS 2022; 33:e00710. [PMID: 35242620 PMCID: PMC8858990 DOI: 10.1016/j.btre.2022.e00710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 01/01/2023]
Abstract
Chondroitin sulfate (CS) is a glycosaminoglycan with a growing variety of applications. CS can be produced from microbial fermentation of native or engineered strains. Synthetic biology tools are being used to improve CS yields in different hosts. Integrated polymerization and sulfation can generate cost-effective CS.
Chondroitin sulfate (CS) is a glycosaminoglycan with a broad range of applications being a popular dietary supplement for osteoarthritis. Usually, CS is extracted from animal sources. However, the known risks of animal products use have been driving the search for alternative methods and sources to obtain this compound. Several pathogenic bacteria naturally produce chondroitin-like polysaccharides through well-known pathways and, therefore, have been the basis for numerous studies that aim to produce chondroitin using non-pathogenic hosts. However, the yields obtained are not enough to meet the high demand for this glycosaminoglycan. Metabolic engineering strategies have been used to construct improved heterologous hosts. The identification of metabolic bottlenecks and regulation points, and the screening for efficient enzymes are key points for constructing microbial cell factories with improved chondroitin yields to achieve industrial CS production. The recent advances on enzymatic and microbial strategies to produce non-animal chondroitin are herein reviewed. Challenges and prospects for future research are also discussed.
Collapse
Affiliation(s)
- Márcia R. Couto
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana L. Rodrigues
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
- Corresponding author.
| | - Lígia R. Rodrigues
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
11
|
Mohan N, Pavan SS, Jayakumar A, Rathinavelu S, Sivaprakasam S. Real-time metabolic heat-based specific growth rate soft sensor for monitoring and control of high molecular weight hyaluronic acid production by Streptococcus zooepidemicus. Appl Microbiol Biotechnol 2022; 106:1079-1095. [PMID: 35076739 DOI: 10.1007/s00253-022-11760-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022]
Abstract
This present investigation addressing the metabolic bottleneck in synthesis of high MW HA by Streptococcus zooepidemicus and illustrates the application of calorimetric fed-batch control of µ at a narrower range. Feedforward (FF) and feedback (FB) control was devised to improve the molecular weight (MW) of HA production by S. zooepidemicus. Metabolic heat measurements (Fermentation calorimetry) were modeled to decipher real-time specific growth rate, [Formula: see text] was looped into the PID circuit, envisaged to control [Formula: see text] to their desired setpoint values 0.05 [Formula: see text], 0.1 [Formula: see text], and 0.15 [Formula: see text] respectively. Similarly, a predetermined exponential feed rate irrespective of real-time µ was carried out in FF strategy. The developed FB strategy established a robust control capable of maintaining the specific growth rate (µ) close to the [Formula: see text] value with a minimal tracking error. Exponential feed rate carried out with a lowest [Formula: see text] of 0.05 [Formula: see text] showed an improved MW of HA to 2.98 MDa and 2.94 MDa for the FF and FB-based control strategies respectively. An optimal HA titer of 4.73 g/L was achieved in FF control strategy at [Formula: see text]. Superior control of µ at low [Formula: see text] value was observed to influence HA polymerization positively by yielding an improved MW and desired polydispersity index (PDI) of HA. PID control offers advantage over conventional fed-batch method to synthesize HA at an improved MW. Calorimetric signal-based µ control by PID negates adverse effects due to the secretion of other end products albeit maintaining regular metabolic activities. KEY POINTS: First report to compare HA productivities by feedforward and feedback control strategy. Inherent merits of regulating µ at narrower range were entailed. Relationship between operating µ and HA molecular weight was discussed.
Collapse
Affiliation(s)
- Naresh Mohan
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Satya Sai Pavan
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Anjali Jayakumar
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sivakumar Rathinavelu
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Senthilkumar Sivaprakasam
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
12
|
Nazeri A, Niazi A, Afsharifar A, Taghavi SM, Moghadam A, Aram F. Heterologous production of hyaluronic acid in Nicotiana tabacum hairy roots expressing a human hyaluronan synthase 2. Sci Rep 2021; 11:17966. [PMID: 34504153 PMCID: PMC8429445 DOI: 10.1038/s41598-021-97139-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Hyaluronic acid (HA), a unique polysaccharide with excellent Physico-chemical properties, is broadly used in pharmaceutical, biomedical, and cosmetic fields. It is widely present in all vertebrates, certain bacterial strains, and even viruses while it is not found in plants, fungi, and insects. HA is naturally synthesized by a class of integral membrane proteins called Hyaluronic acid synthase (HAS). Thus far, industrial production of HA is carried out based on either extraction from animal sources or large-scale microbial fermentation. The major drawbacks to using these systems are contamination with pathogens and microbial toxins. Recently, the production of HA through recombinant systems has received considerable attention. Plants are eco-friendly ideal expression systems for biopharmaceuticals production. In this study, the optimized human hyaluronic acid synthase2 (hHAS2) sequence was transformed into Nicotiana tabacum using Agrobacterium rhizogenes. The highest rhHAS2 concentration of 65.72 ng/kg (wet weight) in transgenic tobacco hairy roots was measured by the human HAS2 ELISA kit. The HA production in the transgenic hairy roots was verified by scanning electron microscope (SEM) and quantified by the HA ELISA kit. The DPPH radical scavenging activity of HA with the highest concentration of 0.56 g/kg (wet weight) showed a maximum activity of 46%. Gel Permeation Chromatography (GPC) analyses revealed the high molecular weight HA (HMW-HA) with about > 0.8 MDa.
Collapse
Affiliation(s)
- Arezoo Nazeri
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Seyed Mohsen Taghavi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Farzaneh Aram
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| |
Collapse
|
13
|
Manfrão-Netto JHC, Queiroz EB, de Oliveira Junqueira AC, Gomes AMV, Gusmão de Morais D, Paes HC, Parachin NS. Genetic strategies for improving hyaluronic acid production in recombinant bacterial culture. J Appl Microbiol 2021; 132:822-840. [PMID: 34327773 DOI: 10.1111/jam.15242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/24/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
Hyaluronic acid (HA) is a biopolymer of repeating units of glucuronic acid and N-acetylglucosamine. Its market was valued at USD 8.9 billion in 2019. Traditionally, HA has been obtained from rooster comb-like animal tissues and fermentative cultures of attenuated pathogenic streptococci. Various attempts have been made to engineer a safe micro-organism for HA synthesis; however, the HA titres obtained from these attempts are in general still lower than those achieved by natural, pathogenic producers. In this scenario, ways to increase HA molecule length and titres in already constructed strains are gaining attention in the last years, but no recent publication has reviewed the main genetic strategies applied to improve HA production on heterologous hosts. In light of that, we hereby compile the advances made in the engineering of micro-organisms to improve HA synthesis.
Collapse
Affiliation(s)
- João H C Manfrão-Netto
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Enzo Bento Queiroz
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Ana C de Oliveira Junqueira
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Antônio M V Gomes
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Daniel Gusmão de Morais
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil.,Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Hugo Costa Paes
- Clinical Medicine Division, University of Brasília Medical School, Brasília, Brazil
| | - Nádia Skorupa Parachin
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil.,Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
14
|
Qiu Y, Ma Y, Huang Y, Li S, Xu H, Su E. Current advances in the biosynthesis of hyaluronic acid with variable molecular weights. Carbohydr Polym 2021; 269:118320. [PMID: 34294332 DOI: 10.1016/j.carbpol.2021.118320] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022]
Abstract
Hyaluronic acid (HA) is a naturally formed acidic mucopolysaccharide, with excellent moisturising properties and used widely in the medicine, cosmetics, and food industries. The industrial production of specific molecular weight HA has become imperative. Different biological activities and physiological functions of HA mainly depend on the degree of polymerisation. This article reviews the research status and development prospects of the green biosynthesis and molecular weight regulation of HA. There is an application-based prerequisite of specific molecular weight of HA that could be regulated either during the fermentation process or via a controlled HA degradation process. This work provides an important theoretical basis for the downstream efficient production of diversified HA, which will further accelerate the research applications of HA and provide a good scientific basis and method reference for the study of the molecular weight regulation of similar biopolymers.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; Yangzhou Rixing Bio-Tech Co., Ltd., Yangzhou 225601, PR China.
| | - Yanqin Ma
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
15
|
Wang J, He W, Wang T, Li M, Li X. Sucrose-modified iron nanoparticles for highly efficient microbial production of hyaluronic acid by Streptococcus zooepidemicus. Colloids Surf B Biointerfaces 2021; 205:111854. [PMID: 34022706 DOI: 10.1016/j.colsurfb.2021.111854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 11/18/2022]
Abstract
Nanoparticles (NPs) were hypothesized to enhance fermentation processes and assist microorganisms in producing valuable biopolymers. Donors of trace iron, i.e., FeSO4·7H2O, zero-valence iron nanoparticles (Fe NPs), and ferric oxide nanoparticles (α-Fe2O3 NPs), were tested to study the impact on hyaluronic acid (HA) production. The bioprocess with the addition of 30 mg/L Fe NPs produced higher HA than the other groups. However, Fe NPs were limited by the synergistic effect of geomagnetism and high surface energy, resulting in obvious agglomeration behavior. To address this, we developed novel sucrose-modified iron nanoparticles (SM-Fe NPs), which showed effective improvement of dispersion and agglomeration. Concerning the SM-Fe NP additives, an adequate supply of nutrients and trace elements provided sufficient substrates and energy for the reproduction of Streptococcus zooepidemicus. Furthermore, the highest HA production with the addition of 30 mg/L SM-Fe NPs was 0.226 g/L, and the dry weight of the produced HA increased 3.28 times compared with the control group (0.069 g/L). This work significantly improved HA production and presented promising opportunities for industrial production.
Collapse
Affiliation(s)
- Ji Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, PR China
| | - Wei He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, PR China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, PR China
| | - Man Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 214122, PR China.
| |
Collapse
|
16
|
Versatile strategies for bioproduction of hyaluronic acid driven by synthetic biology. Carbohydr Polym 2021; 264:118015. [PMID: 33910717 DOI: 10.1016/j.carbpol.2021.118015] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 01/16/2023]
Abstract
Owing to its outstanding water-retention ability, viscoelasticity, biocompatibility and non-immunogenicity, Hyaluronic acid (HA), a natural linear polymer alternating linked by d-glucuronic acid and N-acetylglucosamine, has been widely employed in cosmetic, medical and clinical applications. With the development of synthetic biology and bioprocessing optimization, HA production via microbial fermentation is an economical and sustainable alternative over traditional animal extraction methods. Indeed, recently Streptococci and other recombinant systems for HA synthesis has received increasing interests due to its technical advantages. This review summarizes the production of HA by microorganisms and demonstrates its synthesis mechanism, focusing on the current status in various production systems, as well as common synthetic biology strategies include driving more carbon flux into HA biosynthesis and regulating the molecular weight (MW), and finally discusses the major challenges and prospects.
Collapse
|
17
|
Bai T, Wang T, Li Y, Gao NL, Zhang L, Chen WH, Yin X. Optimization of scleroglucan production by Sclerotium rolfsii by lowering pH during fermentation via oxalate metabolic pathway manipulation using CRISPR/Cas9. Fungal Biol Biotechnol 2021; 8:1. [PMID: 33602329 PMCID: PMC7893912 DOI: 10.1186/s40694-021-00108-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/29/2021] [Indexed: 12/27/2022] Open
Abstract
Background Sclerotium rolfsii is a potent producer of many secondary metabolites, one of which like scleroglucan is an exopolysaccharide (EPS) appreciated as a multipurpose compound applicable in many industrial fields. Results Aspartate transaminase (AAT1) catalyzes the interconversion of aspartate and α-ketoglutarate to glutamate and oxaloacetate. We selected AAT1 in the oxalate metabolic pathway as a target of CRISPR/Cas9. Disruption of AAT1 leads to the accumulation of oxalate, rather than its conversion to α-ketoglutarate (AKG). Therefore, AAT1-mutant serves to lower the pH (pH 3–4) so as to increase the production of the pH-sensitive metabolite scleroglucan to 21.03 g L−1 with a productivity of up to 0.25 g L−1·h−1. Conclusions We established a platform for gene editing that could rapidly generate and select mutants to provide a new beneficial strain of S. rolfsii as a scleroglucan hyper-producer, which is expected to reduce the cost of controlling the optimum pH condition in the fermentation industry.
Collapse
Affiliation(s)
- Tianlong Bai
- Applied Biology Laboratory, Shenyang University of Chemical Technology, Shenyang, 110142, China.,Liaoning Province Key Laboratory of Green Functional Molecule Design and Development, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Teng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yan Li
- Liaoning Province Key Laboratory of Green Functional Molecule Design and Development, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Na L Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lixin Zhang
- Liaoning Province Key Laboratory of Green Functional Molecule Design and Development, Shenyang University of Chemical Technology, Shenyang, 110142, China.
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,College of Life Science, HeNan Normal University, Xinxiang, 453007, Henan, China.
| | - Xiushan Yin
- Applied Biology Laboratory, Shenyang University of Chemical Technology, Shenyang, 110142, China.
| |
Collapse
|
18
|
Manfrão-Netto JHC, Queiroz EB, Rodrigues KA, Coelho CM, Paes HC, Rech EL, Parachin NS. Evaluation of Ogataea ( Hansenula) polymorpha for Hyaluronic Acid Production. Microorganisms 2021; 9:microorganisms9020312. [PMID: 33546444 PMCID: PMC7913781 DOI: 10.3390/microorganisms9020312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/29/2022] Open
Abstract
Hyaluronic acid (HA) is a biopolymer formed by UDP-glucuronic acid and UDP-N-acetyl-glucosamine disaccharide units linked by β-1,4 and β-1,3 glycosidic bonds. It is widely employed in medical and cosmetic procedures. HA is synthesized by hyaluronan synthase (HAS), which catalyzes the precursors’ ligation in the cytosol, elongates the polymer chain, and exports it to the extracellular space. Here, we engineer Ogataea (Hansenula) polymorpha for HA production by inserting the genes encoding UDP-glucose 6-dehydrogenase, for UDP-glucuronic acid production, and HAS. Two microbial HAS, from Streptococcus zooepidemicus (hasAs) and Pasteurella multocida (hasAp), were evaluated separately. Additionally, we assessed a genetic switch using integrases in O. polymorpha to uncouple HA production from growth. Four strains were constructed containing both has genes under the control of different promoters. In the strain containing the genetic switch, HA production was verified by a capsule-like layer around the cells by scanning electron microscopy in the first 24 h of cultivation. For the other strains, the HA was quantified only after 48 h and in an optimized medium, indicating that HA production in O. polymorpha is limited by cultivation conditions. Nevertheless, these results provide a proof-of-principle that O. polymorpha is a suitable host for HA production.
Collapse
Affiliation(s)
- João Heitor Colombelli Manfrão-Netto
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Brazil; (J.H.C.M.-N.); (E.B.Q.); (K.A.R.)
| | - Enzo Bento Queiroz
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Brazil; (J.H.C.M.-N.); (E.B.Q.); (K.A.R.)
| | - Kelly Assis Rodrigues
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Brazil; (J.H.C.M.-N.); (E.B.Q.); (K.A.R.)
| | - Cintia M. Coelho
- Department of Genetics and Morphology, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil;
| | - Hugo Costa Paes
- Clinical Medicine Division, University of Brasília Medical School, University of Brasília, Brasília 70910-900, Brazil;
| | - Elibio Leopoldo Rech
- Brazilian Agriculture Research Corporation—Embrapa—Genetic Resources and Biotechnology—CENARGEN, Brasília 70770-917, Brazil;
| | - Nádia Skorupa Parachin
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Brazil; (J.H.C.M.-N.); (E.B.Q.); (K.A.R.)
- Ginkgo Bioworks, Boston, MA 02210, USA
- Correspondence:
| |
Collapse
|
19
|
Zhao L, Ma Z, Yin J, Shi G, Ding Z. Biological strategies for oligo/polysaccharide synthesis: biocatalyst and microbial cell factory. Carbohydr Polym 2021; 258:117695. [PMID: 33593568 DOI: 10.1016/j.carbpol.2021.117695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Oligosaccharides and polysaccharides constitute the principal components of carbohydrates, which are important biomacromolecules that demonstrate considerable bioactivities. However, the variety and structural complexity of oligo/polysaccharides represent a major challenge for biological and structural explorations. To access structurally defined oligo/polysaccharides, biological strategies using glycoenzyme biocatalysts have shown remarkable synthetic potential attributed to their regioselectivity and stereoselectivity that allow mild, structurally controlled reaction without addition of protecting groups necessary in chemical strategies. This review summarizes recent biotechnological approaches of oligo/polysaccharide synthesis, which mainly includes in vitro enzymatic synthesis and cell factory synthesis. We have discussed the important factors involved in the production of nucleotide sugars. Furthermore, the strategies established in the cell factory and enzymatic syntheses are summarized, and we have highlighted concepts like metabolic flux rebuilding and regulation, enzyme engineering, and route design as important strategies. The research challenges and prospects are also outlined and discussed.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
20
|
Metabolic engineering for production of functional polysaccharides. Curr Opin Biotechnol 2020; 66:44-51. [DOI: 10.1016/j.copbio.2020.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/07/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
|
21
|
D'ambrosio S, Alfano A, Cassese E, Restaino OF, Barbuto Ferraiuolo S, Finamore R, Cammarota M, Schiraldi C, Cimini D. Production and purification of higher molecular weight chondroitin by metabolically engineered Escherichia coli K4 strains. Sci Rep 2020; 10:13200. [PMID: 32764548 PMCID: PMC7411012 DOI: 10.1038/s41598-020-70027-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/22/2020] [Indexed: 11/30/2022] Open
Abstract
The capsular polysaccharide obtained from Escherichia coli K4 is a glycosaminoglycan-like molecule, similar to chondroitin sulphate, that has established applications in the biomedical field. Recent efforts focused on the development of strategies to increase K4 polysaccharide fermentation titers up to technologically attractive levels, but an aspect that has not been investigated so far, is how changes in the molecular machinery that produces this biopolymer affect its molecular weight. In this work, we took advantage of recombinant E. coli K4 strains that overproduce capsular polysaccharide, to study whether the inferred pathway modifications also influenced the size of the produced polymer. Fed-batch fermentations were performed up to the 22 L scale, in potentially industrially applicable conditions, and a purification protocol that allows in particular the recovery of high molecular weight unsulphated chondroitin, was developed next. This approach allowed to determine the molecular weight of the purified polysaccharide, demonstrating that kfoF overexpression increased polymer size up to 133 kDa. Higher polysaccharide titers and size were also correlated to increased concentrations of UDP-GlcA and decreased concentrations of UDP-GalNAc during growth. These results are interesting also in view of novel potential applications of higher molecular weight chondroitin and chondroitin sulphate in the biomedical field.
Collapse
Affiliation(s)
- S D'ambrosio
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy
| | - A Alfano
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy
| | - E Cassese
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy
| | - O F Restaino
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy
| | - S Barbuto Ferraiuolo
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy
| | - R Finamore
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy
| | - M Cammarota
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy
| | - C Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy
| | - D Cimini
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy.
| |
Collapse
|
22
|
Mohan N, Tadi SRR, Pavan SS, Sivaprakasam S. Deciphering the role of dissolved oxygen and N-acetyl glucosamine in governing higher molecular weight hyaluronic acid synthesis in Streptococcus zooepidemicus cell factory. Appl Microbiol Biotechnol 2020; 104:3349-3365. [PMID: 32078020 DOI: 10.1007/s00253-020-10445-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 01/01/2023]
Abstract
The present study is focused on systematic process and kinetic investigation of hyaluronic acid (HA) production strategy unraveling the role of dissolved oxygen (DO) and N-acetyl glucosamine (GlcNAc) towards the enhancement of HA titer and its molecular weight. Maintaining excess DO levels (10-40% DO) through DO-stat control and the substitution of GlcNAc at a range (5-20 g/L) with glucose (Glc) critically influenced HA production. DO-stat control strategy yielded a promising HA titer (2.4 g/L) at 40% DO concentration. Controlling DO level at 20% (DO-stat) was observed to be optimum resulting in a significant HA production (2.1 g/L) and its molecular weight ranging 0.98-1.45 MDa with a consistent polydispersity index (PDI) (1.57-1.69). Substitution of GlcNAc with Glc at different proportions explicitly addressed the metabolic trade-off between HA titer and its molecular weight. GlcNAc substitution positively influenced the molecular weight of HA. The highest HA molecular weight (2.53 MDa) of two-fold increase compared with glucose as sole carbon substrate and narrower PDI (1.35 ± 0.18) was achieved for the 10:20 (Glc:GlcNAc) proportion. A novice attempt on modeling the uptake of dual substrates (Glc and GlcNAc) by Streptococcus zooepidemicus for HA production was successfully accomplished using double Andrew's growth model and the kinetic parameters were estimated reliably.
Collapse
Affiliation(s)
- Naresh Mohan
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Subbi Rami Reddy Tadi
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Satya Sai Pavan
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Senthilkumar Sivaprakasam
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
23
|
Tan R, Lyu Y, Zeng W, Zhou J. Enhancing scleroglucan production by Sclerotium rolfsii WSH-G01 through a pH-shift strategy based on kinetic analysis. BIORESOURCE TECHNOLOGY 2019; 293:122098. [PMID: 31514118 DOI: 10.1016/j.biortech.2019.122098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
As a stable microbial polysaccharide, scleroglucan has extensive application in the food, medicine, and cosmetics industries. However, its large-scale industrial application is limited by its high production cost, low yield, long production time, etc. This study aims to enhance scleroglucan production by Sclerotium rolfsii WSH-G01. Based on the analysis of batch fermentation kinetics parameters, a pH-shift strategy was adopted. Through systematic kinetics analysis, a 32.4 g/L scleroglucan was accomplished. The kinetic model of the pH-shift batch fermentation process was established using a logistic equation, Luedeking-Piret equation, and a Luedeking-Piret-like equation. As decreased glucose concentration could cause decreased scleroglucan synthesis rates during the batch fermentation process, 30 g/L glucose was fed in the later phase of fermentation. As a result, scleroglucan production increased to 42 g/L, with a productivity of 0.5 g/L·h. Thus, the pH-shift strategy and feeding approach could be useful for industrial scleroglucan production.
Collapse
Affiliation(s)
- Runqing Tan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunbin Lyu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
24
|
Schulte S, Doss SS, Jeeva P, Ananth M, Blank LM, Jayaraman G. Exploiting the diversity of streptococcal hyaluronan synthases for the production of molecular weight–tailored hyaluronan. Appl Microbiol Biotechnol 2019; 103:7567-7581. [DOI: 10.1007/s00253-019-10023-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/28/2022]
|
25
|
Puvendran K, Jayaraman G. Enhancement of acetyl-CoA by acetate co-utilization in recombinant Lactococcus lactis cultures enables the production of high molecular weight hyaluronic acid. Appl Microbiol Biotechnol 2019; 103:6989-7001. [PMID: 31267232 DOI: 10.1007/s00253-019-09987-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
Abstract
The molecular weight of hyaluronic acid (HA) is a critical property which determines its usage in various biomedical applications. This study investigates the correlation between the availability of a critical cofactor, acetyl-CoA, the concentration of a limiting precursor, UDP-N-acetylglucosamine (UDP-GlcNAc), and the molecular weight of HA (MWHA) produced by recombinant Lactococcus lactis MKG6 cultures. This strain expressed three heterologous HA-pathway genes obtained from the has operon of Streptococcus zooepidemicus in an ldh-mutant host strain, L. lactis NZ9020. A flux balance analysis, performed using the L. lactis genome-scale metabolic network, showed a positive correlation of acetyl-CoA flux with the UDP-GlcNAc flux and the experimental data on HA productivity. To increase the intracellular levels of acetyl-CoA, acetate was supplemented as a pulse feed in anaerobic batch cultures. However, acetate is effectively utilized only in the presence of glucose and exhaustion of glucose resulted in decreasing the final MWHA (1.5 MDa). Co-supplementation of acetate resulted in enhancing the acetyl-CoA and UDP-GlcNAc levels as well as the MWHA to 2.5 MDa. This logic was extended to fed-batch cultures, designed with a pH-based feedback control of glucose feeding and pulse acetate supplementation. When the glucose feed concentration was optimally adjusted to prevent glucose exhaustion or accumulation, the acetate utilization was found to be high, resulting in significantly enhanced levels of acetyl-CoA and UDP-GlcNAc as well as a MWHA of 3.4 MDa, which was sustained at this value throughout the process. This study provides the possibility of commercially producing high MWHA using recombinant L. lactis strains.
Collapse
Affiliation(s)
- Kirubhakaran Puvendran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Guhan Jayaraman
- Bioprocess and Metabolic Engineering Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
26
|
Uncovering Novel Pathways for Enhancing Hyaluronan Synthesis in Recombinant Lactococcus lactis: Genome-Scale Metabolic Modeling and Experimental Validation. Processes (Basel) 2019. [DOI: 10.3390/pr7060343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hyaluronan (HA), a glycosaminoglycan with important medical applications, is commercially produced from pathogenic microbial sources. The metabolism of HA-producing recombinant generally regarded as safe (GRAS) systems needs to be more strategically engineered to achieve yields higher than native producers. Here, we use a genome-scale model (GEM) to account for the entire metabolic network of the cell while predicting strategies to improve HA production. We analyze the metabolic network of Lactococcus lactis adapted to produce HA and identify non-conventional strategies to enhance HA flux. We also show experimental verification of one of the predicted strategies. We thus identified an alternate route for enhancement of HA synthesis, originating from the nucleoside inosine, that can function in parallel with the traditionally known route from glucose. Adopting this strategy resulted in a 2.8-fold increase in HA yield. The strategies identified and the experimental results show that the cell is capable of involving a larger subset of metabolic pathways in HA production. Apart from being the first report to use a nucleoside to improve HA production, we demonstrate the role of experimental validation in model refinement and strategy improvisation. Overall, we point out that well-constructed GEMs could be used to derive efficient strategies to improve the biosynthesis of high-value products.
Collapse
|
27
|
Jeeva P, Shanmuga Doss S, Sundaram V, Jayaraman G. Production of controlled molecular weight hyaluronic acid by glucostat strategy using recombinant Lactococcus lactis cultures. Appl Microbiol Biotechnol 2019; 103:4363-4375. [DOI: 10.1007/s00253-019-09769-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
|
28
|
Badri A, Williams A, Linhardt RJ, Koffas MAG. The road to animal-free glycosaminoglycan production: current efforts and bottlenecks. Curr Opin Biotechnol 2018; 53:85-92. [DOI: 10.1016/j.copbio.2017.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
|
29
|
Kang Z, Zhou Z, Wang Y, Huang H, Du G, Chen J. Bio-Based Strategies for Producing Glycosaminoglycans and Their Oligosaccharides. Trends Biotechnol 2018; 36:806-818. [DOI: 10.1016/j.tibtech.2018.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 01/06/2023]
|
30
|
Attia YA, Kobeasy MI, Samer M. Evaluation of magnetic nanoparticles influence on hyaluronic acid production from Streptococcus equi. Carbohydr Polym 2018; 192:135-142. [DOI: 10.1016/j.carbpol.2018.03.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/09/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022]
|
31
|
Puvendran K, Anupama K, Jayaraman G. Real-time monitoring of hyaluronic acid fermentation by in situ transflectance spectroscopy. Appl Microbiol Biotechnol 2018; 102:2659-2669. [DOI: 10.1007/s00253-018-8816-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/23/2018] [Accepted: 01/27/2018] [Indexed: 01/22/2023]
|
32
|
Rodriguez A, Strucko T, Stahlhut SG, Kristensen M, Svenssen DK, Forster J, Nielsen J, Borodina I. Metabolic engineering of yeast for fermentative production of flavonoids. BIORESOURCE TECHNOLOGY 2017. [PMID: 28634125 DOI: 10.1016/j.biortech.2017.06.043] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Yeast Saccharomyces cerevisiae was engineered for de novo production of six different flavonoids (naringenin, liquiritigenin, kaempferol, resokaempferol, quercetin, and fisetin) directly from glucose, without supplementation of expensive intermediates. This required reconstruction of long biosynthetic pathways, comprising up to eight heterologous genes from plants. The obtained titers of kaempferol 26.57±2.66mgL-1 and quercetin 20.38±2.57mgL-1 exceed the previously reported titers in yeast. This is also the first report of de novo biosynthesis of resokaempferol and fisetin in yeast. The work demonstrates the potential of flavonoid-producing yeast cell factories.
Collapse
Affiliation(s)
- Angelica Rodriguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Tomas Strucko
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Steen Gustav Stahlhut
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Mette Kristensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Daniel Killerup Svenssen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Jens Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark; Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE412 96 Gothenburg, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
33
|
Cimini D, Iacono ID, Carlino E, Finamore R, Restaino OF, Diana P, Bedini E, Schiraldi C. Engineering S. equi subsp. zooepidemicus towards concurrent production of hyaluronic acid and chondroitin biopolymers of biomedical interest. AMB Express 2017; 7:61. [PMID: 28293868 PMCID: PMC5350083 DOI: 10.1186/s13568-017-0364-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/06/2017] [Indexed: 11/25/2022] Open
Abstract
Glycosaminoglycans, such as hyaluronic acid and chondroitin sulphate, are not only more and more required as main ingredients in cosmeceutical and nutraceutical preparations, but also as active principles in medical devices and pharmaceutical products. However, while biotechnological production of hyaluronic acid is industrially established through fermentation of Streptococcus spp. and recently Bacillus subtilis, biotechnological chondroitin is not yet on the market. A non-hemolytic and hyaluronidase negative S. equi subsp. zooepidemicus mutant strain was engineered in this work by the addition of two E. coli K4 genes, namely kfoA and kfoC, involved in the biosynthesis of chondroitin-like polysaccharide. Chondroitin is the precursor of chondroitin sulphate, a nutraceutical present on the market as anti-arthritic drug, that is lately being studied for its intrinsic bioactivity. In small scale bioreactor batch experiments the production of about 1.46 ± 0.38 g/L hyaluronic acid and 300 ± 28 mg/L of chondroitin with an average molecular weight of 1750 and 25 kDa, respectively, was demonstrated, providing an approach to the concurrent production of both biopolymers in a single fermentation.
Collapse
|
34
|
Cheng F, Luozhong S, Guo Z, Yu H, Stephanopoulos G. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation. Biotechnol J 2017; 12. [PMID: 28869338 DOI: 10.1002/biot.201700191] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/27/2017] [Indexed: 11/07/2022]
Abstract
Hyaluronic acid (HA) is a polysaccharide used in many industries such as medicine, surgery, cosmetics, and food. To avoid potential pathogenicity caused by its native producer, Streptococcus, efforts have been made to create a recombinant host for HA production. In this work, a GRAS (generally recognized as safe) strain, Corynebacterium glutamicum, is engineered for enhanced biosynthesis of HA via metabolic pathway regulation. Five enzymes (HasA-HasE) involved in the HA biosynthetic pathway are highlighted, and eight diverse operon combinations, including HasA, HasAB, HasAC, HasAD, HasAE, HasABC, HasABD, and HasABE, are compared. HasAB and HasABC are found to be optimal for HA biosynthesis in C. glutamicum. To meet the energy demand for HA synthesis, the metabolic pathway that produces lactate is blocked by knocking out the lactate dehydrogenase (LDH) gene using single crossover homologous recombination. Engineered C. glutamicum/Δldh-AB is superior and had a significantly higher HA titer than C. glutamicum/Δldh-ABC. Batch and fed-batch cultures of C. glutamicum/Δldh-AB are performed in a 5-L fermenter. Using glucose feeding, the maximum HA titer reached 21.6 g L-1 , more than threefolds of that of the wild-type Streptococcus. This work provides an efficient, safe, and novel recombinant HA producer, C. glutamicum/Δldh-AB, via metabolic pathway regulation.
Collapse
Affiliation(s)
- Fangyu Cheng
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Sijin Luozhong
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Zhigang Guo
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Huimin Yu
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
35
|
Improved Yield of High Molecular Weight Hyaluronic Acid Production in a Stable Strain of Streptococcus zooepidemicus via the Elimination of the Hyaluronidase-Encoding Gene. Mol Biotechnol 2017; 59:192-199. [DOI: 10.1007/s12033-017-0005-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Kaur M, Jayaraman G. Hyaluronan production and molecular weight is enhanced in pathway-engineered strains of lactate dehydrogenase-deficient Lactococcus lactis. Metab Eng Commun 2016; 3:15-23. [PMID: 29468110 PMCID: PMC5779726 DOI: 10.1016/j.meteno.2016.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/08/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
The potential advantages of hyaluronic acid (HA) production by metabolically-engineered Lactococcus lactis is constrained by the lower molecular weight and yield of HA obtained in these strains, compared to natural producers. Earlier studies have correlated lower HA yield with excessive lactate production in L. lactis cultures (Chauhan et al., 2014). In the present study, a three-fold increase was observed in the amount as well as molecular weight of HA produced by recombinant ldh-mutant L. lactis strains. The diversion from lactate production in the ldh-mutant strains resulted in excess ethanol and acetoin production and higher NAD+/NADH ratio in these cultures. The initial NAD+/NADH ratio showed a positive correlation with HA molecular weight as well as with the HA-precursor ratio (UDP-GlcUA/UDP-GlcNAc). The influence of NAD+/NADH ratio on regulation of the concerned metabolic pathways was assessed by transcriptional analysis of key genes having putative binding sites of the NADH-binding transcriptional factor, Rex.
Collapse
Affiliation(s)
| | - Guhan Jayaraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
37
|
Zhang L, Huang H, Wang H, Chen J, Du G, Kang Z. Rapid evolution of hyaluronan synthase to improve hyaluronan production and molecular mass in Bacillus subtilis. Biotechnol Lett 2016; 38:2103-2108. [DOI: 10.1007/s10529-016-2193-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/18/2016] [Indexed: 11/29/2022]
|
38
|
Recent advances in the biotechnological production of microbial poly(ɛ-l-lysine) and understanding of its biosynthetic mechanism. Appl Microbiol Biotechnol 2016; 100:6619-6630. [DOI: 10.1007/s00253-016-7677-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/07/2016] [Accepted: 06/11/2016] [Indexed: 01/15/2023]
|
39
|
Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab Eng 2016; 35:21-30. [DOI: 10.1016/j.ymben.2016.01.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 12/14/2022]
|
40
|
Jin P, Zhang L, Yuan P, Kang Z, Du G, Chen J. Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. Carbohydr Polym 2016; 140:424-32. [DOI: 10.1016/j.carbpol.2015.12.065] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/07/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
|
41
|
Rajendran V, Puvendran K, Guru BR, Jayaraman G. Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis. J Sep Sci 2016; 39:655-62. [PMID: 26643937 DOI: 10.1002/jssc.201500907] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/14/2015] [Accepted: 11/16/2015] [Indexed: 11/08/2022]
Abstract
Hyaluronic acid has a wide range of biomedical applications and its commercial value is highly dependent on its purity and molecular weight. This study highlights the utility of aqueous two-phase separation as a primary recovery step for hyaluronic acid and for removal of major protein impurities from fermentation broths. Metabolically engineered cultures of a lactate dehydrogenase mutant strain of Lactococcus lactis (L. lactis NZ9020) were used to produce high-molecular-weight hyaluronic acid. The cell-free fermentation broth was partially purified using a polyethylene glycol/potassium phosphate system, resulting in nearly 100% recovery of hyaluronic acid in the salt-rich bottom phase in all the aqueous two-phase separation experiments. These experiments were optimized for maximum removal of protein impurities in the polyethylene glycol rich top phase. The removal of protein impurities resulted in substantial reduction of membrane fouling in the subsequent diafiltration process, carried out with a 300 kDa polyether sulfone membrane. This step resulted in considerable purification of hyaluronic acid, without any loss in recovery and molecular weight. Diafiltration was followed by an adsorption step to remove minor impurities and achieve nearly 100% purity. The final hyaluronic acid product was characterized by Fourier-transform IR and NMR spectroscopy, confirming its purity.
Collapse
Affiliation(s)
- Vivek Rajendran
- Department of Biotechnology, Manipal Institute of Technology, Manipal, Karnataka, India
| | - Kirubhakaran Puvendran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Bharath Raja Guru
- Department of Biotechnology, Manipal Institute of Technology, Manipal, Karnataka, India
| | - Guhan Jayaraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
42
|
Chen R. The sweet branch of metabolic engineering: cherry-picking the low-hanging sugary fruits. Microb Cell Fact 2015; 14:197. [PMID: 26655367 PMCID: PMC4674990 DOI: 10.1186/s12934-015-0389-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023] Open
Abstract
In the first science review on the then nascent Metabolic Engineering field in 1991, Dr. James E. Bailey described how improving erythropoietin (EPO) glycosylation can be achieved via metabolic engineering of Chinese hamster ovary (CHO) cells. In the intervening decades, metabolic engineering has brought sweet successes in glycoprotein engineering, including antibodies, vaccines, and other human therapeutics. Today, not only eukaryotes (CHO, plant, insect, yeast) are being used for manufacturing protein therapeutics with human-like glycosylation, newly elucidated bacterial glycosylation systems are enthusiastically embraced as potential breakthrough to revolutionize the biopharmaceutical industry. Notwithstanding these excitement in glycoprotein, the sweet metabolic engineering reaches far beyond glycoproteins. Many different types of oligo- and poly-saccharides are synthesized with metabolically engineered cells. For example, several recombinant hyaluronan bioprocesses are now in commercial production, and the titer of 2′-fucosyllactose, the most abundant fucosylated trisaccharide in human milk, reaches over 20 g/L with engineered E. coli cells. These successes represent only the first low hanging fruits, which have been appreciated scientifically, medically and fortunately, commercially as well. As one of the four building blocks of life, sugar molecules permeate almost all aspects of life. They are also unique in being intimately associated with all major types of biopolymers (including DNA/RNA, proteins, lipids) meanwhile they stand alone as bioactive polysaccharides, or free soluble oligosaccharides. As such, all sugar moieties in biological components, small or big and free or bound, are important targets for metabolic engineering. Opportunities abound at the interface of glycosciences and metabolic engineering. Continued investment and successes in this branch of metabolic engineering will make vastly diverse sugar-containing molecules (a.k.a. glycoconjugates) available for biomedical applications, sustainable technology development, and as invaluable tools for basic scientific research. This short review focuses on the most recent development in the field, with emphasis on the synthesis technology for glycoprotein, polysaccharide, and oligosaccharide.
Collapse
Affiliation(s)
- Rachel Chen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, NW, Atlanta, GA, 30332-0100, USA.
| |
Collapse
|
43
|
Simultaneous determination of intracellular UDP-sugars in hyaluronic acid-producing Streptococcus zooepidemicus. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 997:194-9. [PMID: 26114654 DOI: 10.1016/j.jchromb.2015.05.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 11/22/2022]
Abstract
Two chromatographic methods for the quantitative analysis of uridine diphosphate (UDP) sugars involved in hyaluronan pathway of Streptococcus zooepidemicus (SEZ) were developed and compared. The sample preparation protocol using centrifugation and extraction in hot ethanol was employed prior to the analyses. Separation was achieved using an anion exchange Spherisorb SAX column or a Shodex QA-825 column connected with a photodiode array (PDA) detector. To increase the throughput of the chromatography method employing the Spherisorb SAX column, the solid phase extraction (SPE) procedure was introduced. Method validation results displayed that limits of detection (LODs) of UDP-glucose (UDP-Glc), UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-glucuronic acid (UDP-GlcA) calculated according to QC Expert software were in the low micromolar range and the coefficient of correlation (R(2)) was above 0.997. However, the analytical technique using the Spherisorb SAX column resulted in 80-90% recoveries and low LODs (≤6.19μM), the Shodex QA-825 column showed better long-term stability and reproducible chromatographic properties (RSD≤5.60%). The Shodex QA-825 column was successfully used to monitor UDP-sugar levels during the growth rate of SEZ cells.
Collapse
|
44
|
Hmar RV, Prasad SB, Jayaraman G, Ramachandran KB. Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced inLactococcus lactis. Biotechnol J 2014; 9:1554-64. [DOI: 10.1002/biot.201400215] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/17/2014] [Accepted: 07/16/2014] [Indexed: 11/11/2022]
|
45
|
Marcellin E, Steen JA, Nielsen LK. Insight into hyaluronic acid molecular weight control. Appl Microbiol Biotechnol 2014; 98:6947-56. [DOI: 10.1007/s00253-014-5853-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 01/03/2023]
|