1
|
Bolonhesi IBDTM, Andreani CL, de Melo MR, Gomes SD, Lopes DD. GcBIOMASS IMMOBILIZATION IN HYDROLYZED LIGNOCELLULOSIC MATERIAL CAN ENHANCE BIOHYDROGEN PRODUCTION FROM CASSAVA RESIDUES? Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Energy Crops and Methane: Process Optimization of Ca(OH) 2 Assisted Thermal Pretreatment and Modeling of Methane Production. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206891. [PMID: 36296483 PMCID: PMC9607449 DOI: 10.3390/molecules27206891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022]
Abstract
Switchgrass earned its place globally as a significant energy crop by possessing essential properties such as being able to control erosion, low cost of production, biomass richness, and appeal for biofuel production. In this study, the impact of a Ca(OH)2-assisted thermal pretreatment process on the switchgrass variety Shawnee for methane fuel production was investigated. The Ca(OH)2-assisted thermal pretreatment process was optimized to enhance the methane production potential of switchgrass. Solid loading (3-7%), Ca(OH)2 concentration (0-2%), reaction temperature (50-100 °C), and reaction time (6-16 h) were selected as independent variables for the optimization. Methane production was obtained as 248.7 mL CH4 gVS-1 under the optimized pretreatment conditions. Specifically, a reaction temperature of 100 °C, a reaction time of 6 h, 0% Ca(OH)2, and 3% solid loading. Compared to raw switchgrass, methane production was enhanced by 14.5%. Additionally, the changes in surface properties and bond structure, along with the kinetic parameters from first order, cone, reaction curve, and modified Gompertz modeling revealed the importance of optimization.
Collapse
|
3
|
Degree of Biomass Conversion in the Integrated Production of Bioethanol and Biogas. ENERGIES 2021. [DOI: 10.3390/en14227763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The integrated production of bioethanol and biogas makes it possible to optimise the production of carriers from renewable raw materials. The installation analysed in this experimental paper was a hybrid system, in which waste from the production of bioethanol was used in a biogas plant with a capacity of 1 MWe. The main objective of this study was to determine the energy potential of biomass used for the production of bioethanol and biogas. Based on the results obtained, the conversion rate of the biomass—maize, in this case—into bioethanol was determined as the efficiency of the process of bioethanol production. A biomass conversion study was conducted for 12 months, during which both maize grains and stillage were sampled once per quarter (QU-I, QU-II, QU-III, QU-IV; QU—quarter) for testing. Between 342 L (QU-II) and 370 L (QU-I) of ethanol was obtained from the organic matter subjected to alcoholic fermentation. The mass that did not undergo conversion to bioethanol ranged from 269.04 kg to 309.50 kg, which represented 32.07% to 36.95% of the organic matter that was subjected to the process of bioethanol production. On that basis, it was concluded that only two-thirds of the organic matter was converted into bioethanol. The remaining part—post-production waste in the form of stillage—became a valuable raw material for the production of biogas, containing one-third of the biodegradable fraction. Under laboratory conditions, between 30.5 m3 (QU-I) and 35.6 m3 (QU-II) of biogas per 1 Mg of FM (FM—fresh matter) was obtained, while under operating conditions, between 29.2 m3 (QU-I) and 33.2 m3 (QU-II) of biogas was acquired from 1 Mg of FM. The Biochemical Methane Potential Correction Coefficient (BMPCC), which was calculated based on the authors’ formula, ranged from 3.2% to 7.4% in the analysed biogas installation.
Collapse
|
4
|
Enhanced Energy Recovery from Food Waste by Co-Production of Bioethanol and Biomethane Process. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The primary objective of this research is to study ways to increase the potential of energy production from food waste by co-production of bioethanol and biomethane. In the first step, the food waste was hydrolysed with an enzyme at different concentrations. By increasing the concentration of enzyme, the amount of reducing sugar produced increased, reaching a maximum amount of 0.49 g/g food waste. After 120 h of fermentation with Saccharomyces cerevisiae, nearly all reducing sugars in the hydrolysate were converted to ethanol, yielding 0.43–0.50 g ethanol/g reducing sugar, or 84.3–99.6% of theoretical yield. The solid residue from fermentation was subsequently subjected to anaerobic digestion, allowing the production of biomethane, which reached a maximum yield of 264.53 ± 2.3 mL/g VS. This results in a gross energy output of 9.57 GJ, which is considered a nearly 58% increase in total energy obtained, compared to ethanol production alone. This study shows that food waste is a raw material with high energy production potential that could be further developed into a promising energy source. Not only does this benefit energy production, but it also lowers the cost of food waste disposal, reduces greenhouse gas emissions, and is a sustainable energy production approach.
Collapse
|
5
|
Mohd Johari SA, Mahad Nasir MM, Ali S, Hamza A, Aleem W, Ameen M, Aqsha A. Recent Technology Developments in Biogas Production from Waste Materials in Malaysia. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Siti Aminah Mohd Johari
- Universiti Teknologi PETRONAS Higher Institution Centre of Excellence (HiCoE) Centre for Biofuel and Biochemical Research (CBBR) Institute of Sustainable Living (ISB) 32610 Seri Iskandar Malaysia
- Universiti Teknologi PETRONAS Department of Chemical Engineering 32610 Seri Iskandar Malaysia
| | | | - Sundas Ali
- University of Punjab Institute of Chemical Engineering and Technology 54590 Lahore Pakistan
| | - Ameer Hamza
- University of Punjab Institute of Chemical Engineering and Technology 54590 Lahore Pakistan
| | - Waqas Aleem
- Mir Chakar Khan Rind University of Technology Department of Chemical Engineering & Technology Dera Ghazi Khan Pakistan
| | - Mariam Ameen
- Universiti Teknologi PETRONAS Higher Institution Centre of Excellence (HiCoE) Centre for Biofuel and Biochemical Research (CBBR) Institute of Sustainable Living (ISB) 32610 Seri Iskandar Malaysia
- Universiti Teknologi PETRONAS Department of Chemical Engineering 32610 Seri Iskandar Malaysia
| | - Aqsha Aqsha
- Institut Teknologi Bandung Department of Bioenergy and Chemurgy Engineering, Faculty of Technology Industry 45363 Bandung Indonesia
| |
Collapse
|
6
|
Net Energy Analysis and Techno-Economic Assessment of Co-Production of Bioethanol and Biogas from Cellulosic Biomass. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Co-production is a process based on the biorefinery concept that maximizes the benefit of biomass by reusing residue from the production of one product to produce others. In this regard, biogas is one of the most researched second products for the production of ethanol from cellulosic biomass. However, operating this scheme requires additional investment in biogas processing equipment. This review compiles data from research studies on the co-production of bioethanol and biogas from lignocellulosic biomass to determine which is more worthwhile: leaving the residue or investing more to benefit from the second product. According to previous research, ethanol stillage can be converted to biogas via anaerobic digestion, increasing energy output by 2–3 fold. Techno-economic studies demonstrated that the co-production process reduces the minimum ethanol selling price to a level close to the market price of ethanol, implying the possibility of industrializing cellulosic ethanol production through this scheme.
Collapse
|
7
|
Elgharbawy AA, Moniruzzaman M, Goto M. Recent advances of enzymatic reactions in ionic liquids: Part II. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107426] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Pérez-Pimienta JA, Papa G, Gladden JM, Simmons BA, Sanchez A. The effect of continuous tubular reactor technologies on the pretreatment of lignocellulosic biomass at pilot-scale for bioethanol production. RSC Adv 2020; 10:18147-18159. [PMID: 35517195 PMCID: PMC9053731 DOI: 10.1039/d0ra04031b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/06/2020] [Indexed: 11/21/2022] Open
Abstract
A pilot-scale continuous tubular reactor increases enzymatic digestibility of four different feedstocks by removing xylan and effectively achieving economically viable ethanol concentrations.
Collapse
Affiliation(s)
- José A. Pérez-Pimienta
- Laboratorio de Futuros en Bioenergía
- Unidad Guadalajara de Ingeniería Avanzada
- Centro de Investigación y Estudios Avanzados (CINVESTAV)
- Zapopan
- Mexico
| | - Gabriela Papa
- Joint BioEnergy Institute
- Biological Systems and Engineering Division
- Lawrence Berkeley National Laboratory
- Emeryville
- USA
| | - John M. Gladden
- Joint BioEnergy Institute
- Biological Systems and Engineering Division
- Lawrence Berkeley National Laboratory
- Emeryville
- USA
| | - Blake A. Simmons
- Joint BioEnergy Institute
- Biological Systems and Engineering Division
- Lawrence Berkeley National Laboratory
- Emeryville
- USA
| | - Arturo Sanchez
- Laboratorio de Futuros en Bioenergía
- Unidad Guadalajara de Ingeniería Avanzada
- Centro de Investigación y Estudios Avanzados (CINVESTAV)
- Zapopan
- Mexico
| |
Collapse
|
9
|
Surra E, Bernardo M, Lapa N, Esteves IAAC, Fonseca I, Mota JPB. Biomethane production through anaerobic co-digestion with Maize Cob Waste based on a biorefinery concept: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109351. [PMID: 31419673 DOI: 10.1016/j.jenvman.2019.109351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/10/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Maize Cob Waste (MCW) is available worldwide in high amounts, as maize is the most produced cereal in the world. MCW is generally left in the crop fields, but due to its low biodegradability it has a negligible impact in soil fertility. Moreover, MCW can be used as substrate to balance the C/N ratio during the Anaerobic co-Digestion (AcoD) with other biodegradable substrates, and is an excellent precursor for the production of Activated Carbons (ACs). In this context, a biorefinery is theoretically discussed in the present review, based on the idea that MCW, after proper pre-treatment is valorised as precursor of ACs and as co-substrate in AcoD for biomethane generation. This paper provides an overview on different scientific and technological aspects that can be involved in the development of the proposed biorefinery; the major topics considered in this work are the following ones: (i) the most suitable pre-treatments of MCW prior to AcoD; (ii) AcoD process with regard to the critical parameters resulting from MCW pre-treatments; (iii) production of ACs using MCW as precursor, with the aim to use these ACs in biogas conditioning (H2S removal) and upgrading (biomethane production), and (iv) an overview on biogas upgrading technologies.
Collapse
Affiliation(s)
- Elena Surra
- LAQV-REQUIMTE, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Maria Bernardo
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Nuno Lapa
- LAQV-REQUIMTE, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Isabel A A C Esteves
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Isabel Fonseca
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - José P B Mota
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
10
|
Zhao W, Zhao F, Zhang S, Gong Q, Chen G. Ethanol production by simultaneous saccharification and cofermentation of pretreated corn stalk. J Basic Microbiol 2019; 59:744-753. [DOI: 10.1002/jobm.201900117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/28/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Wenxuan Zhao
- Jilin Agricultural University; Innovation Platform of Straw Comprehensive Utilization of Jilin Province; Changchun China
| | - Fuguang Zhao
- Jilin Agricultural University; Innovation Platform of Straw Comprehensive Utilization of Jilin Province; Changchun China
| | - Sitong Zhang
- Jilin Agricultural University; Innovation Platform of Straw Comprehensive Utilization of Jilin Province; Changchun China
| | - Qinglong Gong
- Jilin Agricultural University; Innovation Platform of Straw Comprehensive Utilization of Jilin Province; Changchun China
| | - Guang Chen
- Jilin Agricultural University; Innovation Platform of Straw Comprehensive Utilization of Jilin Province; Changchun China
| |
Collapse
|
11
|
Elsayed M, Abomohra AEF, Ai P, Wang D, El-Mashad HM, Zhang Y. Biorefining of rice straw by sequential fermentation and anaerobic digestion for bioethanol and/or biomethane production: Comparison of structural properties and energy output. BIORESOURCE TECHNOLOGY 2018; 268:183-189. [PMID: 30077878 DOI: 10.1016/j.biortech.2018.07.130] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Three routes; namely R1 representing direct anaerobic digestion (AD), R2 representing enzymatic hydrolysis followed by fermentation, distillation, then AD, and R3 representing AD of fermentation broth without distillation; of alkali pretreated rice straw were investigated. Results showed that sequential fermentation and AD effectively enhanced fibers degradation with significant changes in the composition. Fermentation through R2 resulted in ethanol yield of 87.4 g kg-1 dry straw. Maximum biogas yields of 286.9, 233.3 and 372.4 L kg-1 VS were recorded by AD for R1, R2 and R3 after reaching the steady state at 36, 24 and 33 days, respectively. However, biogas produced through R3 showed the highest significant biomethane content (79.3%) which represented 15 and 8% higher than that of R1 and R2, respectively. Therefore, the highest bioenergy output and energy conversion efficiency of 10.58 GJ ton-1 and 75.6%, respectively, were obtained through R3 demonstrating the positive effect of fermentation prior to AD.
Collapse
Affiliation(s)
- Mahdy Elsayed
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China; Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Abd El-Fatah Abomohra
- School of Energy and Power Engineering, Jiangsu University, 212013 Jiangsu, China; Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Ping Ai
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Dianlong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hamed M El-Mashad
- Department of Agricultural Engineering, Mansoura University, El-Mansoura, Egypt
| | - Yanlin Zhang
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
12
|
Padrino B, Lara-Serrano M, Morales-delaRosa S, Campos-Martín JM, Fierro JLG, Martínez F, Melero JA, Puyol D. Resource Recovery Potential From Lignocellulosic Feedstock Upon Lysis With Ionic Liquids. Front Bioeng Biotechnol 2018; 6:119. [PMID: 30234105 PMCID: PMC6134079 DOI: 10.3389/fbioe.2018.00119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/10/2018] [Indexed: 11/15/2022] Open
Abstract
Lignocellulosic residues from energy crops offer a high potential to recover bioproducts and biofuels that can be used as raw matter for agriculture activities within a circular economy framework. Anaerobic digestion (AD) is a well-established driver to convert these residues into energy and bioproducts. However, AD of lignocellulosic matter is slow and yields low methane potential, and therefore several pre-treatment methods have been proposed to increase the energy yield of this process. Hereby, we have assessed the pre-treatment of lignocellulosic biomass (barley straw) with the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate and its effect on the biochemical methane potential (BMP). The BMP of the residue was evaluated at different inoculum to substrate (I/S) ratios and working under meso and thermophilic conditions. Solids destruction upon AD is highly enhanced by the IL-pretreatment. This also resulted in a higher BMP, both in mesophilic as well as thermophilic conditions. At the optimum I/S ratio of 2:1 (dried weight, dw), the BMP of the IL-pre-treated feedstock increased 28 and 80% for 35 days of thermophilic and mesophilic AD, respectively, as compared to the fresh feedstock, achieving values of 364 and 412 LCH4/kgTS. We also explored the effect of this pretreatment on the phosphorus recovery potential from the digestate upon release from the AD process. Thermophilic anaerobic digestion of IL-pre-treated biomass provided the highest P recovery potential from lignocellulosic residues (close to 100% of the theoretical P content of the lignocellulosic feedstock). Therefore, the pretreatment of lignocellulosic feedstock with IL before AD is a promising platform to obtain bioenergy and recover P to be regained for the agriculture sector.
Collapse
Affiliation(s)
- Beatriz Padrino
- Group of Chemical and Environmental Engineering, University Rey Juan Carlos, Mostoles, Spain
| | - Marta Lara-Serrano
- Sustainable Energy and Chemistry Group, Instituto de Catalisis y Petroleoquimica, CSIC, Madrid, Spain
| | - Silvia Morales-delaRosa
- Sustainable Energy and Chemistry Group, Instituto de Catalisis y Petroleoquimica, CSIC, Madrid, Spain
| | - José M Campos-Martín
- Sustainable Energy and Chemistry Group, Instituto de Catalisis y Petroleoquimica, CSIC, Madrid, Spain
| | - José Luis García Fierro
- Sustainable Energy and Chemistry Group, Instituto de Catalisis y Petroleoquimica, CSIC, Madrid, Spain
| | - Fernando Martínez
- Group of Chemical and Environmental Engineering, University Rey Juan Carlos, Mostoles, Spain
| | - Juan Antonio Melero
- Group of Chemical and Environmental Engineering, University Rey Juan Carlos, Mostoles, Spain
| | - Daniel Puyol
- Group of Chemical and Environmental Engineering, University Rey Juan Carlos, Mostoles, Spain
| |
Collapse
|
13
|
Mahmoodi P, Karimi K, Taherzadeh MJ. Hydrothermal processing as pretreatment for efficient production of ethanol and biogas from municipal solid waste. BIORESOURCE TECHNOLOGY 2018; 261:166-175. [PMID: 29660657 DOI: 10.1016/j.biortech.2018.03.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Organic fraction of municipal solid waste (OFMSW) is dominated by carbohydrates, including starch-based and lignocellulosic materials. The OFMSW was hydrothermally pretreated at 100-160 °C for 0-60 min, and then assessed for enzymatic ethanol production, followed by biogas production from the stillage. The highest glucose yield of 520 g/Kg of dry OFMSW, corresponding to 131% increase compared to that of the untreated OFMSW, was obtained after the pretreatment and enzymatic hydrolysis. Through ethanolic fermentation by an inhibitory tolerant fungus, Mucor indicus, 191.10 g ethanol/Kg of dry OFMSW was obtained, which was a 140.9% improvement in the ethanol yield compared to that from the untreated one. Methane production from the stillage (waste residues) resulted in 156 L/Kg OFMSW. In other words, a total of 10,774 KJ energy/Kg of dry OFMSW was generated at the best conditions.
Collapse
Affiliation(s)
- Peyman Mahmoodi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute of Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | | |
Collapse
|
14
|
Wu W, Rondon V, Weeks K, Pullammanappallil P, Ingram LO, Shanmugam KT. Phosphoric acid based pretreatment of switchgrass and fermentation of entire slurry to ethanol using a simplified process. BIORESOURCE TECHNOLOGY 2018; 251:171-180. [PMID: 29274857 DOI: 10.1016/j.biortech.2017.12.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 05/21/2023]
Abstract
Switchgrass (Alamo) was pretreated with phosphoric acid (0.75 and 1%, w/w) at three temperatures (160, 175 and 190 °C) and time (5, 7.5 and 10 min) using a steam gun. The slurry after pretreatment was liquefied by enzymes and the released sugars were fermented in a simultaneous saccharification and co-fermentation process to ethanol using ethanologenic Escherichia coli strain SL100. Among the three variables in pretreatment, temperature and time were critical in supporting ethanol titer and yield. Enzyme hydrolysis significantly increased the concentration of furans in slurries, apparently due to release of furans bound to the solids. The highest ethanol titer of 21.2 ± 0.3 g/L ethanol obtained at the pretreatment condition of 190-1-7.5 (temperature-acid concentration-time) and 10% solids loading accounted for 190 ± 2.9 g ethanol/kg of raw switch grass. This converts to 61.7 gallons of ethanol per ton of dry switchgrass, a value that is comparable to other published pretreatment conditions.
Collapse
Affiliation(s)
- Wei Wu
- Department of Microbiology and Cell Science, Gainesville, FL 32611, United States; Department of Agricultural and Biological Engineering, Gainesville, FL 32611, United States
| | - Vanessa Rondon
- Department of Microbiology and Cell Science, Gainesville, FL 32611, United States; Stan Mayfield Biorefinery, University of Florida, Gainesville, FL 32611, United States
| | - Kalvin Weeks
- Stan Mayfield Biorefinery, University of Florida, Gainesville, FL 32611, United States
| | | | - Lonnie O Ingram
- Department of Microbiology and Cell Science, Gainesville, FL 32611, United States; Stan Mayfield Biorefinery, University of Florida, Gainesville, FL 32611, United States
| | - K T Shanmugam
- Department of Microbiology and Cell Science, Gainesville, FL 32611, United States.
| |
Collapse
|
15
|
Katsimpouras C, Zacharopoulou M, Matsakas L, Rova U, Christakopoulos P, Topakas E. Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover. BIORESOURCE TECHNOLOGY 2017; 244:1129-1136. [PMID: 28869123 DOI: 10.1016/j.biortech.2017.08.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 05/15/2023]
Abstract
The present work investigates the suitability of pretreated corn stover (CS) to serve as feedstock for high gravity (HG) ethanol production at solids-content of 24wt%. Steam explosion, with and without the addition of H2SO4, and organosolv pretreated CS samples underwent a liquefaction/saccharification step followed by simultaneous saccharification and fermentation (SSF). Maximum ethanol concentration of ca. 76g/L (78.3% ethanol yield) was obtained from steam exploded CS (SECS) with 0.2% H2SO4. Organosolv pretreated CS (OCS) also resulted in high ethanol concentration of ca. 65g/L (62.3% ethanol yield). Moreover, methane production through anaerobic digestion (AD) was conducted from fermentation residues and resulted in maximum methane yields of ca. 120 and 69mL/g volatile solids (VS) for SECS and OCS samples, respectively. The results indicated that the implementation of a liquefaction/saccharification step before SSF employing a liquefaction reactor seemed to handle HG conditions adequately.
Collapse
Affiliation(s)
- Constantinos Katsimpouras
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece
| | - Maria Zacharopoulou
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece
| | - Leonidas Matsakas
- Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Ulrika Rova
- Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece; Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden.
| |
Collapse
|
16
|
Sotthisawad K, Mahakhan P, Vichitphan K, Vichitphan S, Sawaengkaew J. Bioconversion of Mushroom Cultivation Waste Materials into Cellulolytic Enzymes and Bioethanol. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2496-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Hou J, Zhang S, Qiu Z, Han H, Zhang Q. Stimulatory effect and adsorption behavior of rhamnolipids on lignocelluloses degradation system. BIORESOURCE TECHNOLOGY 2017; 224:465-472. [PMID: 27923607 DOI: 10.1016/j.biortech.2016.11.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
Di-rhamnolipid and mixed rhamnolipid were added to rice straw degrading system to investigate their mechanism of stimulatory effect. By batch adsorption experiments, it was shown that the equilibrium adsorption time of rhamnolipids on rice straw single system was the shortest (50min). The adsorption capacity of Trichoderma reesei single system was the strongest, whose Qe,exp for di-rhamnolipid and mixed rhamnolipid was 10.57×10-2mg·g-1 and 8.13×10-2mg·g-1, respectively. The adsorption of rhamnolipids on consortia system was not the simple adduct of the two single systems. The adsorption of rhamnolipids on the three different systems might belong to chemisorptions. SEM and FTIR analyses were used to observe the morphology and to analyze the chemical functions in lignocellulosic biomass degradation with rhamnolipid. It was shown that after addition of rhamnolipids, the basic tissue in rice straw was severely destroyed and hydrogen bond was formed between biosurfactant and bacteria in lignocellulose degrading system.
Collapse
Affiliation(s)
- Jinju Hou
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Zhen Qiu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Hui Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China.
| |
Collapse
|
18
|
Corno L, Pilu R, Tran K, Tambone F, Singh S, Simmons BA, Adani F. Sugars Production for Green Chemistry from 2nd Generation Crop (Arundo donax L.): A Full Field Approach. ChemistrySelect 2016. [DOI: 10.1002/slct.201600733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Luca Corno
- Gruppo Ricicla - DiSAA - Biomass and Bioenergy Laboratory; Univerisity of Milan; Via Celoria 2 20133 Milan Italy
| | - Roberto Pilu
- DiSAA - Genetic Laboratory; University of Milan; Via Celoria 2 20133 Milan Italy
| | - Kim Tran
- Sandia National Laboratories; 7011 East Avenue Livermore 94550 CA USA
- Joint Bioenergy Institute; Lawrence Berkeley National Laboratory; 1 Cyclotron Road Berkeley 94720 CA USA
| | - Fulvia Tambone
- Gruppo Ricicla - DiSAA - Biomass and Bioenergy Laboratory; Univerisity of Milan; Via Celoria 2 20133 Milan Italy
| | - Seema Singh
- Sandia National Laboratories; 7011 East Avenue Livermore 94550 CA USA
- Joint Bioenergy Institute; Lawrence Berkeley National Laboratory; 1 Cyclotron Road Berkeley 94720 CA USA
| | - Blake A. Simmons
- Joint Bioenergy Institute; Lawrence Berkeley National Laboratory; 1 Cyclotron Road Berkeley 94720 CA USA
- Biological Systems and Engineering Division; Lawrence Berkeley National Laboratory; 1 Cyclotron Road Berkeley 94720 CA USA
| | - Fabrizio Adani
- Gruppo Ricicla - DiSAA - Biomass and Bioenergy Laboratory; Univerisity of Milan; Via Celoria 2 20133 Milan Italy
| |
Collapse
|
19
|
Perez-Pimienta JA, Flores-Gómez CA, Ruiz HA, Sathitsuksanoh N, Balan V, da Costa Sousa L, Dale BE, Singh S, Simmons BA. Evaluation of agave bagasse recalcitrance using AFEX™, autohydrolysis, and ionic liquid pretreatments. BIORESOURCE TECHNOLOGY 2016; 211:216-23. [PMID: 27017132 DOI: 10.1016/j.biortech.2016.03.103] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 05/15/2023]
Abstract
A comparative analysis of the response of agave bagasse (AGB) to pretreatment by ammonia fiber expansion (AFEX™), autohydrolysis (AH) and ionic liquid (IL) was performed using 2D nuclear magnetic resonance (NMR) spectroscopy, wet chemistry, enzymatic saccharification and mass balances. It has been found that AFEX pretreatment preserved all carbohydrates in the biomass, whereas AH removed 62.4% of xylan and IL extracted 25% of lignin into wash streams. Syringyl and guaiacyl lignin ratio of untreated AGB was 4.3, whereas for the pretreated biomass the ratios were 4.2, 5.0 and 4.7 for AFEX, AH and IL, respectively. Using NMR spectra, the intensity of β-aryl ether units in aliphatic, anomeric, and aromatic regions decreased in all three pretreated samples when compared to untreated biomass. Yields of glucose plus xylose in the major hydrolysate stream were 42.5, 39.7 and 26.9kg per 100kg of untreated AGB for AFEX, IL and AH, respectively.
Collapse
Affiliation(s)
| | - Carlos A Flores-Gómez
- Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
| | - Héctor A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Noppadon Sathitsuksanoh
- Department of Chemical Engineering and Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, United States; Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Emeryville, CA, United States
| | - Venkatesh Balan
- Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
| | - Leonardo da Costa Sousa
- Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
| | - Bruce E Dale
- Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
| | - Seema Singh
- Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Emeryville, CA, United States; Sandia National Laboratories, Biological and Engineering Sciences Center, Livermore, CA, United States
| | - Blake A Simmons
- Joint BioEnergy Institute, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Emeryville, CA, United States; Sandia National Laboratories, Biological and Engineering Sciences Center, Livermore, CA, United States
| |
Collapse
|
20
|
Ji Z, Zhang X, Ling Z, Sun RC, Xu F. Tissue specific response of Miscanthus×giganteus to dilute acid pretreatment for enhancing cellulose digestibility. Carbohydr Polym 2016; 154:247-56. [PMID: 27577916 DOI: 10.1016/j.carbpol.2016.06.086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
The recalcitrance in grasses varies according to cell type and tissue. In this study, dilute acid pretreatment was performed on Miscanthus×giganteus internodes that include rind and pith regions which showing heterogeneous structural and chemical changes. Pretreatment on pith effectively hydrolyzed 73.33% hemicelluloses and separated cohesive cell walls from the compound middle lamella due to lignin migration. Lignin droplets with an average diameter of 49.5±29.3nm were concurrently coalesced on wall surface, that in turn exposed more microfibrils deep in walls to be enzymatically hydrolyzed reaching 82.55%. By contrast, the rind with a relatively intergrated cell structure was covered by larger lignin droplets (101.2±44.1nm) and filled with inaccessible microfibrils limiting enzymatic sacchrification (31.50%). Taken together, the cellulose digestibility of biomass was not majorly influenced by cellulose crystallinity, while it was strongly correlated with the positive effects of hemicelluloses degradation, lignin redistribution, cellulose exposure and loosening cell wall structure.
Collapse
Affiliation(s)
- Zhe Ji
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xun Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Zhe Ling
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Run-Cang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Shandong Key Laboratory of Pulping and Papermaking Engineering, Qilu University of Technology, Jinan 250353, China.
| |
Collapse
|
21
|
Acetic acid-catalyzed hydrothermal pretreatment of corn stover for the production of bioethanol at high-solids content. Bioprocess Biosyst Eng 2016; 39:1415-23. [DOI: 10.1007/s00449-016-1618-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
|
22
|
Li P, Cai D, Luo Z, Qin P, Chen C, Wang Y, Zhang C, Wang Z, Tan T. Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. BIORESOURCE TECHNOLOGY 2016; 206:86-92. [PMID: 26849200 DOI: 10.1016/j.biortech.2016.01.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 05/16/2023]
Abstract
In this study, the effects of different parts of corn stalk, including stem, leaf, flower, cob and husk on second generation ethanol production were evaluated. FTIR, XRD and SEM were performed to investigate the effect of dilute acid pretreatment. The bagasse obtained after pretreatment were further hydrolyzed by cellulase and used as the substrate for ethanol fermentation. As results, hemicelluloses fractions in different parts of corn stalk were dramatically removed and the solid fractions showed vivid compositions and crystallinities. Compared with other parts of corn stalk, the cob had higher sugar content and better enzymatic digestibility. The highest glucose yield of 94.2% and ethanol production of 24.0 g L(-1) were achieved when the cob was used as feedstock, while the glucose yield and the ethanol production were only 86.0% and 17.1 g L(-1) in the case of flower.
Collapse
Affiliation(s)
- Ping Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhangfeng Luo
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Changjing Chen
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yong Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zheng Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
23
|
Travaini R, Martín-Juárez J, Lorenzo-Hernando A, Bolado-Rodríguez S. Ozonolysis: An advantageous pretreatment for lignocellulosic biomass revisited. BIORESOURCE TECHNOLOGY 2016; 199:2-12. [PMID: 26409859 DOI: 10.1016/j.biortech.2015.08.143] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 06/05/2023]
Abstract
Ozonolysis, as a lignocellulosic biomass pretreatment, goes back to 80s; however, in the last years it is becoming widespread again owing to its efficiency and mild operation conditions. Ozone reacts preferably with lignin than carbohydrates, promoting biomass destructuration and delignification, and so the sugar release by enzymatic hydrolysis. The hydrolysate from pretreated biomass has being used as sugars source for second-generation fuels production, mainly ethanol, methane and hydrogen. Short-chain carboxylic acids are the main inhibitory compounds generated, being properly removed by water washing. The most common inhibitory compounds reported for other pretreatments, furfural and HMF (5-hydroxymethylfurfural), are not found in ozone-pretreated hydrolysates. Composition of pretreated biomass and ozone consumption depends on several process parameters: reactor design, moisture content, particle size, pH, reaction time, ozone/air flow and ozone concentration. Additional studies are necessary to clarify process parameters effect and to optimize the process to achieve high yields with economic feasibility.
Collapse
Affiliation(s)
- Rodolfo Travaini
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain
| | - Judit Martín-Juárez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain
| | - Ana Lorenzo-Hernando
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain
| | - Silvia Bolado-Rodríguez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
24
|
Cho SH, Kim KH, Jeon YJ, Kwon EE. Pyrolysis of microalgal biomass in carbon dioxide environment. BIORESOURCE TECHNOLOGY 2015; 193:185-191. [PMID: 26133476 DOI: 10.1016/j.biortech.2015.06.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
This work mechanistically investigated the influence of CO2 in the thermo-chemical process of microalgal biomass (Chlorella vulgaris and Microcystis aeruginosa) to achieve a fast virtuous cycle of carbon via recovering energy. This work experimentally justified that the influence of CO2 in pyrolysis of microalgal biomass could be initiated at temperatures higher than 530 °C, which directly led to the enhanced generation of syngas. For example, the concentration of CO from pyrolysis of M. aeruginosa increased up to ∼ 3000% at 670 °C in the presence of CO2. The identified universal influence of CO2 could be summarized by the expedited thermal cracking of VOCs evolved from microalgal biomass and by the unknown reaction between VOCs and CO2. This identified effectiveness of CO2 was different from the Boudouard reaction, which was independently occurred with dehydrogenation. Thus, microalgal biomass could be a candidate for the thermo-chemical process (pyrolysis and gasification).
Collapse
Affiliation(s)
- Seong-Heon Cho
- Department of Environment and Energy at Sejong University, Seoul 143-747, South Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering at Hanyang University, Seoul 133-791, South Korea
| | - Young Jae Jeon
- Department of Microbiology at Pukyong National University, Pusan 608-737, South Korea
| | - Eilhann E Kwon
- Department of Environment and Energy at Sejong University, Seoul 143-747, South Korea.
| |
Collapse
|
25
|
Luca C, Pilu R, Tambone F, Scaglia B, Adani F. New energy crop giant cane (Arundo donax L.) can substitute traditional energy crops increasing biogas yield and reducing costs. BIORESOURCE TECHNOLOGY 2015; 191:197-204. [PMID: 25997008 DOI: 10.1016/j.biortech.2015.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
Giant cane is a promising non-food crop for biogas production. Giant cane and corn silages coming from full-scale fields were tested, in mixtures with pig slurry, for biomethane production by a continuous stirred tank lab-scale-reactor (CSTR) approach. Results indicated that giant cane produced less biomethane than corn, i.e. 174±10 N m(3) CH4 Mg(-1) TS(-1) and 245±26 N m(3) CH4 Mg(-1) TS(-1), respectively. On the other hand, because of its high field biomass production, the biogas obtainable per Ha was higher for giant cane than for corn, i.e. 12,292 N m(3) CH4 Ha(-1) and 4549 N m(3) CH4 Ha(-1), respectively. Low energetic and agronomic inputs for giant cane cultivation led to a considerable reduction in the costs of producing both electricity and biomethane, i.e. 0.50 € N m(-3) CH4(-1) and 0.81 € N m(-3) CH4(-1), and 0.10 € kW hEE(-1) and 0.19 € kW hEE(-1) for biomethane and electricity production, and for giant cane and corn mixtures respectively.
Collapse
Affiliation(s)
- Corno Luca
- Di.S.A.A. - Gruppo Ricicla - Biomass and Bioenergy Laboratory - DiSAA, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Roberto Pilu
- Di.S.A.A. - Gruppo Ricicla - Genetic Laboratory - DiSAA, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Fulvia Tambone
- Di.S.A.A. - Gruppo Ricicla - Biomass and Bioenergy Laboratory - DiSAA, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Barbara Scaglia
- Di.S.A.A. - Gruppo Ricicla - Biomass and Bioenergy Laboratory - DiSAA, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Fabrizio Adani
- Di.S.A.A. - Gruppo Ricicla - Biomass and Bioenergy Laboratory - DiSAA, University of Milan, Via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
26
|
Ji Z, Zhang X, Ling Z, Zhou X, Ramaswamy S, Xu F. Visualization of Miscanthus × giganteus cell wall deconstruction subjected to dilute acid pretreatment for enhanced enzymatic digestibility. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:103. [PMID: 26213569 PMCID: PMC4513789 DOI: 10.1186/s13068-015-0282-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/01/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND The natural recalcitrance of lignocellulosic plant cell walls resulting from complex arrangement and distribution of heterogeneous components impedes deconstruction of such cell walls. Dilute acid pretreatment (DAP) is an attractive method to overcome the recalcitrant barriers for rendering enzymatic conversion of polysaccharides. In this study, the internodes of Miscanthus × giganteus, a model bioenergy crop, were subjected to DAP to yield a range of samples with altered cell wall structure and chemistry. The consequent morphological and compositional changes and their possible impact on saccharification efficiency were comprehensively investigated. The use of a series of microscopic and microspectroscopic techniques including fluorescence microscopy (FM), transmission electron microscopy (TEM) and confocal Raman microscopy (CRM)) enabled correlative cell wall structural and chemical information to be obtained. RESULTS DAP of M. × giganteus resulted in solubilization of arabinoxylan and cross-linking hydroxycinnamic acids in a temperature-dependent manner. The optimized pretreatment (1% H2SO4, 170°C for 30 min) resulted in significant enhancement in the saccharification efficiency (51.20%) of treated samples in 72 h, which amounted to 4.4-fold increase in sugar yield over untreated samples (11.80%). The remarkable improvement could be correlated to a sequence of changes occurring in plant cell walls due to their pretreatment-induced deconstruction, namely, loss in the matrix between neighboring cell walls, selective removal of hemicelluloses, redistribution of phenolic polymers and increased exposure of cellulose. The consequently occurred changes in inner cell wall structure including damaging, increase of porosity and loss of mechanical resistance were also found to enhance enzyme access to cellulose and further sugar yield. CONCLUSIONS DAP is a highly effective process for improving bioconversion of cellulose to glucose by breaking down the rigidity and resistance of cell walls. The combination of the most relevant microscopic and microanalytical techniques employed in this work provided information crucial for evaluating the influence of anatomical and compositional changes on enhanced enzymatic digestibility.
Collapse
Affiliation(s)
- Zhe Ji
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
- />Ministry of Education Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Tsinghua East Road, Beijing, 100083 China
| | - Xun Zhang
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
- />Ministry of Education Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Tsinghua East Road, Beijing, 100083 China
| | - Zhe Ling
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
- />Ministry of Education Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Tsinghua East Road, Beijing, 100083 China
| | - Xia Zhou
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
- />Ministry of Education Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Tsinghua East Road, Beijing, 100083 China
| | - Shri Ramaswamy
- />Department of Bioproducts and Biosystems Engineering, Kaufert Laboratory, University of Minnesota, Saint Paul, MN 55108 USA
| | - Feng Xu
- />Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
- />Ministry of Education Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Tsinghua East Road, Beijing, 100083 China
| |
Collapse
|