1
|
Li P, Wang D, Hou Y, Hu Z, Song C. Effect of phytohormones on the carbon sequestration performance of CO 2 absorption-microalgae conversion system under low light restriction. ENVIRONMENTAL RESEARCH 2024; 262:119984. [PMID: 39270957 DOI: 10.1016/j.envres.2024.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Microalgae have the potential to fix CO2 into valuable compounds. Low photosynthetic efficiency caused by low light was one of the challenges faced by microalgae carbon sequestration. In this study, Melatonin (MT) and indole-propionic acid (IPA) were used to alleviate the growth inhibition of Spirulina in CAMC system under low light restriction. The results showed that MT and IPA increased biomass and carbon fixation capacity. 10 mg/L IPA group achieved the maximum biomass and carbon fixation capacity, which were 17.11% and 21.46% higher than control. MT and IPA promoted the synthesis of chlorophyll, which in turn captured more light energy for microalgae growth. The increase of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) activities enhanced the resistance of microalgae to low light stress. MT and IPA promoted the secretion of extracellular polymeric substances (EPS) which was benefit to protect cells. The maximum phycocyanin content and yield was found in 10 mg-IPA group, which was 20.67% and 46.67% higher than control. MT and IPA improved the synthesis of carbohydrates and proteins and increased carbohydrates and proteins yield. This indicated that adding phytohormones was an effective method to alleviate the growth of microalgae restricted by low light stress, which provided a theoretical guidance for the application of CAMC system in CO2 capture and resource utilization.
Collapse
Affiliation(s)
- Pengcheng Li
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China
| | - Dantong Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China
| | - Yaoqi Hou
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China
| | - Zhan Hu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China
| | - Chunfeng Song
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China.
| |
Collapse
|
2
|
Usai L, Torre S, Aktay N, Dunford NT, Citi V, Flori L, Nieri P, Lutzu GA. Recent Advancements in Production and Extraction Methods of Phycobiliprotein C-phycocyanin by Arthrospira (Spirulina) platensis: A Mini Review. Curr Microbiol 2024; 81:428. [PMID: 39460769 DOI: 10.1007/s00284-024-03964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Arthrospira platensis has been utilized as a food source since ancient times due to its rich nutrient profile. In recent years, its popularity as a dietary supplement has soared, especially due to the presence of a water-soluble phycobiliprotein, C-phycocyanin C (C-PC), which is abundant and notable for its fluorescent properties. C-PC contains the chromophore phycocyanobilin B (PCB-B), a tetrapyrrole molecule, that is why it plays a dual role as a food colorant and as nutraceutical. However, comprehensive studies have mostly evaluated C-PC's broader health-promoting properties, particularly its antioxidative and anti-inflammatory effects, which are linked to its ability to contrast oxidative stress and related pathological conditions. That is why this review explores recent advancements in optimizing culture conditions to enhance C-PC and PCB-B production, with a particular emphasis on novel extraction and purification techniques that increase yield and bioactivity. This focus on efficient production methods is crucial for expanding the commercial and therapeutic applications of C-PC, contributing to its growing relevance in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Luca Usai
- Teregroup Srl, via David Livingstone 37, 41122, Modena, MO, Italy
| | - Serenella Torre
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126, Pisa, PI, Italy
| | - Nazlim Aktay
- Department of Biosystems and Agricultural Engineering and Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, 103 FAPC, Stillwater, OK, USA
| | - Nurhan Turgut Dunford
- Department of Biosystems and Agricultural Engineering and Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, 103 FAPC, Stillwater, OK, USA
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126, Pisa, PI, Italy
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126, Pisa, PI, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126, Pisa, PI, Italy.
| | | |
Collapse
|
3
|
Gallina ES, Caires TA, Cortés OEJ. Effects of light quality and intensity on phycobiliprotein productivity in two Leptolyngbya strains isolated from southern Bahia's Atlantic Forest. AN ACAD BRAS CIENC 2024; 96:e20230348. [PMID: 39166650 DOI: 10.1590/0001-3765202420230348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/28/2024] [Indexed: 08/23/2024] Open
Abstract
Cyanobacterial phycocyanin and phycoerythrin are gaining commercial interest due to their nutrition and healthcare values. This research analyzed the biomass accumulation and pigment production of two strains of Leptolyngbya under different combinations of light colors and intensities. The results showed that while Leptolyngbya sp.4 B1 (B1) produced all phycobiliproteins, Leptolyngbya sp.5 F2 (F2) only had phycocyanin and allophycocyanin. Both the color of the light and its light intensity affect the biomass accumulation and phycoerythrin concentration in strain B1. Although white light at medium intensity (50 μmol m-2 s-1) causes greater biomass accumulation (1.66 ± 0.13 gDW L-1), low-intensity (25 μmol m-2 s-1) green light induces lower biomass accumulation with twice the pigment content (87.70 ± 2.46 mg gDW -1), culminating in 71% greater productivity. In contrast, for the F2 strain, light intensity positively influenced biomass and pigment accumulation, being observed 2.25 ± 0.10 gDW L-1 under white light at 100 μmol m-2 s-1 and higher phycocyanin concentration (138.38 ± 3.46 mg gDW -1) under red light at 100 μmol m-2 s-1. These findings provide insights into optimizing the growth conditions by altering the intensity and wavelength of light for future production of phycocyanin and phycoerythrin from local cyanobacteria.
Collapse
Affiliation(s)
- Elias S Gallina
- Instituto Federal de Educação Ciência e Tecnologia da Bahia, Rodovia BR 367, s/n, Fontana 1, 45810-000 Porto Seguro, BA, Brazil
- Universidade Federal do Sul da Bahia, Centro de Formação em Ciências Ambientais, Rodovia BR 367, Km 10, s/n, 45810-000 Porto Seguro, BA, Brazil
- Instituto Federal de Educação Ciência e Tecnologia de Alagoas, Av. Afrânio Lages, 391-453, Centro, 57420-000 Batalha, AL, Brazil
| | - Taiara A Caires
- Universidade Estadual do Sudoeste da Bahia, Departamento de Ciências Biológicas, Av. José Moreira Sobrinho, s/n, Jequiezinho, 45205-490 Jequié, BA, Brazil
| | - Orlando Ernesto J Cortés
- Universidade Federal do Sul da Bahia, Centro de Formação em Ciências Ambientais, Rodovia BR 367, Km 10, s/n, 45810-000 Porto Seguro, BA, Brazil
| |
Collapse
|
4
|
Yu Z, Zhao W, Sun H, Mou H, Liu J, Yu H, Dai L, Kong Q, Yang S. Phycocyanin from microalgae: A comprehensive review covering microalgal culture, phycocyanin sources and stability. Food Res Int 2024; 186:114362. [PMID: 38729724 DOI: 10.1016/j.foodres.2024.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
As food safety continues to gain prominence, phycocyanin (PC) is increasingly favored by consumers as a natural blue pigment, which is extracted from microalgae and serves the dual function of promoting health and providing coloration. Spirulina-derived PC demonstrates exceptional stability within temperature ranges below 45 °C and under pH conditions between 5.5 and 6.0. However, its application is limited in scenarios involving high-temperature processing due to its sensitivity to heat and light. This comprehensive review provides insights into the efficient production of PC from microalgae, covers the metabolic engineering of microalgae to increase PC yields and discusses various strategies for enhancing its stability in food applications. In addition to the most widely used Spirulina, some red algae and Thermosynechococcus can serve as good source of PC. The genetic and metabolic manipulation of microalgae strains has shown promise in increasing PC yield and improving its quality. Delivery systems including nanoparticles, hydrogels, emulsions, and microcapsules offer a promising solution to protect and extend the shelf life of PC in food products, ensuring its vibrant color and health-promoting properties are preserved. This review highlights the importance of metabolic engineering, multi-omics applications, and innovative delivery systems in unlocking the full potential of this natural blue pigment in the realm of food applications, provides a complete overview of the entire process from production to commercialization of PC, including the extraction and purification.
Collapse
Affiliation(s)
- Zengyu Yu
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Weiyang Zhao
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Hui Yu
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China.
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
5
|
Athiyappan KD, Chaudhuri R, Balasubramanian P. Enhancing phycocyanin yield from Spirulina sp. under salt stress using various extraction methods. Arch Microbiol 2024; 206:258. [PMID: 38735006 DOI: 10.1007/s00203-024-03968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
Phycocyanin, a blue-coloured pigment, predominantly found and derived from Spirulina sp., has gained researchers' interest due to its vibrant hues and other attractive properties like antioxidant and anti-microbial. However, the lack of reliable and sustainable phycocyanin extraction strategies without compromising the quality has hindered the scaling up of its production processes for commercial purposes. Here in this study, phycocyanin was extracted from wet and dry biomass Spirulina sp., using three different physical cell disruption methods (ultrasonication, homogenization, and freeze-thaw cycles) combined with two different buffers (phosphate buffer and acetate buffer) and water (as control). The result showed that the freeze-thaw method combined with acetate buffer produced the highest yield (25.013 ± 2.572 mg/100 mg) with a purity ratio of 0.806 ± 0.079. Furthermore, when subjected to 30% w/v salt stress, 1.9 times higher phycocyanin yield with a purity ratio of 1.402 ± 0.609 was achieved using the previously optimized extraction method.
Collapse
Affiliation(s)
- Kerthika Devi Athiyappan
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Rayanee Chaudhuri
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Paramasivan Balasubramanian
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
6
|
Lijassi I, Arahou F, Mansouri Z, Wahby A, Rhazi L, Wahby I. Comparative Analysis of Effect of Culture Conditions on Growth and C-Phycocyanin Production in Helical and Linear Spirulina. Curr Microbiol 2024; 81:152. [PMID: 38652305 DOI: 10.1007/s00284-024-03684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Spirulina (Arthrospira and Spirulina spp.) has always been characterized by the helical trichomes, despite the existence of linear forms. A great debate is now open on the morphological flexibility of Spirulina, but it seems that both trichome morphology and C-phycocyanin (C-PC) concentrations are influenced by the culture conditions.This work compared the effect of some key growth factors (medium pH as well as its carbon, potassium, and salt contents) on the growth and C-PC concentration of helical and linear Spirulina strains. Further, two-phase strategies, including light and nitrogen variation, were applied to increase the in vivo C-PC accumulation into the trichomes. Results showed that high pH induced trichomes elongation and improved growth but decreased C-PC content (+ 65 and + 43% vs. -83 and -49%, for helical and linear strains, respectively). Variations in carbon and salt concentrations negatively impacted growth and C-PC content, even if the linear strain was more robust against these fluctuations. It was also interesting to see that potassium increasing improved growth and C-PC content for both strains.The variation of light wavelength during the enrichment phase (in the two-phase strategy) improved by 50% C-PC accumulation in trichomes, especially after blue lighting for 96 h. Similar result was obtained after 48 h of nitrogen reduction, while its removal from the medium caused trichomes disintegration. The current work highlights the robustness of linear Spirulina strain and presents an efficient and scalable way to increase C-PC in vivo without affecting growth.
Collapse
Affiliation(s)
- Ibtissam Lijassi
- Department of Biology, Faculty of Sciences, Research Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Laboratory of Botany and Valorisation of Plant and Fungal Resources, Mohamed V University, Rabat, Morocco.
| | - Fadia Arahou
- Department of Biology, Faculty of Sciences, Research Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Laboratory of Botany and Valorisation of Plant and Fungal Resources, Mohamed V University, Rabat, Morocco
| | - Zineb Mansouri
- Department of Biology, Faculty of Sciences, Research Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Laboratory of Botany and Valorisation of Plant and Fungal Resources, Mohamed V University, Rabat, Morocco
| | - Anass Wahby
- Laboratory of Water, Studies and Environmental Analysis, Faculty of Sciences, Abdelmalek Essadi University, Tetouan, Morocco
| | - Laila Rhazi
- Department of Biology, Faculty of Sciences, Research Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Laboratory of Botany and Valorisation of Plant and Fungal Resources, Mohamed V University, Rabat, Morocco
| | - Imane Wahby
- Department of Biology, Faculty of Sciences, Research Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Laboratory of Botany and Valorisation of Plant and Fungal Resources, Mohamed V University, Rabat, Morocco
| |
Collapse
|
7
|
Shao C, Zheng H, Sobhi M, Zhu F, Hu X, Cui Y, Chen H, Zou B, Zan X, Li G, Huo S. Enhancing microalgal biomass production in lab-scale raceway ponds through innovative computational fluid dynamics-based electrode deflectors. BIORESOURCE TECHNOLOGY 2024; 394:130282. [PMID: 38163488 DOI: 10.1016/j.biortech.2023.130282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
The design of novel electrode deflector structures (EDSs) introduced a promising strategy for enhancing raceway ponds performance, increasing carbon fixation, and improving microalgal biomass accumulation. The computational fluid dynamics, based flow field principles, proved that the potency of arc-shaped electrode deflector structures (A-EDS) and spiral electrode deflector structures (S-EDS) were optimal. These configurations yielded superior culture effects, notably reducing dead zones by 9.1% and 11.7%, while elevating biomass increments of 14.7% and 11.5% compared to the control, respectively. In comparison to scenarios without electrostatic field application, the A-EDS group demonstrated pronounced post-stimulation growth, exhibiting an additional biomass increase of 11.2%, coupled with a remarkable 23.6% surge in CO2 fixation rate and mixing time reduction by 14.7%. A-EDS and S-EDS, combined with strategic electric field integration, provided a theoretical basis for promoting microalgal biomass production and enhancing carbon fixation in a raceway pond environment to similar production practices.
Collapse
Affiliation(s)
- Cong Shao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjing Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mostafa Sobhi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Agricultural and Bio-systems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Gang Li
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China.
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Li P, Wang D, Hu Z, Chen D, Wang Y, Wang M, Wei S, Song C. Insight into the potential mechanism of bicarbonate assimilation promoted by mixotrophic in CO 2 absorption and microalgae conversion system. CHEMOSPHERE 2024; 349:140903. [PMID: 38092167 DOI: 10.1016/j.chemosphere.2023.140903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
CO2 absorption-microalgae conversion (CAMC) system is a promising carbon capture and utilization technology. However, the use of HCO3- as a carbon source often led to a slower growth rate of microalgae, which also limited the application of CAMC system. In this study, the assimilation efficiency of HCO3- in CAMC system was improved through mixotrophic, and the potential mechanism was investigated. The HCO3- assimilation efficiency and biomass under mixotrophic were 34.79% and 31.76% higher than that of control. Mixotrophic increased chlorophyll and phycocyanin content, which were beneficial to capture more light energy. The content of ATP and NADPH reached 566.86 μmol/gprot and 672.86 nmol/mgprot, which increased by 31.83% and 27.67% compared to autotrophic. The activity of carbonic anhydrase and Rubisco increased by 18.52% and 22.08%, respectively. Transcriptome showed that genes related to photosynthetic and respiratory electron transport were up-regulated. The synergy of photophosphorylation and oxidative phosphorylation greatly improved energy metabolism efficiency, thus accelerating the assimilation of HCO3-. These results revealed a potential mechanism of promoting the HCO3- assimilation under mixotrophic, it also provided a guidance for using CAMC system to serve carbon neutrality.
Collapse
Affiliation(s)
- Pengcheng Li
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China
| | - Dantong Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China
| | - Zhan Hu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China
| | - Danqing Chen
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China
| | - Yi Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China
| | - Min Wang
- Collaborative Innovation Center for Wetland Conservation and Green Development of Hebei Provin, Hengshui University, PR China
| | - Shuzhen Wei
- Collaborative Innovation Center for Wetland Conservation and Green Development of Hebei Provin, Hengshui University, PR China
| | - Chunfeng Song
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China.
| |
Collapse
|
9
|
Aslanbay Guler B, Demirel Z, Imamoglu E. Induction of antioxidant activities of Arthrospira platensis and Chlorella vulgaris by modified culture conditions. Bioprocess Biosyst Eng 2024; 47:275-287. [PMID: 38286864 DOI: 10.1007/s00449-023-02963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Microalgae are considered a promising source for obtaining natural compounds with strong antioxidant activity. Despite the great progress made in this field, there is still need for further studies applying simple and cost-effective modifications to reveal their full potential and enhance antioxidant properties. Arthrospira platensis and Chlorella vulgaris are some of the most common cells studied for this purpose. In this study, it was aimed to develop a bioprocess for the enhancement of antioxidant properties of these two microalgae by evaluating the effect of different culture conditions. With this aim, the impacts of light intensity/reactive oxygen species and nitrogen sources/reactive oxygen species were evaluated for the A. platensis and C. vulgaris cells, respectively. Results showed that the antioxidant potential of A. platensis was found to be correlated with the phycocyanin and total phenolic content of cells, and 80 µmol photons m-2 s-1 light intensity induced antioxidant activity in a two-step cultivation mode. For C. vulgaris cells, maximum antioxidant activities of 68.10 ± 1.51% and 75.68 ± 0.66% were obtained in cultures with NH4Cl (0.016% (w/v)) for DPPH and ABTS assays, respectively. The applied oxidative stress factors exhibited different effects on the antioxidant activities of the cells because of their cellular morphologies and changing mechanisms of reactive oxygen species. These outcomes show the potential of applied modifications on cells and suggest a promising route to enhance antioxidant activities of microalgae for further research.
Collapse
Affiliation(s)
- Bahar Aslanbay Guler
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey.
| | - Zeliha Demirel
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | - Esra Imamoglu
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
10
|
Jiang L, Yu S, Chen H, Pei H. Enhanced phycocyanin production from Spirulina subsalsa via freshwater and marine cultivation with optimized light source and temperature. BIORESOURCE TECHNOLOGY 2023; 378:129009. [PMID: 37011840 DOI: 10.1016/j.biortech.2023.129009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
To find out optimum and cost-efficient strategy for phycocyanin production, the effect of light source and temperature on Spirulina subsalsa growth were studied in chemically defined freshwater medium and seawater supplied with wastewater from glutamic acid fermentation tank. Maximum growth rate and the highest phycocyanin content were obtained by 35 °C and green light, respectively. A two-stage cultivation strategy was proposed and applied, which combines biomass accumulation at 35 °C and phycocyanin synthesis simulated under green light. As a result, phycocyanin production reached 70 mg/L/d and 11 mg/L/d from freshwater and seawater medium, respectively. With all tested conditions, a strong correlation between biomass and phycocyanin/chlorophyll ratio, rather than phycocyanin, revealed the dependence of Spirulina subsalsa growth on coordinating regulation of photosynthetic pigments. The relationship between growth and phycocyanin production under various light and temperature can be a good basis for improving phycocyanin production from Spirulina subsalsa with or without freshwater consumption.
Collapse
Affiliation(s)
- Liqun Jiang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| | - Siteng Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Huiying Chen
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haiyan Pei
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China.
| |
Collapse
|
11
|
High-efficient removal of ammonium and co-production of protein-rich biomass from ultrahigh-NH4+ industrial wastewater by mixotrophic Galdieria sulphuraria. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
12
|
Cämmerer M, Mayer T, Schott C, Steingroewer J, Petrich R, Borsdorf H. Membrane inlet—ion mobility spectrometry with automatic spectra evaluation as online monitoring tool for the process control of microalgae cultivation. Eng Life Sci 2023; 23:e2200039. [PMID: 37025189 PMCID: PMC10071569 DOI: 10.1002/elsc.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 03/07/2023] Open
Abstract
The cultivation of algae either in open raceway ponds or in closed bioreactors could allow the renewable production of biomass for food, pharmaceutical, cosmetic, or chemical industries. Optimal cultivation conditions are however required to ensure that the production of these compounds is both efficient and economical. Therefore, high-frequency analytical measurements are required to allow timely process control and to detect possible disturbances during algae growth. Such analytical methods are only available to a limited extent. Therefore, we introduced a method for monitoring algae release volatile organic compounds (VOCs) in the headspace above a bioreactor in real time. This method is based on ion mobility spectrometry (IMS) in combination with a membrane inlet (MI). The unique feature of IMS is that complete spectra are detected in real time instead of sum signals. These spectral patterns produced in the ion mobility spectrum were evaluated automatically via principal component analysis (PCA). The detected peak patterns are characteristic for the respective algae culture; allow the assignment of the individual growth phases and reflect the influence of experimental parameters. These results allow for the first time a continuous monitoring of the algae cultivation and thus an early detection of possible disturbances in the biotechnological process.
Collapse
Affiliation(s)
- Malcolm Cämmerer
- Department Monitoring and Exploration Technologies UFZ Helmholtz Centre for Environmental Research Leipzig Germany
| | - Thomas Mayer
- Department Monitoring and Exploration Technologies UFZ Helmholtz Centre for Environmental Research Leipzig Germany
| | - Carolin Schott
- Faculty of Mechanical Science and Engineering Institute of Natural Materials Technology, Technical University Dresden Dresden Germany
| | - Juliane Steingroewer
- Faculty of Mechanical Science and Engineering Institute of Natural Materials Technology, Technical University Dresden Dresden Germany
| | - Ralf Petrich
- IFU GmbH Private Institute for Analytics Frankenberg/Sa. Germany
| | - Helko Borsdorf
- Department Monitoring and Exploration Technologies UFZ Helmholtz Centre for Environmental Research Leipzig Germany
| |
Collapse
|
13
|
Hernández-Martínez I, González-Resendiz L, Sánchez-García L, Vigueras-Ramírez G, Arroyo-Maya IJ, Morales-Ibarría M. C-phycocyanin production with high antioxidant activity of a new thermotolerant freshwater Desertifilum tharense UAM-C/S02 strain. BIORESOURCE TECHNOLOGY 2023; 369:128431. [PMID: 36470497 DOI: 10.1016/j.biortech.2022.128431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
A native cyanobacterial strain, Desertifilum tharense UAM-C/S02, was studied as a possible C-phycocyanin (C-PC) producer. Photosynthetic activity (PA) assays through oxygen production determined the proper temperature and range of irradiances to be tested in a stirred tank photobioreactor. The highest C-PC productivity (97 mg L-1 d-1), with a yield of 86.46 mgC-PC gB-1 was obtained at 730 µmol photons m-2 s-1 with a biomass productivity of 608 mg L-1 d-1 and the CO2 fixation rate was 1,194 mg L-1 d-1. The 1.81 crude extract purity value is the highest reported for this genus, which was improved to biomarker-grade purity after a two-step purification strategy comprising precipitation with ammonium sulfate, followed by dialysis. The purified C-PC was almost entirely radical-free using 1 mg mL-1, which validates its potential use in therapeutic formulations.
Collapse
Affiliation(s)
- Ingrid Hernández-Martínez
- Doctorado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa C.P. 05348, México
| | - Laura González-Resendiz
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa C.P. 05348, México
| | - León Sánchez-García
- Doctorado en Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, C.P. 09340, México
| | - Gabriel Vigueras-Ramírez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa C.P. 05348, México
| | - Izlia J Arroyo-Maya
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa C.P. 05348, México
| | - Marcia Morales-Ibarría
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa C.P. 05348, México.
| |
Collapse
|
14
|
Deepika C, Wolf J, Roles J, Ross I, Hankamer B. Sustainable Production of Pigments from Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:171-251. [PMID: 36571616 DOI: 10.1007/10_2022_211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pigments are intensely coloured compounds used in many industries to colour other materials. The demand for naturally synthesised pigments is increasing and their production can be incorporated into circular bioeconomy approaches. Natural pigments are produced by bacteria, cyanobacteria, microalgae, macroalgae, plants and animals. There is a huge unexplored biodiversity of prokaryotic cyanobacteria which are microscopic phototrophic microorganisms that have the ability to capture solar energy and CO2 and use it to synthesise a diverse range of sugars, lipids, amino acids and biochemicals including pigments. This makes them attractive for the sustainable production of a wide range of high-value products including industrial chemicals, pharmaceuticals, nutraceuticals and animal-feed supplements. The advantages of cyanobacteria production platforms include comparatively high growth rates, their ability to use freshwater, seawater or brackish water and the ability to cultivate them on non-arable land. The pigments derived from cyanobacteria and microalgae include chlorophylls, carotenoids and phycobiliproteins that have useful properties for advanced technical and commercial products. Development and optimisation of strain-specific pigment-based cultivation strategies support the development of economically feasible pigment biorefinery scenarios with enhanced pigment yields, quality and price. Thus, this chapter discusses the origin, properties, strain selection, production techniques and market opportunities of cyanobacterial pigments.
Collapse
Affiliation(s)
- Charu Deepika
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Juliane Wolf
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - John Roles
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ian Ross
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ben Hankamer
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
15
|
Thevarajah B, Nishshanka GKSH, Premaratne M, Nimarshana P, Nagarajan D, Chang JS, Ariyadasa TU. Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Limnospira fusiformis harbors dinitrogenase reductase (nifH)-like genes, but does not show N2 fixation activity. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Park J, Lee H, Dinh TB, Choi S, De Saeger J, Depuydt S, Brown MT, Han T. Commercial Potential of the Cyanobacterium Arthrospira maxima: Physiological and Biochemical Traits and the Purification of Phycocyanin. BIOLOGY 2022; 11:biology11050628. [PMID: 35625356 PMCID: PMC9138259 DOI: 10.3390/biology11050628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Arthrospira maxima is an unbranched, filamentous cyanobacterium rich in important cellular products such as vitamins, minerals, iron, essential amino acids, essential fatty acids, and protein, which has made it one of the most important commercial photoautotrophs. To optimize the growth conditions for the production of target compounds and to ensure profitability in commercial applications, the effects of pH and temperature were investigated. A. maxima has been shown to be tolerant to a range of pH conditions and to exhibit hyper-accumulation of phycoerythrin and allophycocyanin at low temperatures. These traits may offer significant advantages for future exploitation, especially in outdoor cultivation with fluctuating pH and temperature. Our study also demonstrated a new method for the purification of phycocyanin from A. maxima by using by ultrafiltration, ion-exchange chromatography, and gel filtration, producing PC at 1.0 mg·mL−1 with 97.6% purity. Abstract Arthrospira maxima is a natural source of fine chemicals for multiple biotechnological applications. We determined the optimal environmental conditions for A. maxima by measuring its relative growth rate (RGR), pigment yield, and photosynthetic performance under different pH and temperature conditions. RGR was highest at pH 7–9 and 30 °C. Chlorophyll a, phycocyanin, maximal quantum yield (Fv/Fm), relative maximal electron transport rate (rETRmax), and effective quantum yield (ΦPSII) were highest at pH 7–8 and 25 °C. Interestingly, phycoerythrin and allophycocyanin content was highest at 15 °C, which may be the lowest optimum temperature reported for phycobiliprotein production in the Arthrospira species. A threestep purification of phycocyanin (PC) by ultrafiltration, ion-exchange chromatography, and gel filtration resulted in a 97.6% purity of PC.
Collapse
Affiliation(s)
- Jihae Park
- Development & Planning Office, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea; (J.P.); (H.L.)
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea;
| | - Hojun Lee
- Development & Planning Office, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea; (J.P.); (H.L.)
| | - Thai Binh Dinh
- Department of Cosmetic Science and Management, Incheon National University, 119, Academy-ro, Incheon 22012, Korea;
| | - Soyeon Choi
- Department of Marine Science, Incheon National University, 119, Academy-ro, Incheon 22012, Korea;
| | - Jonas De Saeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium;
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea;
| | - Murray T. Brown
- School of Marine Science & Engineering, Plymouth University, Plymouth PL4 8AA, Devon, UK;
| | - Taejun Han
- Development & Planning Office, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea; (J.P.); (H.L.)
- Department of Marine Science, Incheon National University, 119, Academy-ro, Incheon 22012, Korea;
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
18
|
Assessment of novel halo- and thermotolerant desert cyanobacteria for phycobiliprotein production. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Prabha S, Vijay AK, Paul RR, George B. Cyanobacterial biorefinery: Towards economic feasibility through the maximum valorization of biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152795. [PMID: 34979226 DOI: 10.1016/j.scitotenv.2021.152795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are well known for their plethora of applications in the fields of food industry, pharmaceuticals and bioenergy. Their simple growth requirements, remarkable growth rate and the ability to produce a wide range of bio-active compounds enable them to act as an efficient biorefinery for the production of valuable metabolites. Most of the cyanobacteria based biorefineries are targeting single products and thus fails to meet the efficient valorization of biomass. On the other hand, multiple products recovering cyanobacterial biorefineries can efficiently valorize the biomass with minimum to zero waste generation. But there are plenty of bottlenecks and challenges allied with cyanobacterial biorefineries. Most of them are being associated with the production processes and downstream strategies, which are difficult to manage economically. There is a need to propose new solutions to eliminate these tailbacks so on to elevate the cyanobacterial biorefinery to be an economically feasible, minimum waste generating multiproduct biorefinery. Cost-effective approaches implemented from production to downstream processing without affecting the quality of products will be beneficial for attaining economic viability. The integrated approaches in cultivation systems as well as downstream processing, by simplifying individual processes to unit operation systems can obviously increase the economic feasibility to a certain extent. Low cost approaches for biomass production, multiparameter optimization and successive sequential retrieval of multiple value-added products according to their high to low market value from a biorefinery is possible. The nanotechnological approaches in cyanobacterial biorefineries make it one step closer to the goal. The current review gives an overview of strategies used for constructing self-sustainable- economically feasible- minimum waste generating; multiple products based cyanobacterial biorefineries by the efficient valorization of biomass. Also the possibility of uplifting new cyanobacterial strains for biorefineries is discussed.
Collapse
Affiliation(s)
- Syama Prabha
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Aravind K Vijay
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Rony Rajan Paul
- Department of Chemistry, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Basil George
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India.
| |
Collapse
|
20
|
Chaiklahan R, Chirasuwan N, Srinorasing T, Attasat S, Nopharatana A, Bunnag B. Enhanced biomass and phycocyanin production of Arthrospira (Spirulina) platensis by a cultivation management strategy: Light intensity and cell concentration. BIORESOURCE TECHNOLOGY 2022; 343:126077. [PMID: 34601024 DOI: 10.1016/j.biortech.2021.126077] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
This work investigated the cultivation of Arthrospira (Spirulina) platensis BP in a photobioreactor under light intensities of 635, 980, 1300, and 2300 µmol m-2 s-1, using a semi-continuous mode to keep cell concentration at optical densities (OD) of 0.4, 0.6, and 0.8. The highest productivity of biomass (0.62 g L-1 d-1) and phycocyanin (123 mg L-1 d-1) were obtained when cells were grown under a light intensity of 2300 µmol m-2 s-1 at OD 0.6. At this concentration, the efficiency of energy consumption to the biomass of algae was around 2.26-2.31 g (kW h)-1 d-1, while, a maximum photosynthetic efficiency of 8.02% was obtained under a light intensity of 635 µmol m-2 s-1 at OD 0.8. This indicates how light intensity, cell concentration, and light-dark conditions can enhance biomass and phycocyanin production, if well manipulated.
Collapse
Affiliation(s)
- Ratana Chaiklahan
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thain, Bangkok 10150, Thailand.
| | - Nattayaporn Chirasuwan
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thain, Bangkok 10150, Thailand
| | - Thanyarat Srinorasing
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thain, Bangkok 10150, Thailand
| | - Shewin Attasat
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thain, Bangkok 10150, Thailand
| | - Annop Nopharatana
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thain, Bangkok 10150, Thailand
| | - Boosya Bunnag
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thain, Bangkok 10150, Thailand; School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bang Khun Thain, Bangkok 10150, Thailand
| |
Collapse
|
21
|
Jiang L, Yu S, Pei H. Seawater-cultured Spirulina subsalsa as a more promising host for phycocyanin production than Arthrospira platensis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Chen Z, Yang G, Hao X, Samak NA, Jia Y, Peh S, Mu T, Yang M, Xing J. Recent advances in microbial capture of hydrogen sulfide from sour gas via sulfur-oxidizing bacteria. Eng Life Sci 2021; 21:693-708. [PMID: 34690639 PMCID: PMC8518563 DOI: 10.1002/elsc.202100006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 04/30/2021] [Indexed: 01/05/2023] Open
Abstract
Biological desulfurization offers several remarkably environmental advantages of operation at ambient temperature and atmospheric pressure, no demand of toxic chemicals as well as the formation of biologically re-usable sulfur (S0), which has attracted increasing attention compared to conventionally physicochemical approaches in removing hydrogen sulfide from sour gas. However, the low biomass of SOB, the acidification of process solution, the recovery of SOB, and the selectivity of bio-S0 limit its industrial application. Therefore, more efforts should be made in the improvement of the BDS process for its industrial application via different research perspectives. This review summarized the recent research advances in the microbial capture of hydrogen sulfide from sour gas based on strain modification, absorption enhancement, and bioreactor modification. Several efficient solutions to limitations for the BDS process were proposed, which paved the way for the future development of BDS industrialization.
Collapse
Affiliation(s)
- Zheng Chen
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Gama Yang
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Xuemi Hao
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Nadia A. Samak
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
- Processes Design and Development DepartmentEgyptian Petroleum Research InstituteCairoEgypt
| | - Yunpu Jia
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Sumit Peh
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Tingzhen Mu
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
| | - Maohua Yang
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and EngineeringState Key Laboratory of Biochemical EngineeringInstitute of Process Engineering, Chinese Academy of SciencesBeijingP. R. China
- College of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
23
|
Rivera C, Niño L, Gelves G. Modeling of phycocyanin production from Spirulina platensis using different light-emitting diodes. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.sajce.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
24
|
Zuorro A, Leal-Jerez AG, Morales-Rivas LK, Mogollón-Londoño SO, Sanchez-Galvis EM, García-Martínez JB, Barajas-Solano AF. Enhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria sp. through Media Optimization. ACS OMEGA 2021; 6:10527-10536. [PMID: 34056207 PMCID: PMC8153776 DOI: 10.1021/acsomega.0c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/11/2021] [Indexed: 05/06/2023]
Abstract
Phycobiliproteins (PBPs) are a group of brilliant pigment proteins found in cyanobacteria and red algae; their synthesis and accumulation depend on several factors such as the type of strain employed, nutrient concentration, light intensity, light regimes, and others. This study evaluates the effect of macronutrients (citrate buffer, NaNO3, K2HPO4, MgSO4, CaCl2, Na2CO3, and EDTA) and the concentration of trace metals in BG-11 media on the accumulation of PBPs in a thermotolerant strain of Oscillatoria sp. The strain was grown in BG-11 media at 28 °C with a light:dark cycle of 12:12 h at 100 μmol m-2 s-1 for 15 days, and the effect of nutrients was evaluated using a Plackett-Burman Design followed by optimization using a response surface methodology. Results from the concentration of trace metals show that it can be reduced up to half-strength in its initial concentration without affecting both biomass and PBPs. Results from the Plackett-Burman Design revealed that only NaNO3, Na2CO3, and K2HPO4 show a significant increase in PBP production. Optimization employed a central Non-Factorial Response Surface Design with three levels and four factors (34) using NaNO3, Na2CO3, K2HPO4, and trace metals as variables, while the other components of BG-11 media (citrate buffer, MgSO4, CaCl2, and EDTA) were used in half of their initial concentration. Results from the optimization show that interaction between Na2CO3 and K2HPO4 highly increased PBPs' concentration, with values of 15.21, 3.95, and 1.89 (% w/w), respectively. These results demonstrate that identifying and adjusting the concentration of critical nutrients can increase the concentration of PBPs up to two times for phycocyanin and allophycocyanin while four times for phycoerythrin. Finally, the reduction in non-key nutrients' concentration will reduce the production costs of colorants at an industrial scale and increase the sustainability of the process.
Collapse
Affiliation(s)
- Antonio Zuorro
- Department
of Chemical Engineering, Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy
| | - Angela G. Leal-Jerez
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Leidy K. Morales-Rivas
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Sandra O. Mogollón-Londoño
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Edwar M. Sanchez-Galvis
- Grupo
Ambiental de Investigación Aplicada-GAIA, Facultad de Ingeniería,
Universidad de Santander (UDES), Campus Universitario Lagos del Cacique, Cll 70 No 55-210, Bucaramanga 680003, Colombia
| | - Janet B. García-Martínez
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| | - Andrés F. Barajas-Solano
- Department
of Environmental Sciences, Universidad Francisco
de Paula Santander, Av Gran Colombia No. 12E-96, Cúcuta 540003, Colombia
| |
Collapse
|
25
|
Nwoba EG, Parlevliet DA, Laird DW, Alameh K, Moheimani NR. Outdoor phycocyanin production in a standalone thermally-insulated photobioreactor. BIORESOURCE TECHNOLOGY 2020; 315:123865. [PMID: 32721828 DOI: 10.1016/j.biortech.2020.123865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The operation of solar microalgal photobioreactors requires sufficient cooling and heating to maintain reliable high productivity year-round. These operations are energy-intensive and expensive. Growth characteristics and phycocyanin production of Arthrospira platensis were investigated during the austral winter using a thermally-insulated photobioreactor with photovoltaic panel integration for electricity generation. This was compared with a control photobioreactor under a cycle of heating (13-hour night) and thermostat-regulated cooling, and continuously heated raceway pond. Average temperature in the photovoltaic photobioreactor (21.0 ± 0.03 °C) was similar to that in the heated control. Biomass productivity of Arthrospira in the novel photobioreactor was 67% higher than in the raceway pond but significantly lower than the control. Phycocyanin productivity (16.3 ± 1.43 mgg-1d-1 and purity (1.2 ± 0.03) showed no variation between photobioreactors but was significantly lower in the raceway pond. Electrical energy output of the photovoltaic photobioreactor exceeded mixing energy needs by 75%. These results indicate that the novel photobioreactor offers a reliable, energy-efficient platform for large-scale production of high-value chemicals from microalgae.
Collapse
Affiliation(s)
- Emeka G Nwoba
- Engineering and Energy, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - David A Parlevliet
- Engineering and Energy, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Damian W Laird
- Chemistry and Physics, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Kamal Alameh
- Electron Science Research Institute, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| | - Navid R Moheimani
- Algae R&D Centre, Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
26
|
Optimization of the Freezing-Thawing Method for Extracting Phycobiliproteins from Arthrospira sp. Molecules 2020; 25:molecules25173894. [PMID: 32859046 PMCID: PMC7503228 DOI: 10.3390/molecules25173894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 11/16/2022] Open
Abstract
The freezing-thawing method had been reported to be the best phycobiliprotein extraction technique. However, optimum parameters of this extraction method for Arthrospira sp. (one of the major phycobiliprotein sources) still remained unclear. Hence, this study aimed to optimize the freezing-thawing parameters of phycobiliprotein extraction in Arthrospira sp. (UPMC-A0087). The optimization of the freezing-thawing method was conducted using different solvents, biomass/solvent ratios, temperatures, time intervals and freezing-thawing cycles. The extracted phycobiliproteins were quantified using a spectrophotometric assay. Double distilled water (pH 7) with a 0.50% w/v biomass/solvent ratio was the most efficient solvent in extracting high concentrations and purity of phycobiliproteins from Arthrospira sp. In addition, the combination of freezing at -80 °C (2 h) and thawing at 25 °C (24 h) appeared to be the optimum temperature and extraction time to obtain the highest amount of phycobiliproteins. A minimum of one cycle of freezing and thawing was sufficient for extracting high concentrations of phycobiliproteins. The findings from this study could reduce the cost and labor needed for extracting high quality phycobiliproteins. It also allowed the harvesting of large amounts of valuable phycobiliproteins.
Collapse
|
27
|
Schipper K, Fortunati F, Oostlander PC, Al Muraikhi M, Al Jabri HMS, Wijffels RH, Barbosa MJ. Production of phycocyanin by Leptolyngbya sp. in desert environments. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Carbone DA, Olivieri G, Pollio A, Melkonian M. Biomass and phycobiliprotein production of Galdieria sulphuraria, immobilized on a twin-layer porous substrate photobioreactor. Appl Microbiol Biotechnol 2020; 104:3109-3119. [PMID: 32060692 DOI: 10.1007/s00253-020-10383-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 11/28/2022]
Abstract
The extremophile red alga Galdieria sulphuraria was successfully grown immobilized in a twin-layer porous substrate bioreactor (TL-PSBR). A maximal biomass growth rate of 10 g dry weight m-2 day-1 was measured at a photon fluence rate of 200 μmol photons m-2 s-1 with addition of 1% CO2 and a temperature of 34 °C. Under these conditions, a maximal biomass value of 232 g m-2 was attained after 33 days of growth. Phycobilin productivity, however, was highest at a lower photon fluence rate of 100 μmol photons m-2 s-1 and reached a phycobilin value of 14 g m-2, a phycobilin content in the biomass of 63 mg g-1 and a phycobilin growth rate of 0.28 g m-2 day-1 for phycocyanin and 0.23 g m-2 day-1 for allophycocyanin. Addition of CO2 was essential to enhance growth and phycobilin production in G. sulphuraria and further optimization of the cultivation process in the TL-PSBR appears possible using a multi-phase approach, higher growth temperatures and optimization of nutrient supply. It is concluded that autotrophic cultivation of G. sulphuraria in a TL-PSBR is an attractive alternative to suspension cultivation for phycobilin production and applications in bioremediation.
Collapse
Affiliation(s)
- Dora Allegra Carbone
- Laboratory of Biological Oceanography, Stazione Zoologica "A. Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Giuseppe Olivieri
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands.,Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio, 80,, 80125, Naples, Italy
| | - Antonino Pollio
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 26,, 80126, Naples, Italy
| | - Michael Melkonian
- Botanisches Institut, Universität zu Köln, Zülpicher Str. 47 b, 50674, Koln, Germany.,Campus Essen, Faculty of Biology, University of Duisburg-Essen,, Universitätsstr. 5, 45141, Essen, Germany
| |
Collapse
|
29
|
García-López DA, Olguín EJ, González-Portela RE, Sánchez-Galván G, De Philippis R, Lovitt RW, Llewellyn CA, Fuentes-Grünewald C, Parra Saldívar R. A novel two-phase bioprocess for the production of Arthrospira (Spirulina) maxima LJGR1 at pilot plant scale during different seasons and for phycocyanin induction under controlled conditions. BIORESOURCE TECHNOLOGY 2020; 298:122548. [PMID: 31837580 DOI: 10.1016/j.biortech.2019.122548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
A two-phase outdoor cultivation bioprocess for Arthrospira maxima LJGR1 combined with phycocyanin induction in concentrated cultures under controlled conditions was evaluated using a modified low-cost Zarrouk medium. Growth was monitored during 4 cycles in 2018 and 4 cycles in 2019. Biomass was harvested and concentrated using membrane technology at the end of each cycle for further phycocyanin induction using blue LED light (controlled conditions, 24 h). The highest biomass productivity was observed during spring and summer cycles (13.63-18.97 gDWm-2 d-1); during mid-fall and mid-end fall, a decrease was observed (9.93-7.76 gDWm-2 d-1). Under favorable growth conditions, phycocyanin induction was successful. However, during cycles with unfavorable growth condition, phycocyanin induction was not observed. Reactive-grade phycocyanin (3.72 ± 0.14) was recovered and purified using microfiltration and ultrafiltration technologies.
Collapse
Affiliation(s)
- D A García-López
- Environmental Biotechnology Group, Institute of Ecology (INECOL), Carretera Antigua a Coatepec 351, Xalapa, Veracruz 91073, Mexico
| | - E J Olguín
- Environmental Biotechnology Group, Institute of Ecology (INECOL), Carretera Antigua a Coatepec 351, Xalapa, Veracruz 91073, Mexico.
| | - R E González-Portela
- Environmental Biotechnology Group, Institute of Ecology (INECOL), Carretera Antigua a Coatepec 351, Xalapa, Veracruz 91073, Mexico
| | - G Sánchez-Galván
- Environmental Biotechnology Group, Institute of Ecology (INECOL), Carretera Antigua a Coatepec 351, Xalapa, Veracruz 91073, Mexico
| | - R De Philippis
- Department of Agriculture, Environment, Food and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, Florence 50144, Italy
| | - R W Lovitt
- Membranology Ltd., Swansea Enterprise Park, Rainbow Business Centre, Llansamlet, Swansea, Wales SA79PF, United Kingdom
| | - C A Llewellyn
- Department of Biosciences, Swansea University, Singleton Park, Swansea, Wales SA28PP, United Kingdom
| | - C Fuentes-Grünewald
- Department of Biosciences, Swansea University, Singleton Park, Swansea, Wales SA28PP, United Kingdom
| | - R Parra Saldívar
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| |
Collapse
|
30
|
Park J, Dinh TB. Contrasting effects of monochromatic LED lighting on growth, pigments and photosynthesis in the commercially important cyanobacterium Arthrospira maxima. BIORESOURCE TECHNOLOGY 2019; 291:121846. [PMID: 31362199 DOI: 10.1016/j.biortech.2019.121846] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to evaluatethe effects of different colored light emitting diodes (LEDs) on the growth, pigment yield, and photosynthetic performance of Arthrospira maxima, a commercially exploited species of cyanobacteria. The highest growth and chlorophyll a (Chl a) concentration were obtained under red LED and white fluorescent light, while the lowest growth and Chlaconcentration were observed under blue LED. However, blue LED produced the highest levels of phycobiliproteins (3.20 mg·g-1phycocyanin [PC]; 0.19 mg·g-1 allophycocyanin [APC]; 0.97 mg·g-1for phycoerythrin [PE], effective quantum yield (ΦPSII) and maximum relative electron transport rate (rETRmax) inA. maxima. The results of this study suggest that red and blue LEDs increase the biomass yield and pigment content of cyanobacteria, respectively, and the combined use of red and blue light may significantly improve algal biomass and biopigment yield.
Collapse
Affiliation(s)
- Jihae Park
- Lab of Plant Growth Analysis, Ghent University Global Campus, 119-5, Songdomunwharo, Yeonsu-gu, Incheon 21985, Republic of Korea.
| | - Thai Binh Dinh
- Department of Cosmetic Science and Management, Incheon National University, Academyro 119, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
31
|
Chia SR, Chew KW, Show PL, Xia A, Ho SH, Lim JW. Spirulina platensis based biorefinery for the production of value-added products for food and pharmaceutical applications. BIORESOURCE TECHNOLOGY 2019; 289:121727. [PMID: 31279318 DOI: 10.1016/j.biortech.2019.121727] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
In this present study, microalgal phycobiliproteins were isolated and purified via potential biphasic processing technique for pharmaceutical as well as food applications. The algal pre-treatment techniques were studied to enhance the yield of microalgal phycobiliproteins from the biomass. The proposed methods were optimised to obtain the best recovery yield of phycobiliproteins that can be isolated from the biomass. The phycobiliproteins were further purified using liquid biphasic system. The results showed that microalgal phycobiliproteins of high purity and yield was achieved using sonication treatment (20% power, 50% duty cycle and 7 min of irradiation time) with the biphasic system, where the purification fold of 6.17 and recovery yield of 94.89% was achieved. This work will provide insights towards the effective downstream processing of biomolecules from microalgae.
Collapse
Affiliation(s)
- Shir Reen Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia
| | - Kit Wayne Chew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
| | - Ao Xia
- Institute of Engineering Thermophysics, Chongqing University, No. 174, Shazheng Str, Shapingba District, Chongqing 400032, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Persiaran UTP, Seri Iskandar, 32610 Perak, Malaysia
| |
Collapse
|
32
|
Paramylon, a Potent Immunomodulator from WZSL Mutant of Euglena gracilis. Molecules 2019; 24:molecules24173114. [PMID: 31461965 PMCID: PMC6749516 DOI: 10.3390/molecules24173114] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/08/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
β-glucans, heterogeneous glucose polymers present in many organisms, have the capability to activate the innate immune system. Efficacy of activation depends on purity of the compound, molecular structure, polymerization degree, and source. One of the purest forms of crystallized β-(1–3)-glucan present in nature is the paramylon extracted from the WZSL non-chloroplastic mutant of Euglena gracilis, which can be processed to produce linear nanofibers capable of interacting with specific receptors present on cell membranes. The effects of these nanofibers, already investigated on plants, animals, and humans, will be analyzed.
Collapse
|
33
|
Pagels F, Guedes AC, Amaro HM, Kijjoa A, Vasconcelos V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnol Adv 2019; 37:422-443. [DOI: 10.1016/j.biotechadv.2019.02.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/27/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
|
34
|
Nwoba EG, Parlevliet DA, Laird DW, Alameh K, Moheimani NR. Sustainable phycocyanin production from Arthrospira platensis using solar-control thin film coated photobioreactor. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Rio‐Chanona EA, Wagner JL, Ali H, Fiorelli F, Zhang D, Hellgardt K. Deep learning‐based surrogate modeling and optimization for microalgal biofuel production and photobioreactor design. AIChE J 2018. [DOI: 10.1002/aic.16473] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ehecatl Antonio Rio‐Chanona
- Centre for Process Systems EngineeringImperial College London, South Kensington Campus London, SW7 2AZ U.K
- Dept. of Chemical EngineeringImperial College London, South Kensington Campus London, SW7 2AZ U.K
| | - Jonathan L. Wagner
- Dept. of Chemical EngineeringImperial College London, South Kensington Campus London, SW7 2AZ U.K
- Dept. of Chemical EngineeringUniversity of Loughborough Loughborough, LE11 3TU U.K
| | - Haider Ali
- School of Mechanical EngineeringKyungpook National University 1370 Sankyuk‐Dong, Buk‐gu, Daegu, 702701 South Korea
| | | | - Dongda Zhang
- Centre for Process Systems EngineeringImperial College London, South Kensington Campus London, SW7 2AZ U.K
- Dept. of Chemical EngineeringImperial College London, South Kensington Campus London, SW7 2AZ U.K
- Centre for Process IntegrationUniversity of Manchester Manchester, M1 3BU U.K
- School of Chemical Engineering and Analytical ScienceUniversity of Manchester Manchester, M1 3AL U.K
| | - Klaus Hellgardt
- Dept. of Chemical EngineeringImperial College London, South Kensington Campus London, SW7 2AZ U.K
| |
Collapse
|
36
|
Li X, Li W, Zhai J, Wei H. Effect of nitrogen limitation on biochemical composition and photosynthetic performance for fed-batch mixotrophic cultivation of microalga Spirulina platensis. BIORESOURCE TECHNOLOGY 2018; 263:555-561. [PMID: 29778794 DOI: 10.1016/j.biortech.2018.05.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 05/06/2023]
Abstract
In this study, the effect of nitrogen limitation on microalgal growth, biochemical composition and photosynthetic performance was investigated in fed-batch mixotrophic cultivation of microalga Spirulina platensis, compared with that in autotrophic cultivation. The microalgal biomass productivity was greatly enhanced by mixotrophic cultivation. With nitrogen limitation, the mixotrophic culture accelerated the degradation of microalgal pigments and proteins to supply intracellular nitrogen for maintaining higher biomass productivity, simultaneously accumulating more carbohydrates. The mixotrophic cultivation amplified the adverse effect of nitrogen limitation on the microalgal photosynthetic performance in comparison with autotrophic cultivation. This fed-batch mixotrophic cultivation is an effective strategy for enhancing biomass productivity and total carbohydrates yield under nitrogen limited conditions.
Collapse
Affiliation(s)
- Xiaoting Li
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China
| | - Wei Li
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China
| | - Jun Zhai
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China.
| | - Haoxuan Wei
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China
| |
Collapse
|
37
|
Manirafasha E, Murwanashyaka T, Ndikubwimana T, Rashid Ahmed N, Liu J, Lu Y, Zeng X, Ling X, Jing K. Enhancement of cell growth and phycocyanin production in Arthrospira (Spirulina) platensis by metabolic stress and nitrate fed-batch. BIORESOURCE TECHNOLOGY 2018; 255:293-301. [PMID: 29422330 DOI: 10.1016/j.biortech.2017.12.068] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 06/08/2023]
Abstract
Arthrospira (Spirulina) platensis is known to have high-quality proteins content and phycocyanin as one of the major pigment constituents of the cells, and the most challenging problem associated with phycocyanin production in Arthrospira is to optimize its intracellular accumulation. The present study evaluated the metabolic stress conditions (by nutrient enrichment) of Arthrospira platensis FACHB-314 for boosting biomass growth and high content phycocyanin accumulation. Experimental results showed that 5 mM sodium glutamate and 7.5 mM succinic acid could enhance biomass yield as well as phycocyanin accumulation compared with that of the control groups. The present study demonstrates that the biomass growth and phycocyanin accumulation were significantly enhanced in fed-batch cultivation of Arthrospira platensis by applying the substrates as metabolic stress agents combined with nitrate feeding strategy. cobA/hemD, hemG and ho genes presented the over-expression level with adding sodium glutamate and succinic acid in cultures, respectively, compared to the control groups.
Collapse
Affiliation(s)
- Emmanuel Manirafasha
- Department of Chemical and Biochemical Engineering and the Key Lab for Synthetic Biotechnology of Xiamen City, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; University of Rwanda-College of Education, P.O. Box 5039, Kigali, Rwanda
| | - Theophile Murwanashyaka
- Department of Chemical and Biochemical Engineering and the Key Lab for Synthetic Biotechnology of Xiamen City, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | | | - Nur Rashid Ahmed
- Department of Chemical and Biochemical Engineering and the Key Lab for Synthetic Biotechnology of Xiamen City, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingyi Liu
- Department of Chemical and Biochemical Engineering and the Key Lab for Synthetic Biotechnology of Xiamen City, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering and the Key Lab for Synthetic Biotechnology of Xiamen City, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering and the Key Lab for Synthetic Biotechnology of Xiamen City, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Keju Jing
- Department of Chemical and Biochemical Engineering and the Key Lab for Synthetic Biotechnology of Xiamen City, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
38
|
Sala L, Ores JDC, Moraes CC, Kalil SJ. Simultaneous production of phycobiliproteins and carbonic anhydrase by Spirulina platensis
LEB-52. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Luisa Sala
- Federal University of Rio Grande; Chemistry and Food School; Rio Grande RS Brazil
| | - Joana da Costa Ores
- Federal University of Rio Grande; Chemistry and Food School; Rio Grande RS Brazil
| | | | - Susana Juliano Kalil
- Federal University of Rio Grande; Chemistry and Food School; Rio Grande RS Brazil
| |
Collapse
|
39
|
de Morais MG, da Fontoura Prates D, Moreira JB, Duarte JH, Costa JAV. Phycocyanin from Microalgae: Properties, Extraction and Purification, with Some Recent Applications. Ind Biotechnol (New Rochelle N Y) 2018. [DOI: 10.1089/ind.2017.0009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Michele Greque de Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Denise da Fontoura Prates
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Juliana Botelho Moreira
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Jessica Hartwig Duarte
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| |
Collapse
|
40
|
Gupta A, Mohan D, Saxena RK, Singh S. Phototrophic cultivation of NaCl-tolerant mutant of Spirulina platensis for enhanced C-phycocyanin production under optimized culture conditions and its dynamic modeling. JOURNAL OF PHYCOLOGY 2018; 54:44-55. [PMID: 29027201 DOI: 10.1111/jpy.12597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Commercial cultivation of Spirulina sp. is highly popular due to the presence of high amount of C-phycocyanin (C-PC) and other valuable chemicals like carotenoids and γ-linolenic acid. In this study, the pH and the concentrations of nitrogen and carbon source were manipulated to achieve improved cell growth and C-PC production in NaCl-tolerant mutant of Spirulina platensis. In this study, highest C-PC (147 mg · L-1 ) and biomass (2.83 g · L-1 ) production was achieved when a NaCl-tolerant mutant of S. platensis was cultivated in a nitrate and bicarbonate sufficient medium (40 and 60 mM, respectively) at pH 9.0 under phototrophic conditions. Kinetic study of wildtype S. platensis and its NaCl-tolerant mutant was also done to determine optimum nitrate concentrations for maximum growth and C-PC production. Kinetic parameter of inhibition (Haldane model) was fitted to the relationship between specific growth rate and substrate concentration obtained from the growth curves. Results showed that the maximum specific growth rate (μmax ) for NaCl-tolerant mutant increased by 17.94% as compared to its wildtype counterpart, with a slight increase in half-saturation constant (Ks ), indicating that this strain could grow well at high concentration of NaNO3 . C-PC production rate (Cmax ) in mutant cells increased by 12.2% at almost half the value of Ks as compared to its wildtype counterpart. Moreover, the inhibition constant (Ki ) value was 207.85% higher in NaCl-tolerant mutant as compared to its wildtype strain, suggesting its ability to produce C-PC even at high concentrations of NaNO3 .
Collapse
Affiliation(s)
- Apurva Gupta
- Centre for Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Devendra Mohan
- Department of Civil Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, India
| | - Rishi Kumar Saxena
- Department of Microbiology, Bundelkhand University, Jhansi, 284128, India
| | - Surendra Singh
- Centre for Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
41
|
del Rio-Chanona E, Zhang D. A Bilevel Programming Approach to Optimize C-phycocyanin Bio-production under Uncertainty. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.ifacol.2018.09.301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Ho SH, Liao JF, Chen CY, Chang JS. Combining light strategies with recycled medium to enhance the economic feasibility of phycocyanin production with Spirulina platensis. BIORESOURCE TECHNOLOGY 2018; 247:669-675. [PMID: 30060398 DOI: 10.1016/j.biortech.2017.09.165] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/19/2017] [Accepted: 09/23/2017] [Indexed: 06/08/2023]
Abstract
C-phycocyanin (C-PC) produced from Spirulina platensis is of great commercial interest due to its healthcare properties. In this study, light sources and light-dark frequency were manipulated to enhance C-PC productivity of S. platensis. Using white LED resulted in higher C-PC production efficiency when compared to using fluorescent lamps and monochromatic LEDs. Proper adjustment of light-dark efficiency further increased C-PC production efficiency with relatively lower power consumption. In addition, using recycled medium in place of fresh medium proved to be an environmental-friendly and economic strategy for C-PC production with S. platensis. Optimal nitrate supplementation was also employed to improve the C-PC productivity. When grown under optimal culture conditions (i.e., light source, white LED; light-dark frequency, 30:30; recycled medium replacement, 50%; nitrate supplement, 45mM), S. platensis could obtain the highest C-PC content (14.9%) and C-PC productivity (101.1mg/L/d). This performance appears to be superior to that obtained from most related studies.
Collapse
Affiliation(s)
- Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute Technology, Harbin, PR China
| | - Jing-Fu Liao
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chun-Yen Chen
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Jo-Shu Chang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute Technology, Harbin, PR China; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
43
|
Liu H, Song X, Guan Y, Pan D, Li Y, Xu S, Fang Y. Role of illumination intensity in microcystin development using Microcystis aeruginosa as the model algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23261-23272. [PMID: 28831771 DOI: 10.1007/s11356-017-9888-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
Microcystis aeruginosa (M. aeruginosa) is one of the most common genera of cyanobacteria in algal blooms. In the present work, the impact of the illumination intensity on the growth of M. aeruginosa has been studied and a grinding method for the extraction of intracellular microcystins (MCs) was developed. The variations of algal density, pH, total phosphorus (TP), and total nitrogen (TN) have been investigated during MCs' culturing period. Results showed that the extraction efficiency of MC-YR by the grinding method was 275% higher than the sonication method, and the extraction efficiencies of MC-RR and MC-LR by the grinding method were similar to the sonication method. The optimal illumination intensity for M. aeruginosa was found to be 19-38 μmol m-2 s-1 with suitable pH range of 7.5-10.5. Active release of extracellular MCs was not significantly observed when illumination intensities were ≤ 38 μmol m-2 s-1. Furthermore, the intracellular MC yields under different illumination intensities were found to be a relatively stable level. However, excess illumination intensity (≥ 47 μmol m-2 s-1) led to the lysis of algal cell and increased the concentrations of extracellular MCs, with MC-RR as the dominant compound. The calculated intracellular/extracellular MCs ratios for MC-RR, MC-LR, and MC-YR were 2.38 (N = 100, SD = 2.44), 2.68 (N = 64, SD = 3.48), and 1.25 (N = 30, SD = 1.64), respectively. Strong illumination intensity and cell lysis were found to be the two major factors influencing the release of extracellular MCs.
Collapse
Affiliation(s)
- Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.
| | - Xiao Song
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China
| | - Yongnian Guan
- Suzhou Industrial Park Qingyuan Hong Kong & China Water Co., Ltd., Suzhou, 215021, China
| | - Ding Pan
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China
| | - Yanhua Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China
| | - Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China
| | - Yueying Fang
- Suzhou Industrial Park Qingyuan Hong Kong & China Water Co., Ltd., Suzhou, 215021, China
| |
Collapse
|
44
|
Park S, Kim J, Park Y, Son S, Cho S, Kim C, Lee T. Comparison of batch cultivation strategies for cost-effective biomass production of Micractinium inermum NLP-F014 using a blended wastewater medium. BIORESOURCE TECHNOLOGY 2017; 234:432-438. [PMID: 28347963 DOI: 10.1016/j.biortech.2017.03.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 06/06/2023]
Abstract
Two competitive strategies, fed-batch and sequencing-batch cultivation, were compared in cost-effective biomass production of a high lipid microalgae, Micractinium inermum NLP-F014 using a blended wastewater medium. For fed-batch cultivations, additional nutrient was supplemented at day 2 (FB1) or consecutively added at day 2 and 4 (FB2). Through inoculum size test, 1.0g-DCWL-1 was selected for the sequencing-batch cultivation (SB) where about 65% of culture was replaced with fresh medium every 2days. Both fed-batch cultivations showed the maximum biomass productivity of 0.95g-DCWL-1d-1, while average biomass productivity in SB was slightly higher as 0.96±0.08g-DCWL-1d-1. Furthermore, remained concentrations of organics (426mg-CODL-1), total nitrogen (15.4mg-NL-1) and phosphorus (0.6mg-PL-1) in SB were much lower than those of fed-batch conditions. The results suggested that SB could be a promising strategy to cultivate M. inermum NLP-F014 with the blended wastewater medium.
Collapse
Affiliation(s)
- Seonghwan Park
- Department of Civil and Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeongmi Kim
- Department of Civil and Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Younghyun Park
- Department of Civil and Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Suyoung Son
- Information Analysis Center, Korea Institute of Science and Technology Information, 1217, Jungang-daero Road, Yeon-ji-gu, Busan 46241, Republic of Korea
| | - Sunja Cho
- Department of Microbiology, School of Natural Science, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Changwon Kim
- Institute of Environmental Technology and Industry, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
45
|
Lee NK, Oh HM, Kim HS, Ahn CY. Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of Nostoc sp. NK and simplified extraction by dark-cold shock. BIORESOURCE TECHNOLOGY 2017; 227:164-170. [PMID: 28024193 DOI: 10.1016/j.biortech.2016.12.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 05/23/2023]
Abstract
Nostoc sp. NK (KCTC 12772BP) was isolated and cultivated in a BG11 medium and a nitrate-free BG11 medium (BG110). To enhance C-phycocyanin (C-PC) content in the cells, different fluorescent lamps (white, plant, and red) were used as light sources for complementary chromatic adaptation (CCA). The maximum biomass productivity was 0.42g/L/d and 0.32g/L/d under BG11 and BG110 conditions, respectively. The maximum C-PC contents were 8.4% (w/w) under white lamps, 13.6% (w/w) under plant lamps, and 18% (w/w) under BG110 and the red light condition. The maximum C-PC productivity was 57.4mg/L/d in BG110 under the red lamp condition. These results indicate that a higher C-PC content could be obtained under a diazotrophic condition and a CCA reaction. The C-PC could be released naturally from cells without any extraction processes, when Nostoc sp. NK was cultivated in the BG110 medium with CO2 aeration and put in dark conditions at 5°C.
Collapse
Affiliation(s)
- Na Kyeong Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
46
|
Internally illuminated photobioreactor using a novel type of light-emitting diode (LED) bar for cultivation of Arthrospira platensis. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0428-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Guan J, Shen S, Wu H, Liu X, Shen W, He Y, Duan R. Biomass and terpenoids produced by mutant strains of Arthrospira under low temperature and light conditions. World J Microbiol Biotechnol 2017; 33:33. [DOI: 10.1007/s11274-016-2199-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/23/2016] [Indexed: 01/26/2023]
|
48
|
Chen CY, Chang YH, Chang HY. Outdoor cultivation of Chlorella vulgaris FSP-E in vertical tubular-type photobioreactors for microalgal protein production. ALGAL RES 2016. [DOI: 10.1016/j.algal.2015.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Dynamic modeling and optimization of cyanobacterial C-phycocyanin production process by artificial neural network. ALGAL RES 2016. [DOI: 10.1016/j.algal.2015.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
del Rio-Chanona EA, Zhang D, Xie Y, Manirafasha E, Jing K. Dynamic Simulation and Optimization for Arthrospira platensis Growth and C-Phycocyanin Production. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b03102] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Dongda Zhang
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, U.K
| | - Youping Xie
- College
of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Emmanuel Manirafasha
- Department
of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Keju Jing
- Department
of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The
Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| |
Collapse
|