• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4613499)   Today's Articles (0)   Subscriber (49388)
For: Yang N, Hafez H, Nakhla G. Impact of volatile fatty acids on microbial electrolysis cell performance. Bioresour Technol 2015;193:449-55. [PMID: 26159302 DOI: 10.1016/j.biortech.2015.06.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 05/27/2023]
Number Cited by Other Article(s)
1
Asqardokht-Aliabadi A, Sarabi-Aghdam V, Homayouni-Rad A, Hosseinzadeh N. Postbiotics in the Bakery Products: Applications and Nutritional Values. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10327-y. [PMID: 39066881 DOI: 10.1007/s12602-024-10327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
2
Choi Y, Kim D, Choi H, Cha J, Baek G, Lee C. Comparative study of exoelectrogenic utilization preferences and hydrogen conversion among major fermentation products in microbial electrolysis cells. BIORESOURCE TECHNOLOGY 2024;393:130032. [PMID: 38013038 DOI: 10.1016/j.biortech.2023.130032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
3
Choi Y, Kim D, Choi H, Cha J, Baek G, Lee C. A study of electron source preference and its impact on hydrogen production in microbial electrolysis cells fed with synthetic fermentation effluent. Bioengineered 2023;14:2244759. [PMID: 37598370 PMCID: PMC10444008 DOI: 10.1080/21655979.2023.2244759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]  Open
4
Llamas M, Greses S, Magdalena JA, González-Fernández C, Tomás-Pejó E. Microbial co-cultures for biochemicals production from lignocellulosic biomass: A review. BIORESOURCE TECHNOLOGY 2023;386:129499. [PMID: 37460020 DOI: 10.1016/j.biortech.2023.129499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
5
Magdalena JA, Pérez-Bernal MF, Bernet N, Trably E. Sequential dark fermentation and microbial electrolysis cells for hydrogen production: Volatile fatty acids influence and energy considerations. BIORESOURCE TECHNOLOGY 2023;374:128803. [PMID: 36858124 DOI: 10.1016/j.biortech.2023.128803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
6
Influence of Nanomaterials and Other Factors on Biohydrogen Production Rates in Microbial Electrolysis Cells-A Review. MOLECULES (BASEL, SWITZERLAND) 2022;27:molecules27238594. [PMID: 36500687 PMCID: PMC9739545 DOI: 10.3390/molecules27238594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
7
Zhang J, Chang H, Li X, Jiang B, Wei T, Sun X, Liang D. Boosting hydrogen production from fermentation effluent of biomass wastes in cylindrical single-chamber microbial electrolysis cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022;29:89727-89737. [PMID: 35857167 DOI: 10.1007/s11356-022-22095-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
8
Sun Y, Ter Heijne A, Rijnaarts H, Chen WS. The effect of anode potential on electrogenesis, methanogenesis and sulfidogenesis in a simulated sewer condition. WATER RESEARCH 2022;226:119229. [PMID: 36242938 DOI: 10.1016/j.watres.2022.119229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/14/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
9
Hu Y, Han X, Shi L, Cao B. Electrochemically active biofilm-enabled biosensors: Current status and opportunities for biofilm engineering. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
10
Dattatraya Saratale G, Rajesh Banu J, Nastro RA, Kadier A, Ashokkumar V, Lay CH, Jung JH, Seung Shin H, Ganesh Saratale R, Chandrasekhar K. Bioelectrochemical systems in aid of sustainable biorefineries for the production of value-added products and resource recovery from wastewater: A critical review and future perspectives. BIORESOURCE TECHNOLOGY 2022;359:127435. [PMID: 35680092 DOI: 10.1016/j.biortech.2022.127435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
11
Zakaria BS, Guo H, Kim Y, Dhar BR. Molecular biology and modeling analysis reveal functional roles of propionate to acetate ratios on microbial syntrophy and competition in electro-assisted anaerobic digestion. WATER RESEARCH 2022;216:118335. [PMID: 35358877 DOI: 10.1016/j.watres.2022.118335] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
12
Jung JH, Sim YB, Baik JH, Park JH, Kim SM, Yang J, Kim SH. Effect of genus Clostridium abundance on mixed-culture fermentation converting food waste into biohydrogen. BIORESOURCE TECHNOLOGY 2021;342:125942. [PMID: 34563827 DOI: 10.1016/j.biortech.2021.125942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
13
San-Martín MI, Pelaz G, Escapa A, Morán A. Microbial electrolysis cells for return flow: Simultaneous nitrogen and carbon removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021;289:112499. [PMID: 33823407 DOI: 10.1016/j.jenvman.2021.112499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/09/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
14
Yu Z, Liu W, Shi Y, Wang B, Huang C, Liu C, Wang A. Microbial electrolysis enhanced bioconversion of waste sludge lysate for hydrogen production compared with anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021;767:144344. [PMID: 33434845 DOI: 10.1016/j.scitotenv.2020.144344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
15
Wang Y, Xi B, Jia X, Li M, Qi X, Xu P, Zhao Y, Ye M, Hao Y. Characterization of hydrogen production and microbial community shifts in microbial electrolysis cells with L-cysteine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021;760:143353. [PMID: 33162129 DOI: 10.1016/j.scitotenv.2020.143353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
16
Cardeña R, Koók L, Žitka J, Bakonyi P, Galajdová B, Otmar M, Nemestóthy N, Buitrón G. Evaluation and ranking of polymeric ion exchange membranes used in microbial electrolysis cells for biohydrogen production. BIORESOURCE TECHNOLOGY 2021;319:124182. [PMID: 33038653 DOI: 10.1016/j.biortech.2020.124182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
17
Zhang X, Li R. Electrodes bioaugmentation promotes the removal of antibiotics from concentrated sludge in microbial electrolysis cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020;715:136997. [PMID: 32032993 DOI: 10.1016/j.scitotenv.2020.136997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
18
Microbial anodic consortia fed with fermentable substrates in microbial electrolysis cells: Significance of microbial structures. Bioelectrochemistry 2018;123:219-226. [DOI: 10.1016/j.bioelechem.2018.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/16/2018] [Accepted: 05/19/2018] [Indexed: 11/22/2022]
19
Bakonyi P, Kumar G, Koók L, Tóth G, Rózsenberszki T, Bélafi-Bakó K, Nemestóthy N. Microbial electrohydrogenesis linked to dark fermentation as integrated application for enhanced biohydrogen production: A review on process characteristics, experiences and lessons. BIORESOURCE TECHNOLOGY 2018;251:381-389. [PMID: 29295757 DOI: 10.1016/j.biortech.2017.12.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
20
Li X, Zhang R, Qian Y, Angelidaki I, Zhang Y. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent. BIORESOURCE TECHNOLOGY 2017;236:37-43. [PMID: 28390275 DOI: 10.1016/j.biortech.2017.03.160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
21
Yuan P, Kim Y. Increasing phosphorus recovery from dewatering centrate in microbial electrolysis cells. BIOTECHNOLOGY FOR BIOFUELS 2017;10:70. [PMID: 28331546 PMCID: PMC5359864 DOI: 10.1186/s13068-017-0754-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/10/2017] [Indexed: 05/13/2023]
22
Yasri NG, Nakhla G. Electrochemical Behavior of Anode-Respiring Bacteria on Doped Carbon Electrodes. ACS APPLIED MATERIALS & INTERFACES 2016;8:35150-35162. [PMID: 27966869 DOI: 10.1021/acsami.6b09907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
23
Cerrillo M, Viñas M, Bonmatí A. Removal of volatile fatty acids and ammonia recovery from unstable anaerobic digesters with a microbial electrolysis cell. BIORESOURCE TECHNOLOGY 2016;219:348-356. [PMID: 27501031 DOI: 10.1016/j.biortech.2016.07.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 07/24/2016] [Indexed: 06/06/2023]
24
Lu L, Ren ZJ. Microbial electrolysis cells for waste biorefinery: A state of the art review. BIORESOURCE TECHNOLOGY 2016;215:254-264. [PMID: 27020129 DOI: 10.1016/j.biortech.2016.03.034] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
25
Jin X, Angelidaki I, Zhang Y. Microbial Electrochemical Monitoring of Volatile Fatty Acids during Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016;50:4422-4429. [PMID: 27054267 DOI: 10.1021/acs.est.5b05267] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA