1
|
Abrha GT, Makaranga A, Jutur PP. Enhanced lipid accumulation in microalgae Scenedesmus sp. under nitrogen limitation. Enzyme Microb Technol 2024; 182:110546. [PMID: 39531895 DOI: 10.1016/j.enzmictec.2024.110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Microalgae-based biofuel production is cost-effective only in a biorefinery, where valuable co-products offset high costs. Fatty acids produced by photosynthetic microalgae can serve as raw materials for bioenergy and pharmaceuticals. This study aims to understand the metabolic imprints of Scenedesmus sp. CABeR52, to decipher the physiological mechanisms behind lipid accumulation under nitrogen deprivation. Metabolomics profiles were generated using gas chromatography-mass spectrometry (GC-MS) of Scenedesmus sp. CABeR52 subjected to nutrient deprivation. Our initial data sets indicate that deprived cells have an increased accumulation of lipids (278.31 mg.g-1 dcw), 2.0 times higher than the control. The metabolomic profiling unveils a metabolic reprogramming, highlighting the upregulation of key metabolites involved in fatty acid biosynthesis, such as citric acid, succinic acid, and 2-ketoglutaric acid. The accumulation of trehalose, a stress-responsive metabolite, further underscores the microalga's adaptability. Interestingly, we found that a new fatty acid, nervonic acid, was identified in the complex, which has a significant role in brain development. These findings provide valuable insights into the metabolic pathways governing lipid accumulation in Scenedesmus sp., paving the way for its exploitation as a sustainable biofuel feedstock.
Collapse
Affiliation(s)
- Getachew Tafere Abrha
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, INDIA; Department of Biotechnology, CoDANR, Mekelle University, Mekelle, Ethiopia
| | - Abdalah Makaranga
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, INDIA
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, INDIA.
| |
Collapse
|
2
|
Wei W, Huang F. Analysis of oil accumulation mechanisms in plasma induced mutant Scenedesmus strains compared to original Scenedesmus strains. Sci Rep 2024; 14:21250. [PMID: 39261680 PMCID: PMC11391082 DOI: 10.1038/s41598-024-72381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024] Open
Abstract
Scenedesmus sp. is a species of the Scenedesmus genus within the phylum Chlorophyta, commonly found as a planktonic algal species in freshwater and known for its rapid growth rate. This study employs room-temperature, atmospheric-pressure plasma mutagenesis for the breeding of Scenedesmus sp., utilizing transcriptomic analysis to investigate the biosynthesis mechanism of triglycerides. Further analysis of differentially expressed genes in transcriptome by measuring the macroscopic biological indicators of mutant and original algal strains. The findings of the study suggest that the mutant strain's photosynthesis has been enhanced, leading to improved light energy utilization and CO2 fixation, thereby providing more carbon storage and energy for biomass and lipid production. The intensification of glycolysis and the TCA (tricarboxylic acid) cycle results in a greater shift in carbon flux towards lipid accumulation. An elevated expression level of related enzymes in starch and protein degradation pathways may enhance acetyl CoA accumulation, facilitating a larger substrate supply for fatty acid production and thereby increasing lipid yield.
Collapse
Affiliation(s)
- Wenqian Wei
- Shaanxi Institute of Fashion Engineering, Xianyang, 712046, Shaanxi, China.
| | - Feng Huang
- Xi'an Energy Conservation and Green Development Research Institute Co., Ltd., Xi'an, 710016, Shaanxi, China
| |
Collapse
|
3
|
Abrantes Silva T, Pereira ASADP, Ferreira J, Lorentz JF, de Assis ML, Assemany PP, Dos Reis AJD, Calijuri ML. Enhancing microalgae biomass production: Exploring improved scraping frequency in a hybrid cultivation system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120505. [PMID: 38442662 DOI: 10.1016/j.jenvman.2024.120505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Recently, hybrid systems, such as those incorporating high-rate algal ponds (HRAPs) and biofilm reactors (BRs), have shown promise in treating domestic wastewater while cultivating microalgae. In this context, the objective of the present study was to determine an improved scraping frequency to maximize microalgae biomass productivity in a mix of industrial (fruit-based juice production) and domestic wastewater. The mix was set to balance the carbon/nitrogen ratio. The scraping strategy involved maintaining 1 cm wide stripes to retain an inoculum in the reactor. Three scraping frequencies (2, 4, and 6 days) were evaluated. The findings indicate that a scraping frequency of each 2 days provided the highest biomass productivity (18.75 g total volatile solids m-2 d-1). The species' behavior varied with frequency: Chlorella vulgaris was abundant at 6-day intervals, whereas Tetradesmus obliquus favored shorter intervals. Biomass from more frequent scraping demonstrated a higher lipid content (15.45%). Extrapolymeric substance production was also highest at the 2-day frequency. Concerning wastewater treatment, the system removed 93% of dissolved organic carbon and ∼100% of ammoniacal nitrogen. Combining industrial and domestic wastewater sources to balance the carbon/nitrogen ratio enhanced treatment efficiency and biomass yield. This study highlights the potential of adjusting scraping frequencies in hybrid systems for improved wastewater treatment and microalgae production.
Collapse
Affiliation(s)
- Thiago Abrantes Silva
- Civil Engineering Department, Federal University of Viçosa, Campus Universitário, Viçosa, Minas Gerais, Brazil.
| | | | - Jéssica Ferreira
- Civil Engineering Department, Federal University of Viçosa, Campus Universitário, Viçosa, Minas Gerais, Brazil.
| | - Juliana Ferreira Lorentz
- Civil Engineering Department, Federal University of Viçosa, Campus Universitário, Viçosa, Minas Gerais, Brazil.
| | - Marília Luise de Assis
- Civil Engineering Department, Federal University of Viçosa, Campus Universitário, Viçosa, Minas Gerais, Brazil.
| | - Paula Peixoto Assemany
- Environmental Engineering Department, Federal University of Lavras, Campus Universitário, Lavras, Minas Gerais, Brazil.
| | | | - Maria Lúcia Calijuri
- Civil Engineering Department, Federal University of Viçosa, Campus Universitário, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Wang M, Ye X, Bi H, Shen Z. Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:10. [PMID: 38254224 PMCID: PMC10804497 DOI: 10.1186/s13068-024-02461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The development of microalgal biofuels is of significant importance in advancing the energy transition, alleviating food pressure, preserving the natural environment, and addressing climate change. Numerous countries and regions across the globe have conducted extensive research and strategic planning on microalgal bioenergy, investing significant funds and manpower into this field. However, the microalgae biofuel industry has faced a downturn due to the constraints of high costs. In the past decade, with the development of new strains, technologies, and equipment, the feasibility of large-scale production of microalgae biofuel should be re-evaluated. Here, we have gathered research results from the past decade regarding microalgae biofuel production, providing insights into the opportunities and challenges faced by this industry from the perspectives of microalgae selection, modification, and cultivation. In this review, we suggest that highly adaptable microalgae are the preferred choice for large-scale biofuel production, especially strains that can utilize high concentrations of inorganic carbon sources and possess stress resistance. The use of omics technologies and genetic editing has greatly enhanced lipid accumulation in microalgae. However, the associated risks have constrained the feasibility of large-scale outdoor cultivation. Therefore, the relatively controllable cultivation method of photobioreactors (PBRs) has made it the mainstream approach for microalgae biofuel production. Moreover, adjusting the performance and parameters of PBRs can also enhance lipid accumulation in microalgae. In the future, given the relentless escalation in demand for sustainable energy sources, microalgae biofuels should be deemed a pivotal constituent of national energy planning, particularly in the case of China. The advancement of synthetic biology helps reduce the risks associated with genetically modified (GM) microalgae and enhances the economic viability of their biofuel production.
Collapse
Affiliation(s)
- Min Wang
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Xiaoxue Ye
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Hongwen Bi
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhongbao Shen
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| |
Collapse
|
5
|
Feng L, Wang Z, Jia D, Zou X, Rao M, Huang Z, Kuang C, Ye J, Chen C, Huang C, Zhang M, Cheng J. Functional metabolism pathways of significantly regulated genes in Nannochloropsis oceanica with various nitrogen/phosphorus nutrients for CO 2 fixation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163318. [PMID: 37030370 DOI: 10.1016/j.scitotenv.2023.163318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 06/03/2023]
Abstract
To determine the optimal CO2 concentration for microalgal biomass cultivated with industrial flue gas and improve carbon fixation capacity and biomass production. Functional metabolism pathways of significantly regulated genes in Nannochloropsis oceanica (N. oceanica) with various nitrogen/phosphorus (N/P) nutrients for CO2 fixation were comprehensively clarified. At 100 % N/P nutrients, the optimum CO2 concentration was 70 % and the maximum biomass production of microalgae was 1.57 g/L. The optimum CO2 concentration was 50 % for N or P deficiency and 30 % for both N and P deficiency. The optimal combination of CO2 concentration and N/P nutrients caused significant up regulation of proteins related to photosynthesis and cellular respiration in the microalgae, enhancing photosynthetic electron transfer efficiency and carbon metabolism. Microalgal cells with P deficiency and optimal CO2 concentration expressed many phosphate transporter proteins to enhance P metabolism and N metabolism to maintain a high carbon fixation capacity. However, inappropriate combination of N/P nutrients and CO2 concentrations caused more errors in DNA replication and protein synthesis, generating more lysosomes and phagosomes. This inhibited carbon fixation and biomass production in the microalgae with increased cell apoptosis.
Collapse
Affiliation(s)
- Lingchong Feng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Zhenyi Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Dongwei Jia
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Xiangbo Zou
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd., Guangzhou 510630, China
| | - Mumin Rao
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd., Guangzhou 510630, China
| | - Zhimin Huang
- Guangdong Yudean Zhanjiang Biomass Power Co., Ltd., Zhanjiang 524300, China
| | - Cao Kuang
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd., Guangzhou 510630, China
| | - Ji Ye
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd., Guangzhou 510630, China
| | - Chuangting Chen
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd., Guangzhou 510630, China
| | - Cong Huang
- Guangdong Yudean Zhanjiang Biomass Power Co., Ltd., Zhanjiang 524300, China
| | - Maoqiang Zhang
- Guangdong Yudean Zhanjiang Biomass Power Co., Ltd., Zhanjiang 524300, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China; Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
6
|
ROS-dependent cell death of Heterosigma akashiwo induced by algicidal bacterium Hahella sp. KA22. Mar Genomics 2023; 69:101027. [PMID: 36921441 DOI: 10.1016/j.margen.2023.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Marine algicidal bacteria and their metabolites are considered to be one of the most effective strategies to mitigate the harmful algal blooms (HABs). The bacterium Hahella sp. KA22 has previously been confirmed to have strong algicidal activity against the HABs causing microalgae, Heterosigma akashiwo. In this study, the molecular mechanism of microalgae cell death was detected. The results showed that the cell growth rate and photosynthetic efficiency were inhibited with addition of algicidal strain KA22, while the accumulation of reactive oxygen species (ROS) and oxidative damage in H. akashiwo cells increased. A total of 2056 unigenes were recognized to be differentially expressed in transcriptome sequences. In particular, the transcriptional levels of light-harvesting pigments and structural proteins in the oxygen-evolving-complex were continuously down-regulated, corresponding to the significant reduction of photosynthetic efficiency and the accumulation of ROS. Furthermore, glutamate dehydrogenase was significantly up-regulated in abundance. Meanwhile, calcium-dependent protein kinases were also detected with significant changes. Collectively, algicidal stress caused the suppressed electron transfer in chloroplast and impaired detoxification of intracellular oxidants by glutathione, which may subsequently result in multiple cell regulation and metabolic responses and ultimately lead to the ROS-dependent cell death of H. akashiwo.
Collapse
|
7
|
Gu D, Xiao Q, Zhao Y, Yu X. A low-cost technique for biodiesel production in Ankistrodesmus sp. EHY by using harvested microalgal effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159461. [PMID: 36257437 DOI: 10.1016/j.scitotenv.2022.159461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The present study aims to use Ankistrodesmus sp. EHY to develop a viable and economic lipid production strategy using recycling of harvested microalgal effluent. In comparison to the control, the highest lipid content (52.4 %) and productivity (250.72 mg L-1 d-1) were achieved when 40 % recycled medium was used. Consistent with the trend of lipid accumulation, the six key lipogenetic genes were upregulated, as well as reactive oxygen species (ROS), glutathione (GSH) and genes encoding antioxidant enzymes during cultivation in recycled medium. Moreover, the consumption of dissolved organic carbon (DOC) and the increased humic acid (HA) in the recycled medium might also be associated with lipid biosynthesis. The biodiesel parameters of alga biomass-derived lipids were fitted to the standard of commercial biodiesel. In conclusion, this study offers an economically viable strategy for microalgal biofuel production and wastewater treatment using recycling of harvested microalgal effluent.
Collapse
Affiliation(s)
- Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qiu Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
8
|
Liu X, Zhang J, Lin Y, Wei L, Cheng H, Wang M. Sulfur heterogeneity: A non-negligible factor in manipulating growth and lipid accumulation of Scenedesmus obliquus at a relatively high ratio of carbon to nitrogen. BIORESOURCE TECHNOLOGY 2022; 360:127599. [PMID: 35820559 DOI: 10.1016/j.biortech.2022.127599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Algal biodiesel has been becoming a focus in the field of bioenergy worldwide. In this study, effects of heterogeneous sulfur (SO42-, SO32- and S2-) on growth and lipid accumulation of Scenedesmus obliquus cultured in wastewater with a C/N ratio of 30 were investigated, respectively. The results shown that SO42-, the optimal sulfur source, could trigger cell growth in a concentration-dependent manner. However, SO32- was superior to the others in boosting carbon uptake of cells, which was subject to NH4+-N concentration. Only SO42- could simultaneously increase lipid content and productivity of cells with a dominant component of oleic acid (C18:1n9c) occupying approximately 40% in fatty acid profile. Additionally, the genes encoding enzymes such as CDIPT, ADPRM, DPP1, pmtA and BTA1 involved in the uppermost lipid-related pathway (glycerophospholipid metabolism) were identified facing different sulfur source regardless of the concentration changes. These findings may facilitate nutrition management efforts to enhance microalgae-based biofuel production.
Collapse
Affiliation(s)
- Xiang Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Jin Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yu Lin
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Lin Wei
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Haomiao Cheng
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Min Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
9
|
Ma R, Tao X, Chua ET, Ho SH, Shi X, Liu L, Xie Y, Chen J. Enhancing astaxanthin production in Haematococcus pluvialis QLD by a pH steady NaHCO3-CO2-C/NH4Cl-N culture system. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Arora N, Philippidis GP. Unraveling metabolic alterations in Chlorella vulgaris cultivated on renewable sugars using time resolved multi-omics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149504. [PMID: 34426316 DOI: 10.1016/j.scitotenv.2021.149504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The inherent metabolic versatility of Chlorella vulgaris that enables it to metabolize both inorganic and organic carbon under various trophic modes of cultivation makes it a promising candidate for industrial applications. To shed light on the metabolic flexibility of this microalga, time resolved proteomic and metabolomic studies were conducted in three distinct trophic modes (autotrophic, heterotrophic, mixotrophic) at two growth stages (end of linear growth at 6 days and during nutrient deprivation at 10 days). Sweet sorghum bagasse (SSB) hydrolysate was supplied to the cultivation medium as a renewable source of organic carbon mainly in the form of glucose. Integrated multi-omics data showed improved nitrogen assimilation, re-allocation, and recycling and increased levels of photosystem II (PS II) proteins indicating effective cellular quenching of excess electrons during mixotrophy. As external addition of organic carbon (glucose) to the cultivation medium decreases the cell's dependence on photosynthesis, an upregulation in the mitochondrial electron transport chain was recorded that led to increased cellular energy generation and hence higher growth rates under mixotrophy. Moreover, upregulation of the lipid-packaging proteins caleosin and 14_3_3 domain-containing protein resulted in maximum expression during mixotrophy suggesting a strong correlation between lipid synthesis, stabilization, and assembly. Overall, cells cultivated under mixotrophy showed better nutrient stress tolerance and redox balancing leading to higher biomass and lipid production. The study offers a panoramic view of the microalga's metabolic flexibility and contributes to a deeper understanding of the altered biochemical pathways that can be exploited to enhance algal productivity and commercial potential.
Collapse
Affiliation(s)
- Neha Arora
- Patel College of Global Sustainability, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| | - George P Philippidis
- Patel College of Global Sustainability, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| |
Collapse
|
11
|
Li H, Li L, Yu L, Yang X, Shi X, Wang J, Li J, Lin S. Transcriptome profiling reveals versatile dissolved organic nitrogen utilization, mixotrophy, and N conservation in the dinoflagellate Prorocentrum shikokuense under N deficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143013. [PMID: 33203560 DOI: 10.1016/j.scitotenv.2020.143013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Harmful algal blooms formed by certain dinoflagellate species often occur when environmental nitrogen nutrients (N) are limited. However, the molecular mechanism by which dinoflagellates adapt to low N environments is poorly understood. In this study, we characterized the transcriptomic responses of Prorocentrum shikokuense to N deficiency, along with its physiological impact. Under N deficiency, P. shikokuense cultures exhibited growth inhibition, a reduction in cell size, and decreases in cellular chlorophyll a and nitrogen contents but an increase in carbon content. Accordingly, gene expression profiles indicated that carbon fixation and catabolism and fatty acid metabolism were enhanced. Transporter genes of nitrate/nitrite, ammonium, urea, and amino acids were significantly upregulated, indicating that P. shikokuense cells invest to enhance the uptake of available dissolved N. Notably, upregulated genes included those involved in endocytosis and phagosomes, evidence that P. shikokuense is a mixotrophic organism that activates phagotrophy to overcome N deficiency. Additionally, vacuolar amino acid transporters, the urea cycle, and urea hydrolysis genes were upregulated, indicating N recycling within the cells under N deficiency. Our study indicates that P. shikokuense copes with N deficiency by economizing nitrogen use and adopting multiple strategies to maximize N acquisition and reuse while maintaining carbon fixation. The remarkable low N adaptability may confer competitive advantages to P. shikokuense for forming harmful blooms in DIN-limited environments.
Collapse
Affiliation(s)
- Hongfei Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Department of Marine Sciences, University of Connecticut, Groton CT06405, USA
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaohong Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xinguo Shi
- College of Biological Science and Engineering, Fuzhou University, Fujian 350116, China
| | - Jierui Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Department of Marine Sciences, University of Connecticut, Groton CT06405, USA..
| |
Collapse
|
12
|
Biomass and Lipid Productivity by Two Algal Strains of Chlorella sorokiniana Grown in Hydrolysate of Water Hyacinth. ENERGIES 2021. [DOI: 10.3390/en14051411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrolysate prepared from the chemical hydrolysis of water hyacinth biomass contains a high amount of solubilised carbohydrate and nutrients. This hydrolysate was utilised as a medium for the cultivation of two strains of Chlorella sorokiniana, isolated from a municipal wastewater treatment plant using two different media, i.e., BG-11 and Knop’s medium. Different light intensities, light–dark cycles, and various concentrations of external carbon sources (monosaccharides and inorganic carbon) were used to optimise the microalgal growth. For the accumulation of lipids and carbohydrates, the microalgal strains were transferred to nutrient amended medium (N-amended and P-amended). It was observed that the combined effect of glucose, inorganic carbon, and a 12:12 h light–dark cycle proved to be the optimum parameters for high biomass productivity (~200 mg/L/day). For Chlorella sorokiniana 1 (isolated from BG-11 medium), the maximum carbohydrate content (22%) was found in P-amended medium (N = 0 mg/L, P: 3 mg/L), whereas, high lipid content (17.3%) was recorded in N-amended medium (N = 5 mg/L, P = 0 mg/L). However, for Chlorella sorokiniana 2 (isolated from the Knop’s medium), both lipid (17%) and carbohydrate accumulation (12.3%) were found to be maximum in the N-amended medium. Chlorella sorokiniana 2 showed a high saturated lipid accumulation compared to other strains. Kinetic modelling of the lipid profile revealed that the production rate of fatty acids and their various constituents were species dependent under identical conditions.
Collapse
|
13
|
Lu H, Chen H, Tang X, Yang Q, Zhang H, Chen YQ, Chen W. Metabolomics analysis reveals the role of oxygen control in the nitrogen limitation induced lipid accumulation in Mortierella alpina. J Biotechnol 2020; 325:325-333. [PMID: 33039549 DOI: 10.1016/j.jbiotec.2020.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Lipid hyperaccumulation in oleaginous microorganisms is generally induced by nitrogen limitation, while oxygen supply can influence biomass growth and cell metabolism. Although strategies based on nitrogen limitation or oxygen control have been extensively explored and applied in various oleaginous microorganisms, the role of oxygen supply in nitrogen limitation induced lipid hyperaccumulation still remains unclear. Here, we systematically surveyed the effects of oxygen supply on the oleaginous fungus M. alpina cultured in nitrogen limited conditions through integration of physiochemical parameters and metabolomics analysis. Our results indicated that a high oxygen supply promoted carbon/nitrogen consumption and was used for rapid biomass synthesis, while either high or low oxygen supply conditions were adverse to lipid and ARA accumulation. Different oxygen supply level significantly affected the balance between fermentation for lipid synthesis and respiration for energy generation. Under nitrogen limitation, a suitable oxygen supply promoted the recycling of preformed nitrogen and increased the redirection of carbon towards fatty acid synthesis through the hub centred around glutamic acid coupled to the intermediate metabolism of carbon in the TCA cycle, while a high oxygen supply favored the respiration process and enhanced the degradation of LC-PUFAs, rather than fermentation for fatty acid synthesis. This system-level insight reveals the underlying metabolic mechanism of oxygen control in nitrogen limitation induced lipid accumulation, and provides theoretical support for the integration of oxygen control with nutrient supply for efficient microbial oil production.
Collapse
Affiliation(s)
- Hengqian Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
14
|
Jeong D, Jang A. Exploration of microalgal species for simultaneous wastewater treatment and biofuel production. ENVIRONMENTAL RESEARCH 2020; 188:109772. [PMID: 32544724 DOI: 10.1016/j.envres.2020.109772] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Microalgal isolates obtained from stream water and wastewater treatment plant were examined to select a suitable microalgal species capable of simultaneously removing nutrient and producing biofuel. Ten isolates were identified using internal transcribed spacer (ITS) region sequencing analysis and were determined to be green microalgae, belonging to phylum Chlorophyta. The highest nutrient removal rates of 8.1 mg-T-N/L-d and 1.6 mg-T-P/L-d were achieved by Chlorella sorokiniana UTEX 1810 under photo-autotrophic cultivation conditions. Fatty acid methyl ester (FAME) composition analysis was conducted to estimate biofuel quality using gas chromatography with mass spectrometry on the basis of the lipid content extracted from microalgal cell. The composition of FAME is mainly composed of palmitic acid (C16:0), stearic acid (C18:0), linoleic acid (C18:2), and heneicosanoic acid (C21:0). These results suggest that C. sorokiniana UTEX 1810 is a promising candidate for simultaneous removal of nutrient and biofuel production from wastewater.
Collapse
Affiliation(s)
- Dawoon Jeong
- Institute of Environmental Research, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
15
|
Shi TQ, Wang LR, Zhang ZX, Sun XM, Huang H. Stresses as First-Line Tools for Enhancing Lipid and Carotenoid Production in Microalgae. Front Bioeng Biotechnol 2020; 8:610. [PMID: 32850686 PMCID: PMC7396513 DOI: 10.3389/fbioe.2020.00610] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/18/2020] [Indexed: 12/30/2022] Open
Abstract
Microalgae can produce high-value-added products such as lipids and carotenoids using light or sugars, and their biosynthesis mechanism can be triggered by various stress conditions. Under nutrient deprivation or environmental stresses, microalgal cells accumulate lipids as an energy-rich carbon storage battery and generate additional amounts of carotenoids to alleviate the oxidative damage induced by stress conditions. Though stressful conditions are unfavorable for biomass accumulation and can induce oxidative damage, stress-based strategies are widely used in this field due to their effectiveness and economy. For the overproduction of different target products, it is required and meaningful to deeply understand the effects and mechanisms of various stress conditions so as to provide guidance on choosing the appropriate stress conditions. Moreover, the underlying molecular mechanisms under stress conditions can be clarified by omics technologies, which exhibit enormous potential in guiding rational genetic engineering for improving lipid and carotenoid biosynthesis.
Collapse
Affiliation(s)
- Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
16
|
Guo DS, Tong LL, Ji XJ, Ren LJ, Ding QQ. Development of a Strategy to Improve the Stability of Culture Environment for Docosahexaenoic Acid Fermentation by Schizochytrium sp. Appl Biochem Biotechnol 2020; 192:881-894. [DOI: 10.1007/s12010-020-03298-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/12/2020] [Indexed: 11/30/2022]
|
17
|
Lu H, Chen H, Tang X, Yang Q, Zhang H, Chen YQ, Chen W. Time-resolved multi-omics analysis reveals the role of nutrient stress-induced resource reallocation for TAG accumulation in oleaginous fungus Mortierella alpina. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:116. [PMID: 32625246 PMCID: PMC7328260 DOI: 10.1186/s13068-020-01757-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/23/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Global resource reallocation is an established critical strategy through which organisms deal with environmental stress. The regulation of intracellular lipid storage or utilization is one of the most important strategies for maintaining energy homeostasis and optimizing growth. Oleaginous microorganisms respond to nitrogen deprivation by inducing lipid hyper accumulation; however, the associations between resource allocation and lipid accumulation are poorly understood. RESULTS Here, the time-resolved metabolomics, lipidomics, and proteomics data were generated in response to nutrient availability to examine how metabolic alternations induced by nitrogen deprivation drive the triacylglycerols (TAG) accumulation in M. alpina. The subsequent accumulation of TAG under nitrogen deprivation was a consequence of the reallocation of carbon, nitrogen sources, and lipids, rather than an up-regulation of TAG biosynthesis genes. On one hand, nitrogen deprivation induced the down-regulation of isocitrate dehydrogenase level in TCA cycle and redirected glycolytic flux of carbon from amino acid biosynthesis into fatty acids' synthesis; on the other hand, nitrogen deprivation induced the up-regulation of cell autophagy and ubiquitin-mediated protein proteolysis which resulted in a recycling of preformed protein nitrogen and carbon. Combining with the up-regulation of glutamate decarboxylase and succinic semialdehyde dehydrogenase in GABA shunt, and the phosphoenolpyruvate carboxykinase in the central hub involving pyruvate/phosphoenolpyruvate/oxaloacetate, the products from nitrogen-containing compounds degradation were recycled to be intermediates of TCA cycle and be shunted toward de novo biosynthesis of fatty acids. We found that nitrogen deprivation increased the protein level of phospholipase C/D that contributes to degradation of phosphatidylcholine and phosphatidylethanolamine, and supplied acyl chains for TAG biosynthesis pathway. In addition, ATP from substrate phosphorylation was presumed to be a critical factor regulation of the global resource allocation and fatty acids' synthesis rate. CONCLUSIONS The present findings offer a panoramic view of resource allocation by M. alpina in response to nutrient stress and revealed a set of intriguing associations between resource reallocation and TAG accumulation. This system-level insight provides a rich resource with which to explore in-depth functional characterization and gain information about the strategic combination of strain development and process integration to achieve optimal lipid productivity under nutrient stress.
Collapse
Affiliation(s)
- Hengqian Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, 214122 Jiangsu People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, 214122 Jiangsu People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122 Jiangsu China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004 China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, 214122 Jiangsu People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Qin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, 214122 Jiangsu People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, 214122 Jiangsu People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004 China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, 214122 Jiangsu People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122 Jiangsu China
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, 214122 Jiangsu People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122 Jiangsu China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 China
| |
Collapse
|
18
|
Dong X, Zhao Y, Li T, Huang L, Zhao P, Xu JW, Ma H, Yu X. Enhancement of lipid production and nutrient removal of Monoraphidium sp. FXY-10 by combined melatonin and molasses wastewater treatment. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Behera B, Acharya A, Gargey IA, Aly N, P B. Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Zuo Z, Ni B, Yang L. Production of primary metabolites in Microcystis aeruginosa in regulation of nitrogen limitation. BIORESOURCE TECHNOLOGY 2018; 270:588-595. [PMID: 30266031 DOI: 10.1016/j.biortech.2018.09.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
The aim of this work was to study the regulatory effect of nitrogen (N) deficiency on primary metabolites in Microcystis aeruginosa, and promote the utilization of the alga. Low-N and Non-N conditions, especially Non-N, reduced the cell growth and photosynthetic abilities compared to Normal-N, as N deficiency triggered the down-regulation of genes involving in the photosynthetic process. Non-N not changed lipid content, due to no up-regulation of genes that promoted lipid synthesis. Soluble protein content significantly decreased under Non-N, which may result from the declined expression of genes relating to amino acid and histidyl-transfer RNA synthesis. Soluble and insoluble carbohydrate content significantly increased under Non-N, as the expression variation of genes blocked sugar degradation and promoted lipopolysaccharide synthesis. Therefore, M. aeruginosa can be used as the feedstock to produce carbohydrates under N deficiency for bioethanol production, and the remainder lipids after carbohydrate extraction can be used to produce biodiesel.
Collapse
Affiliation(s)
- Zhaojiang Zuo
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China.
| | - Binbin Ni
- School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| |
Collapse
|
21
|
Adamakis ID, Lazaridis PA, Terzopoulou E, Torofias S, Valari M, Kalaitzi P, Rousonikolos V, Gkoutzikostas D, Zouboulis A, Zalidis G, Triantafyllidis KS. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23018-23032. [PMID: 29859001 DOI: 10.1007/s11356-018-2368-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
A systematic study of the effect of nitrogen levels in the cultivation medium of Chlorella vulgaris microalgae grown in photobioreactor (PBR) on biomass productivity, biochemical and elemental composition, fatty acid profile, heating value (HHV), and composition of the algae-derived fast pyrolysis (bio-oil) is presented in this work. A relatively high biomass productivity and cell concentration (1.5 g of dry biomass per liter of cultivation medium and 120 × 106 cells/ml, respectively) were achieved after 30 h of cultivation under N-rich medium. On the other hand, the highest lipid content (ca. 36 wt.% on dry biomass) was obtained under N-depletion cultivation conditions. The medium and low N levels favored also the increased concentration of the saturated and mono-unsaturated C16:0 and C18:1(n-9) fatty acids (FA) in the lipid/oil fraction, thus providing a raw lipid feedstock that can be more efficiently converted to high-quality biodiesel or green diesel (via hydrotreatment). In terms of overall lipid productivity, taking in consideration both the biomass concentration in the medium and the content of lipids on dry biomass, the most effective system was the N-rich one. The thermal (non-catalytic) pyrolysis of Chlorella vulgaris microalgae produced a highly complex bio-oil composition, including fatty acids, phenolics, ethers, ketones, etc., as well as aromatics, alkanes, and nitrogen compounds (pyrroles and amides), originating from the lipid, protein, and carbohydrate fractions of the microalgae. However, the catalytic fast pyrolysis using a highly acidic ZSM-5 zeolite, afforded a bio-oil enriched in mono-aromatics (BTX), reducing at the same time significantly oxygenated compounds such as phenolics, acids, ethers, and ketones. These effects were even more pronounced in the catalytic fast pyrolysis of Chlorella vulgaris residual biomass (after extraction of lipids), thus showing for the first time the potential of transforming this low value by-product towards high added value platform chemicals.
Collapse
Affiliation(s)
- Ioannis-Dimosthenis Adamakis
- Laboratory of Applied Soil Science, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Polykarpos A Lazaridis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Evangelia Terzopoulou
- Laboratory of Applied Soil Science, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Stylianos Torofias
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Valari
- Laboratory of Applied Soil Science, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Photeini Kalaitzi
- Laboratory of Applied Soil Science, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Vasilis Rousonikolos
- Laboratory of Applied Soil Science, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitris Gkoutzikostas
- Laboratory of Applied Soil Science, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anastasios Zouboulis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Georgios Zalidis
- Laboratory of Applied Soil Science, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Konstantinos S Triantafyllidis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
22
|
Zhao Y, Li D, Xu JW, Zhao P, Li T, Ma H, Yu X. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism. BIORESOURCE TECHNOLOGY 2018. [PMID: 29536873 DOI: 10.1016/j.biortech.2018.03.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, melatonin (MT) promoted lipid accumulation in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. The lipid accumulation increased 1.22- and 1.36-fold compared with a nitrogen-starved medium and a normal BG-11 medium, respectively. The maximum lipid content was 51.38%. The reactive oxygen species (ROS) level in the presence of melatonin was lower than that in the control group, likely because of the high antioxidant activities. The application of melatonin upregulated the gibberellin acid (GA) production and rbcL and accD expression levels but downregulated the abscisic acid (ABA) content and pepc expression levels. These findings demonstrated that exogenous melatonin could further improve the lipid production in Monoraphidium sp. QLY-1 by regulating antioxidant systems, signalling molecules, and lipid biosynthesis-related gene expression under nitrogen deficiency conditions.
Collapse
Affiliation(s)
- Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dafei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun-Wei Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Huixian Ma
- School of Foreign Languages, Kunming University, Kunming 650200, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
23
|
Shin YS, Choi HI, Choi JW, Lee JS, Sung YJ, Sim SJ. Multilateral approach on enhancing economic viability of lipid production from microalgae: A review. BIORESOURCE TECHNOLOGY 2018; 258:335-344. [PMID: 29555159 DOI: 10.1016/j.biortech.2018.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 05/21/2023]
Abstract
Microalgae have been rising as a feedstock for biofuel in response to the energy crisis. Due to a high lipid content, composed of fatty acids favorable for the biodiesel production, microalgae are still being investigated as an alternative to biodiesel. Environmental factors and process conditions can alternate the quality and the quantity of lipid produced by microalgae, which can be critical for the overall production of biodiesel. To maximize both the lipid content and the biomass productivity, it is necessary to start with robust algal strains and optimal physio-chemical properties of the culture environment in combination with a novel culture system. These accumulative approaches for cost reduction can take algal process one step closer in achieving the economic feasibility.
Collapse
Affiliation(s)
- Ye Sol Shin
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hong Il Choi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin Won Choi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong Seop Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
24
|
Effects of fundamental nutrient stresses on the lipid accumulation profiles in two diatom species Thalassiosira weissflogii and Chaetoceros muelleri. Bioprocess Biosyst Eng 2018; 41:1213-1224. [DOI: 10.1007/s00449-018-1950-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 05/03/2018] [Indexed: 10/16/2022]
|
25
|
Ma X, Gao M, Gao Z, Wang J, Zhang M, Ma Y, Wang Q. Past, current, and future research on microalga-derived biodiesel: a critical review and bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10596-10610. [PMID: 29502258 DOI: 10.1007/s11356-018-1453-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Microalga-derived biodiesel plays a crucial role in the sustainable development of biodiesel in recent years. Literature related to microalga-derived biodiesel had an increasing trend with the expanding research outputs. Based on the Science Citation Index Expanded (SCI-Expanded) of the Web of Science, a bibliometric analysis was conducted to characterize the body of knowledge on microalga-derived biodiesel between 1993 and 2016. From the 30 most frequently used author keywords, the following research hotspots are extracted: lipid preparation from different microalga species, microalga-derived lipid and environmental applications, lipid-producing microalgae cultivation, microalgae growth reactor, and microalga harvest and lipid extraction. Other keywords, i.e., microalga mixotrophic cultivation, symbiotic system between microalga and other oleaginous yeast, microalga genetic engineering, and other applications of lipid-producing microalga are future focal points of research. Graphical abstract.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ming Gao
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhen Gao
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Juan Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Min Zhang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, China.
| |
Collapse
|
26
|
Papazi A, Korelidou A, Andronis E, Parasyri A, Stamatis N, Kotzabasis K. Bioenergetic reprogramming plasticity under nitrogen depletion by the unicellular green alga Scenedesmus obliquus. PLANTA 2018; 247:679-692. [PMID: 29170910 DOI: 10.1007/s00425-017-2816-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Simultaneous nitrogen depletion and 3,4-dichlorophenol addition induce a bioenergetic microalgal reprogramming, through strong Cyt b 6 f synthesis, that quench excess electrons from dichlorophenol's biodegradation to an overactivated photosynthetic electron flow and H 2 -productivity. Cellular energy management includes "rational" planning and operation of energy production and energy consumption units. Microalgae seem to have the ability to calculate their energy reserves and select the most profitable bioenergetic pathways. Under oxygenic mixotrophic conditions, microalgae invest the exogenously supplied carbon source (glucose) to biomass increase. If 3,4-dichlorophenol is added in the culture medium, then glucose is invested more to biodegradation rather than to growth. The biodegradation yield is enhanced in nitrogen-depleted conditions, because of an increase in the starch accumulation and a delay in the establishment of oxygen-depleted conditions in a closed system. In nitrogen-depleted conditions, starch cannot be invested in PSII-dependent and PSII-independent pathways for H2-production, mainly because of a strong decrease of the cytochrome b 6 f complex of the photosynthetic electron flow. For this reason, it seems more profitable for the microalga under these conditions to direct the metabolism to the synthesis of lipids as cellular energy reserves. Nitrogen-depleted conditions with exogenously supplied 3,4-dichlorophenol induce reprogramming of the microalgal bioenergetic strategy. Cytochrome b 6 f is strongly synthesized (mainly through catabolism of polyamines) to manage the electron bypass from the dichlorophenol biodegradation procedure to the photosynthetic electron flow (at the level of PQ pool) and consequently through cytochrome b 6 f and PSI to hydrogenase and H2-production. All the above showed that the selection of the appropriate cultivation conditions is the key for the manipulation of microalgal bioenergetic strategy that leads to different metabolic products and paves the way for a future microalgal "smart" biotechnology.
Collapse
Affiliation(s)
- Aikaterini Papazi
- Department of Biology, University of Crete, Voutes University Campus, 70013, Heraklion, Crete, Greece
| | - Anna Korelidou
- Department of Biology, University of Crete, Voutes University Campus, 70013, Heraklion, Crete, Greece
| | - Efthimios Andronis
- Department of Biology, University of Crete, Voutes University Campus, 70013, Heraklion, Crete, Greece
| | - Athina Parasyri
- Department of Biology, University of Crete, Voutes University Campus, 70013, Heraklion, Crete, Greece
| | - Nikolaos Stamatis
- Hellenic Agricultural Research Foundation "Demeter", Fisheries Research Institute, 64007, Nea Peramos, Kavala, Greece
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, Voutes University Campus, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
27
|
Liu ZH, Xie S, Lin F, Jin M, Yuan JS. Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:21. [PMID: 29422949 PMCID: PMC5787925 DOI: 10.1186/s13068-018-1021-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/11/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Lignin valorization has recently been considered to be an essential process for sustainable and cost-effective biorefineries. Lignin represents a potential new feedstock for value-added products. Oleaginous bacteria such as Rhodococcus opacus can produce intracellular lipids from biodegradation of aromatic substrates. These lipids can be used for biofuel production, which can potentially replace petroleum-derived chemicals. However, the low reactivity of lignin produced from pretreatment and the underdeveloped fermentation technology hindered lignin bioconversion to lipids. In this study, combinatorial pretreatment with an optimized fermentation strategy was evaluated to improve lignin valorization into lipids using R. opacus PD630. RESULTS As opposed to single pretreatment, combinatorial pretreatment produced a 12.8-75.6% higher lipid concentration in fermentation using lignin as the carbon source. Gas chromatography-mass spectrometry analysis showed that combinatorial pretreatment released more aromatic monomers, which could be more readily utilized by lignin-degrading strains. Three detoxification strategies were used to remove potential inhibitors produced from pretreatment. After heating detoxification of the lignin stream, the lipid concentration further increased by 2.9-9.7%. Different fermentation strategies were evaluated in scale-up lipid fermentation using a 2.0-l fermenter. With laccase treatment of the lignin stream produced from combinatorial pretreatment, the highest cell dry weight and lipid concentration were 10.1 and 1.83 g/l, respectively, in fed-batch fermentation, with a total soluble substrate concentration of 40 g/l. The improvement of the lipid fermentation performance may have resulted from lignin depolymerization by the combinatorial pretreatment and laccase treatment, reduced inhibition effects by fed-batch fermentation, adequate oxygen supply, and an accurate pH control in the fermenter. CONCLUSIONS Overall, these results demonstrate that combinatorial pretreatment, together with fermentation optimization, favorably improves lipid production using lignin as the carbon source. Combinatorial pretreatment integrated with fed-batch fermentation was an effective strategy to improve the bioconversion of lignin into lipids, thus facilitating lignin valorization in biorefineries.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843 USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843 USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843 USA
| | - Shangxian Xie
- Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843 USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843 USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843 USA
| | - Furong Lin
- Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843 USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843 USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843 USA
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
- Guangdong Cleamol LTD, Foshan, 528225 China
| | - Joshua S. Yuan
- Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843 USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843 USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
28
|
Safdar W, Shamoon M, Zan X, Haider J, Sharif HR, Shoaib M, Song Y. Growth kinetics, fatty acid composition and metabolic activity changes of Crypthecodinium cohnii under different nitrogen source and concentration. AMB Express 2017; 7:85. [PMID: 28429330 PMCID: PMC5399014 DOI: 10.1186/s13568-017-0384-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/06/2017] [Indexed: 12/24/2022] Open
Abstract
The effect of varying concentrations of the nitrogen source on the growth kinetics, lipid accumulation, lipid and DHA productivity, and fatty acid composition of C. cohnii was elucidated. Growth of C. cohnii was in three distinct growth stages: cell growth, lipid accumulation and a final lipid turnover stage. Most of lipids were accumulated in lipid accumulation stage (48-120 h) though, slow growth rate was observed during this stage. NaNO3 supported significantly higher lipid content (26.9% of DCW), DHA content (0.99 g/L) and DHA yield (44.2 mg/g glucose) which were 2.5 to 3.3-folds higher than other N-sources. The maximum level of C16-C18 content (% TFA) was calculated as 43, 54 and 43% in lipid accumulation stage under low nitrogen (LN, 0.2 g/L), medium nitrogen (MN, 0.8 g/L) and high nitrogen (HN, 1.6 g/L) treatments, respectively. Cultures with LN, by down-regulating cell metabolism, trigger onset of lipogenic enzymes. Conversely, NAD+/NADP+-dependent isocitrate dehydrogenase (NAD+/NADP+-ICDH) were less active in LN than HN treatments which resulted in retardation of Kreb's Cycle and thereby divert citrate into cytoplasm as substrate for ATP-citrate lyase (ACL). Thereby, ACL and fatty acid synthase (FAS) were most active in lipid accumulation stage at LN treatments. Glucose-6-phosphate dehydrogenase (G6PDH) was more active than malic enzyme (ME) in lipid accumulation stage and showed higher activities in NaNO3 than other N-sources. This represents that G6PDH contributes more NADPH than ME in C. cohnii. However, G6PDH and ME together seems to play a dual role in offering NADPH for lipid biosynthesis. This concept of ME together with G6PD in offering NADPH for lipogenesis might be novel in this alga and needed to be explored.
Collapse
|
29
|
The augmented lipid productivity in an emerging oleaginous model alga Coccomyxa subellipsoidea by nitrogen manipulation strategy. World J Microbiol Biotechnol 2017; 33:160. [DOI: 10.1007/s11274-017-2324-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/21/2017] [Indexed: 01/22/2023]
|
30
|
Guo DS, Ji XJ, Ren LJ, Li GL, Huang H. Improving docosahexaenoic acid production by Schizochytrium
sp. using a newly designed high-oxygen-supply bioreactor. AIChE J 2017. [DOI: 10.1002/aic.15783] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dong-Sheng Guo
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| | - Gan-Lu Li
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
| | - He Huang
- School of Pharmaceutical Sciences; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; No. 5 Xinmofan Road Nanjing 210009 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| |
Collapse
|
31
|
Sung MG, Lee B, Kim CW, Nam K, Chang YK. Enhancement of lipid productivity by adopting multi-stage continuous cultivation strategy in Nannochloropsis gaditana. BIORESOURCE TECHNOLOGY 2017; 229:20-25. [PMID: 28092732 DOI: 10.1016/j.biortech.2016.12.100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
In the present study, a novel process-based cultivation system was designed to improve lipid productivity of Nannochloropsis gaditana, an oleaginous microalga that has high potential for biofuel production. Specifically, four flat-panel photobioreactors were connected in series, and this system was subjected to continuous chemostat cultivation by feeding fresh medium to the first reactor at dilution rates of 0.028 and 0.056day-1, which were determined based on Monod kinetics. The results show that the serially connected photobioreactor system achieved 20.0% higher biomass productivity and 46.1% higher fatty acid methyl ester (FAME) productivity than a conventional single photobioreactor with equivalent dilution rate. These results suggest that a process-based approach using serially connected photobioreactors for microalgal cultivation can improve the productivity of lipids that can be used for biofuel production.
Collapse
Affiliation(s)
- Min-Gyu Sung
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Bongsoo Lee
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Chul Woong Kim
- Corporate R&D Research Park, LG Chem, 188 Munji-ro, Yeseong-gu, Daejeon, Republic of Korea
| | - Kibok Nam
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea; Advanced Biomass R&D Center, #2502 Building W1-3, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
32
|
Sun D, Zhang Z, Mao X, Wu T, Jiang Y, Liu J, Chen F. Light enhanced the accumulation of total fatty acids (TFA) and docosahexaenoic acid (DHA) in a newly isolated heterotrophic microalga Crypthecodinium sp. SUN. BIORESOURCE TECHNOLOGY 2017; 228:227-234. [PMID: 28064135 DOI: 10.1016/j.biortech.2016.12.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
In the present study, light illumination was found to be efficient in elevating the total fatty acid content in a newly isolated heterotrophic microalga, Crypthecodinium sp. SUN. Under light illumination, the highest total fatty acid and DHA contents were achieved at 96h as 24.9% of dry weight and 82.8mgg-1 dry weight, respectively, which were equivalent to 1.46-fold and 1.68-fold of those under the dark conditions. The elevation of total fatty acid content was mainly contributed by an increase of neutral lipids at the expense of starches. Moreover, light was found to alter the cell metabolism and led to a higher specific growth rate, higher glucose consumption rate and lower non-motile cell percentage. This is the first report that light can promote the total fatty acids accumulation in Crypthecodinium without growth inhibition.
Collapse
Affiliation(s)
- Dongzhe Sun
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Zhao Zhang
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Xuemei Mao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Yue Jiang
- Runke Bioengineering Co. Ltd., Zhangzhou, Fujian, China
| | - Jin Liu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
33
|
Bredeweg EL, Pomraning KR, Dai Z, Nielsen J, Kerkhoven EJ, Baker SE. A molecular genetic toolbox for Yarrowia lipolytica. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:2. [PMID: 28066508 PMCID: PMC5210315 DOI: 10.1186/s13068-016-0687-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/13/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND Yarrowia lipolytica is an ascomycete yeast used in biotechnological research for its abilities to secrete high concentrations of proteins and accumulate lipids. Genetic tools have been made in a variety of backgrounds with varying similarity to a comprehensively sequenced strain. RESULTS We have developed a set of genetic and molecular tools in order to expand capabilities of Y. lipolytica for both biological research and industrial bioengineering applications. In this work, we generated a set of isogenic auxotrophic strains with decreased non-homologous end joining for targeted DNA incorporation. Genome sequencing, assembly, and annotation of this genetic background uncovers previously unidentified genes in Y. lipolytica. To complement these strains, we constructed plasmids with Y. lipolytica-optimized superfolder GFP for targeted overexpression and fluorescent tagging. We used these tools to build the "Yarrowia lipolytica Cell Atlas," a collection of strains with endogenous fluorescently tagged organelles in the same genetic background, in order to define organelle morphology in live cells. CONCLUSIONS These molecular and isogenetic tools are useful for live assessment of organelle-specific protein expression, and for localization of lipid biosynthetic enzymes or other proteins in Y. lipolytica. This work provides the Yarrowia community with tools for cell biology and metabolism research in Y. lipolytica for further development of biofuels and natural products.
Collapse
Affiliation(s)
- Erin L. Bredeweg
- Earth and Biological Sciences Directorate, Environmental Molecular Sciences Laboratory, Richland, WA 99354 USA
- Department of Energy, Battelle EMSL, 3335 Innovation Blvd, Richland, WA 99354 USA
| | - Kyle R. Pomraning
- Chemical & Biological Process Development Group, Energy and Environment Directorate, Pacific Northwest National Laboratories, Richland, WA 99354 USA
| | - Ziyu Dai
- Chemical & Biological Process Development Group, Energy and Environment Directorate, Pacific Northwest National Laboratories, Richland, WA 99354 USA
| | - Jens Nielsen
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Eduard J. Kerkhoven
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Scott E. Baker
- Earth and Biological Sciences Directorate, Environmental Molecular Sciences Laboratory, Richland, WA 99354 USA
- Department of Energy, Battelle EMSL, 3335 Innovation Blvd, Richland, WA 99354 USA
| |
Collapse
|
34
|
Chokshi K, Pancha I, Ghosh A, Mishra S. Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:60. [PMID: 28293290 PMCID: PMC5345260 DOI: 10.1186/s13068-017-0747-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/01/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Microalgae accumulate a considerable amount of lipids and carbohydrate under nutrient-deficient conditions, which makes them one of the promising sustainable resources for biofuel production. In the present study, to obtain the biomass with higher lipid and carbohydrate contents, we implemented a short-term nitrogen starvation of 1, 2, and 3 days in a green microalga Acutodesmus dimorphus. Few recent reports suggest that oxidative stress-tolerant microalgae are highly efficient for biofuel production. To study the role of oxidative stress due to nitrogen deficiency, responses of various stress biomarkers like reactive oxygen species (ROS), cellular enzymatic antioxidants superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and non-enzymatic scavengers proline and polyphenols were also evaluated. Further, the endogenous levels of phytohormones abscisic acid (ABA) and indole-3-acetic acid (IAA) were also determined to study their response to nitrogen deficiency. RESULTS We observed that nitrogen starvation of 2 days is effective to produce biomass containing 29.92% of lipid (comprising about 75% of neutral lipid) and 34.80% of carbohydrate, which is significantly higher (about 23 and 64%, respectively) than that of the control culture. Among all nitrogen-starved cultures, the accumulations of ROS were lower in 2 days starved culture, which can be linked with the several folds higher activities of SOD and CAT in this culture. The accumulations of proline and total polyphenols were also significantly higher (about 4.7- and 1.7-folds, respectively, than that of the control) in 2 days nitrogen-starved culture. The levels of phytohormones once decreased significantly after 1 day, increased continuously up to 3 days of nitrogen starvation. CONCLUSION The findings of the present study highlight the interaction of nitrogen starvation-induced oxidative stress with the signaling involved in the growth and development of microalga. The study presents a comprehensive picture of the adaptive mechanisms of the cells from a physiological perspective along with providing the strategy to improve the biofuel potential of A. dimorphus through a short-term nitrogen starvation.
Collapse
Affiliation(s)
- Kaumeel Chokshi
- Division of Salt & Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002 India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002 India
| | - Imran Pancha
- Division of Salt & Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002 India
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503 Japan
| | - Arup Ghosh
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002 India
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002 India
| | - Sandhya Mishra
- Division of Salt & Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002 India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002 India
| |
Collapse
|