1
|
Gómez-García R, Campos DA, Aguilar CN, Madureira AR, Pintado M. Valorisation of food agro-industrial by-products: From the past to the present and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113571. [PMID: 34488107 DOI: 10.1016/j.jenvman.2021.113571] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Food agro-industrial by-products mainly include peels, seeds, stems, bagasse, kernels, and husk, derived during food processing. Due to their overproduction and the lack of sustainable management, such by-products have been conventionally rejected and wasted in landfills, being the principal strategy for their treatment, but nowadays, this strategy has been associated with several environmental, social and economic issues. Hence, we focused on the use of different consolidated biotechnological processes and methodologies as suitable strategies for food by-products management and valorisation, highlighting them as potential bioresources because they still gather high compositional and nutritional value, owing to their richness in functional and bioactive molecules with human health benefits. Food by-products could be utilised for the development of new food ingredients or products for human consumption, promoting their integral valorisation and reincorporation to the food supply chain within the circular bioeconomy concept, creating revenue streams, business and job opportunities. In this review, the main goal was to provide a general overview of the food agro-industrial by-products utilised throughout the years, improving global sustainability and human nutrition, emphasising the importance of biowaste valorisation as well as the methodologies employed for the recovery of value-added molecules.
Collapse
Affiliation(s)
- Ricardo Gómez-García
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal; BBG-DIA. Bioprocesses and Bioproducts Group. Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico.
| | - Débora A Campos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Cristóbal N Aguilar
- BBG-DIA. Bioprocesses and Bioproducts Group. Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Ana R Madureira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
2
|
Exploring the optimized strategy for 5-hydroxymethyl-2-furancarboxylic acid production from agriculture wastes using Pseudomonas aeruginosa PC-1. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Immobilization of Laccase on Magnetic Nanoparticles and Application in the Detoxification of Rice Straw Hydrolysate for the Lipid Production of Rhodotorula glutinis. Appl Biochem Biotechnol 2020; 193:998-1010. [PMID: 33219451 DOI: 10.1007/s12010-020-03465-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
The production of microbial lipid using lignocellulosic agroforestry residues has attracted much attention. But, various inhibitors such as phenols and furans, which are produced during lignocellulosic hydrolysate preparation, are harmful to microbial lipid accumulation. Herein, we developed a novel detoxification strategy of rice straw hydrolysate using immobilized laccase on magnetic Fe3O4 nanoparticles for improving lipid production of Rhodotorula glutinis. Compared with free laccase, the immobilized laccase on magnetic nanoparticles showed better stability, which still retained 76% of original activity at 70 °C and 56% at pH 2 for 6 h. This immobilized laccase was reused to remove inhibitors in acid-pretreated rice straw hydrolysate through recycling with external magnetic field. The results showed that most of phenols, parts of furans, and formic acids could be removed by immobilized laccase after the first batch. Notably, the immobilized laccase exhibited good reusability in repeated batch detoxification. 78.2% phenols, 43.8% furfural, 30.4% HMF, and 16.5% formic acid in the hydrolysate were removed after the fourth batch. Furthermore, these detoxified rice straw hydrolysates, as substrates, were applied to the lipid production of Rhodotorula glutinis. The lipid yield in detoxified hydrolysate was significantly higher than that in undetoxified hydrolysate. These findings suggest that the immobilized laccase on magnetic nanoparticles has a potential to detoxify lignocellusic hydrolysate for improving microbial lipid production.
Collapse
|
4
|
Liu W, Wu R, Wang B, Hu Y, Hou Q, Zhang P, Wu R. Comparative study on different pretreatment on enzymatic hydrolysis of corncob residues. BIORESOURCE TECHNOLOGY 2020; 295:122244. [PMID: 31627064 DOI: 10.1016/j.biortech.2019.122244] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Under the situation of increasingly severe challenge of energy consumption, it is of great importance to make full use of bioresources such as forestry and agricultural residues. Herein, the corncob residues generated after processing corncob were enzymatically hydrolyzed to yield fermentable sugars. To overcome the recalcitrance of corncob residues, three kinds of pretreatment methods, i.e., sulfonation, PFI refining, and wet grinding, were applied; their effects on enzymatic hydrolysis and main characteristics of corncob residues substrate were investigated. The results showed that the enzymatic digestibility of the substrate was greatly enhanced by employing each method. The wet grinding exhibited obvious advantages, e.g., the conversion yield of cellulose to glucose and glucose concentration reached 96.7% and 32.2 g/L after 59 h of enzymatic hydrolysis, respectively. The improvement in enzymatic hydrolysis was mainly attributed to the altered characteristics of the substrate such as swelling ability, specific surface area, and particle size and distribution.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China; Department of Chemical Engineering, University of New Brunswick, Fredercton, New Brunswick E3B 5A3, Canada.
| | - Ruijie Wu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bing Wang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingying Hu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qingxi Hou
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Peiqing Zhang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rina Wu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
5
|
Kong X, Zhang B, Hua Y, Zhu Y, Li W, Wang D, Hong J. Efficient l-lactic acid production from corncob residue using metabolically engineered thermo-tolerant yeast. BIORESOURCE TECHNOLOGY 2019; 273:220-230. [PMID: 30447623 DOI: 10.1016/j.biortech.2018.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 05/26/2023]
Abstract
Lactic acid is an important industrial product and the production from inexpensive and renewable lignocellulose can reduce the cost and environmental pollution. In this study, a Kluyveromyces marxianus strain which produced lactic acid efficiently from corncob was constructed. Firstly, two of six different lactate dehydrogenases, which from Plasmodium falciparum and Bacillus subtilis, respectively, were proved to be effective for l-lactic acid production. Then, five single genetic modifications were conducted. The overexpression of Saccharomyces cerevisiae proton-coupled monocarboxylate transporter, K. marxianus 6-phosphofructokinase, or disruption of K. marxianus putative d-lactate dehydrogenase enhanced the l-lactic acid accumulation. Finally, the strain YKX071, obtained via combination of above effective genetic engineering, produced 103.00 g/L l-lactic acid at 42 °C with optical purity of 99.5% from corncob residue via simultaneous saccharification and co-fermentation. This study first developed an effective platform for high optical purity l-lactic acid production from lignocellulose using yeast with inexpensive nitrogen sources.
Collapse
Affiliation(s)
- Xin Kong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Biao Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Yan Hua
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Yelin Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Wenjie Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China.
| |
Collapse
|
6
|
Optimization of Saccharification Conditions of Lignocellulosic Biomass under Alkaline Pre-Treatment and Enzymatic Hydrolysis. ENERGIES 2018. [DOI: 10.3390/en11040886] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Jin LQ, Zhao N, Liu ZQ, Liao CJ, Zheng XY, Zheng YG. Enhanced production of xylose from corncob hydrolysis with oxalic acid as catalyst. Bioprocess Biosyst Eng 2017; 41:57-64. [DOI: 10.1007/s00449-017-1843-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 09/21/2017] [Indexed: 02/04/2023]
|
8
|
Bai Z, Gao Z, Sun J, Wu B, He B. D-Lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue. BIORESOURCE TECHNOLOGY 2016; 207:346-352. [PMID: 26897413 DOI: 10.1016/j.biortech.2016.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
d-Lactic acid, is an important organic acid produced from agro-industrial wastes by Sporolactobacillus inulinus YBS1-5 was investigated to reduce the raw material cost of fermentation. The YBS1-5 strain could produce d-lactic acid by using cottonseed meal as the sole nitrogen source. For efficient utilization, the cottonseed meal was enzymatically hydrolyzed and simultaneously utilized during d-lactic acid fermentation. Corncob residues are rich in cellulose and can be enzymatically hydrolyzed without pretreatment. The hydrolysate of this lignocellulosic waste could be utilized by strain YBS1-5 as a carbon source for d-lactic acid production. Under optimal conditions, a high d-lactic acid concentration (107.2g/L) was obtained in 7-L fed-batch fermenter, with an average productivity of 1.19g/L/h and a yield of 0.85g/g glucose. The optical purity of d-lactic acid in the broth was 99.2%. This study presented a new approach for low-cost production of d-lactic acid for an industrial application.
Collapse
Affiliation(s)
- Zhongzhong Bai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Junfei Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China.
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| |
Collapse
|
9
|
Ji G, Gao C, Xiao W, Han L. Mechanical fragmentation of corncob at different plant scales: Impact and mechanism on microstructure features and enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2016; 205:159-65. [PMID: 26826955 DOI: 10.1016/j.biortech.2016.01.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 05/27/2023]
Abstract
In this work, corncob samples at different scales, i.e., plant scale (>1mm), tissue scale (500-100μm) and cellular scale (50-30μm), were produced to investigate the impact and mechanisms of different mechanical fragmentations on microstructure features and enzymatic hydrolysis. The results showed that the microstructure features and enzymatic hydrolysis of corncob samples, either at a plant scale or tissue scale, did not change significantly. Conversely, corncob samples at a cellular scale exhibited some special properties, i.e., an increase in the special surface area with the inner mesopores and macropores exposed to the surface; breakage of crystalline cellulose and linkages in polysaccharides; and a higher proportion of polysaccharides on the surface, which significantly enhanced enzymatic digestibility resulting in a 98.3% conversion yield of cellulose to glucose which is the highest conversion ever reported. In conclusion, mechanical fragmentation at the cellular scale is an effective pretreatment for corncob.
Collapse
Affiliation(s)
- Guanya Ji
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Chongfeng Gao
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Weihua Xiao
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Lujia Han
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China.
| |
Collapse
|
10
|
Wang S, Ouyang X, Wang W, Yuan Q, Yan A. Comparison of ultrasound-assisted Fenton reaction and dilute acid-catalysed steam explosion pretreatment of corncobs: cellulose characteristics and enzymatic saccharification. RSC Adv 2016. [DOI: 10.1039/c6ra13125e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As an emerging method for lignocellulose pretreatment, the ultrasound-assisted Fenton reaction is not well developed in comparison to the dilute acid-catalysed steam explosion.
Collapse
Affiliation(s)
- Sujun Wang
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xianhong Ouyang
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wenya Wang
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Qipeng Yuan
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Aixia Yan
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|