1
|
Liu J, Yu M, Shi R, Ge Y, Li J, Zeb A, Cheng Z, Liu W. Comparative toxic effect of tire wear particle-derived compounds 6PPD and 6PPD-quinone to Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175592. [PMID: 39154997 DOI: 10.1016/j.scitotenv.2024.175592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/04/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a widely used antioxidant in rubber products, and its corresponding ozone photolysis product N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), have raised public concerns due to their environmental toxicity. However, there is an existing knowledge gap on the toxicity of 6PPD and 6PPD-Q to aquatic plants. A model aquatic plant, Chlorella vulgaris (C. vulgaris), was subjected to 6PPD and 6PPD-Q at concentrations of 50, 100, 200, and 400 μg/L to investigate their effects on plant growth, photosynthetic, antioxidant system, and metabolic behavior. The results showed that 6PPD-Q enhanced the photosynthetic efficiency of C. vulgaris, promoting growth of C. vulgaris at low concentrations (50, 100, and 200 μg/L) while inhibiting growth at high concentration (400 μg/L). 6PPD-Q induced more oxidative stress than 6PPD, disrupting cell permeability and mitochondrial membrane potential stability. C. vulgaris responded to contaminant-induced oxidative stress by altering antioxidant enzyme activities and active substance levels. Metabolomics further identified fatty acids as the most significantly altered metabolites following exposure to both contaminants. In conclusion, this study compares the toxicity of 6PPD and 6PPD-Q to C. vulgaris, with 6PPD-Q demonstrating higher toxicity. This study provides valuable insight into the risk assessment of tire wear particles (TWPs) derived chemicals in aquatic habitats and plants.
Collapse
Affiliation(s)
- Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Yichen Ge
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
2
|
Zhao K, Si T, Liu S, Liu G, Li D, Li F. Co-metabolism of microorganisms: A study revealing the mechanism of antibiotic removal, progress of biodegradation transformation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176561. [PMID: 39362550 DOI: 10.1016/j.scitotenv.2024.176561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
The widespread use of antibiotics has resulted in large quantities of antibiotic residues entering aquatic environments, which can lead to the development of antibiotic-resistant bacteria and antibiotic-resistant genes, posing a potential environmental risk and jeopardizing human health. Constructing a microbial co-metabolism system has become an effective measure to improve the removal efficiency of antibiotics by microorganisms. This paper reviews the four main mechanisms involved in microbial removal of antibiotics: bioaccumulation, biosorption, biodegradation and co-metabolism. The promotion of extracellular polymeric substances for biosorption and extracellular degradation and the regulation mechanism of enzymes in biodegradation by microorganisms processes are detailed therein. Transformation pathways for microbial removal of antibiotics are discussed. Bacteria, microalgae, and microbial consortia's roles in antibiotic removal are outlined. The factors influencing the removal of antibiotics by microbial co-metabolism are also discussed. Overall, this review summarizes the current understanding of microbial co-metabolism for antibiotic removal and outlines future research directions.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Tingting Si
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China; Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shenghe Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Gaolei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Donghao Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Eheneden I, Wang R, Chen G, Adesina OB, Haijing R, Bavumiragira JP, Zhao J. Sulfamethoxazole removal and ammonium conversion in microalgae consortium: Physiological responses and microbial community changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176539. [PMID: 39349193 DOI: 10.1016/j.scitotenv.2024.176539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Microalgae (Mychonastes sp.) consortium was investigated for nutrient and antibiotics removal and its responses to varying sulfamethoxazole (SMX) concentrations (0-1000 μg/L) in ammonia-rich wastewater. The results showed that the introduction of SMX (100-1000 μg/L) slightly improved ammonium nitrogen removal efficiency instead of inhibition. Swift SMX degradation was observed across all SMX-treated systems, with the highest SMX removal efficiency (96 %) at an SMX concentration of 100 μg/L. Biodegradation remained the dominant SMX removal mechanism, contributing 78 % of SMX removal at an SMX concentration of 800 μg/L, while adsorption and photolysis played minor roles. Addition of SMX augmented biomass and lipid productivity, but decreased chlorophyll contents in the microalgae consortium. Furthermore, extracellular polymeric substance (EPS) production correlated positively with SMX input concentration, with the microalgae consortium exposed to 800 μg/L SMX displaying the most pronounced stimulation of protein production (51.5 ± 2.0 mg/g DCW) and polysaccharides production (74.8 ± 3.9 mg/g DCW). In response to an increase in SMX concentrations, enzyme activities associated with antioxidant defense, such as superoxide dismutase (SOD), peroxidase (POD) and malondialdehyde (MDA) increased, the catalase (CAT) decreased, indicating an initial defense mechanism. Concurrently, the relative abundance of Mychonastes sp. within the consortium rose from 87 % at 300 μg/L SMX to 99.9 % at 800 μg/L SMX. while Shannon indices of the bacterial community increased from 1.415 to 2.867. This shift inhibited the initially dominant Saprospiraceae bacteria, facilitating the profound increase of adapted Aquimonas. These findings demonstrate the feasibility of the simultaneous removal of antibiotics and nutrients from wastewater with a microalgae consortium system.
Collapse
Affiliation(s)
- Iyobosa Eheneden
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rongchang Wang
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Gaoxiang Chen
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Odunayo Blessing Adesina
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ren Haijing
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jean Pierre Bavumiragira
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianfu Zhao
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Wang S, Cheng X, Shi L, Liu K, Yang Z, Jia Q, Xiang X. Insights into the response mechanisms of Tetradesmus obliquus to aged polylactic acid and tetracycline exposure via transcriptome analysis and physiological evaluations. CHEMOSPHERE 2024; 364:143120. [PMID: 39159767 DOI: 10.1016/j.chemosphere.2024.143120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Microplastics (MPs) and antibiotics, identified as emerging pollutants, are extensively prevalent in aquatic environments and display prolonged durability. Unlike conventional plastics, biodegradable plastics are more susceptible to decomposition in the environment, resulting in the generation of microplastics and posing potential risks to the aquatic ecosystems. In this study, we assessed growth inhibition, chlorophyll a content, malondialdehyde content (MDA), and antioxidant enzyme activities. These measurements were integrated with transcriptome analysis to explore the response mechanisms of virgin and aged polylactic acid (vPLA and aPLA) and tetracycline (TC) following 14-day exposure to Tetradesmus obliquus, either individually or in combination. The findings indicated that exposure to vPLA did not significantly impact the growth of T. obliquus. Conversely, aPLA demonstrated growth-promoting effects on T. obliquus, particularly in the latter incubation stages. Moreover, a 14-day exposure significantly increased the chlorophyll a content and the activities of superoxide dismutase (SOD), catalase glutathione (CAT) and glutathione S-transferase (GST) within the algal cells. Apart from 1 mg L-1, the TC concentrations of 2.5, 5.0, and 10 mg L-1 exhibited significant toxic effects on T. obliquus, including growth inhibition, decreased chlorophyll a content, elevated activities of SOD, CAT, and GST, and increased MDA levels. Exposure to a combination of 300 mg L-1 aPLA and 5.0 mg L-1 TC, compared to solely 5 mg L-1 TC, demonstrated a notable reduction in TC toxicity to T. obliquus in the presence of aPLA. This was indicated by elevated algal cell density and chlorophyll a content, as well as a decrease in MDA content. Transcriptome analysis indicated an enrichment of differentially expressed genes (DEGs) in pathways linked to porphyrin metabolism, photosynthesis, carbon fixation, and metabolism within the aPLA + TC combined exposure. The study aid in expanding our knowledge of the potential ecological risks posed by biodegradable plastics and accompanying pollutants in aquatic environments.
Collapse
Affiliation(s)
- Shihao Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Xinfeng Cheng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, Anhui, China; School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| | - Lina Shi
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Kexin Liu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Zhifu Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Qina Jia
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - XianLing Xiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, Anhui, China; School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
5
|
Wang K, Tong L, Yu J, Zhou Z, Sheng J, Ji H, Wang Z, Wang H. Supplementation of diethyl aminoethyl hexanoate for enhancing antibiotics removal by different microalgae-based system. BIORESOURCE TECHNOLOGY 2024; 408:131231. [PMID: 39117244 DOI: 10.1016/j.biortech.2024.131231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
With the growth of the aquaculture industry, antibiotic residues in treated wastewater have become a serious ecological threat. The effects of supplementation with diethyl aminoethyl hexanoate (DA-6) on the removal of tetracycline (TC), ciprofloxacin (CPFX), and sulfamonomethoxine (SMM) from aquaculture wastewater by different microalgae-based systems were examined and systematically analyzed. The results demonstrated that C. vulgaris -S395-2-C. rosea symbiont performed best under 0.2 mg L-1 antibiotic treatment for antibiotic removal. At 10-7 M, DA-6 significantly enhanced C. vulgaris-S395-2-C. rosea symbiont removal of CPFX and SMM at 0.20 mg L-1. The removal of TC, CPFX and SMM by this strain under optimal conditions was 99.2 ± 0.4 %, 86.3 ± 6.3 %, and 91.3 ± 5.7 %, respectively. These results suggest that DA-6 may act on microalgae-bacteria-fungi three-phase symbionts for the removal of multiple antibiotics from aquaculture wastewater.
Collapse
Affiliation(s)
- Kun Wang
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Lingling Tong
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, 130031, China
| | - Jingyun Yu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Zhaoru Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Jinjin Sheng
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Haiwei Ji
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou 215009, China
| | - Haotian Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Qiu L, Li H, Ma M, Fang C. Effect of antibiotic exposure on the characteristics of activated sludge in a landfill leachate biological treatment system. ENVIRONMENTAL TECHNOLOGY 2024; 45:1596-1607. [PMID: 36377722 DOI: 10.1080/09593330.2022.2148568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Changes in the activated sludge performance in an anaerobic/aerobic biological treatment system for leachate was discussed under the condition of tetracycline (TC) exposure. The results show that a low concentration of TC did not have an obvious effect on the removal of chemical oxygen demand (COD) while a high concentration of TC had a certain promoting effect. Under the stimulation of TC, the particle size distribution of anaerobic/aerobic sludge tended to be more uniform, the particle size of anaerobic sludge decreased while the settleability increased; however, the particle size of aerobic sludge increased due to bulking. With the addition of TC, the concentration of most heavy metal ions in sludge samples increased.TC exposure results in the release of a large amount of extracellular polymeric substances (EPS), thus leading to a smoother surface of anaerobic sludge and a rougher surface of aerobic sludge. The high removal efficiency of COD under the high concentration of TC was also presumed to be due to EPS promoting the microbial absorption of anaerobic substances in the leachate. The results clearly showed that TC had a bacteriostatic effect. After antibiotic exposure, the abundance and diversity index of bacteria in each reactor decreased obviously, the microbial community evolved, and the dominant species at the genus and phylum levels of anaerobic/aerobic reactors changed. This study provides a better understanding the effect of TC on activated sludge and has reference value for the management of antibiotic exposure in leachate treatment facilities.
Collapse
Affiliation(s)
- Libo Qiu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hong Li
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Mengfei Ma
- College of Civil Engineering, Southeast University, Nanjing, People's Republic of China
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
7
|
Fayaz T, Renuka N, Ratha SK. Antibiotic occurrence, environmental risks, and their removal from aquatic environments using microalgae: Advances and future perspectives. CHEMOSPHERE 2024; 349:140822. [PMID: 38042426 DOI: 10.1016/j.chemosphere.2023.140822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/14/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Antibiotic pollution has caused a continuous increase in the development of antibiotic-resistant bacteria and antibiotic-resistant genes (ARGs) in aquatic environments worldwide. Algae-based bioremediation technology is a promising eco-friendly means to remove antibiotics and highly resistant ARGs, and the generated biomass can be utilized to produce value-added products of industrial significance. This review discussed the prevalence of antibiotics and ARGs in aquatic environments and their environmental risks to non-target organisms. The potential of various microalgal species for antibiotic and ARG removal, their mechanisms, strategies for enhanced removal, and future directions were reviewed. Antibiotics can be degraded into non-toxic compounds in microalgal cells through the action of extracellular polymeric substances, glutathione-S-transferase, and cytochrome P450; however, antibiotic stress can alter microalgal gene expression and growth. This review also deciphered the effect of antibiotic stress on microalgal physiology, biomass production, and biochemical composition that can impact their commercial applications.
Collapse
Affiliation(s)
- Tufail Fayaz
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Nirmal Renuka
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India.
| | - Sachitra Kumar Ratha
- Algology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| |
Collapse
|
8
|
Hong J, Sobhi M, Zheng H, Hu X, Cui Y, Yu Z, Xu X, Zhu F, Huo S. Effective removing of rotifer contamination in microalgal lab-scale raceway ponds by light-induced phototaxis coupled with high-voltage pulse electroshock. BIORESOURCE TECHNOLOGY 2024; 394:130241. [PMID: 38142911 DOI: 10.1016/j.biortech.2023.130241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Rotifer reproduction control in open microalgae cultivation systems poses a significant challenge for large-scale industries. Conventional methods, such as electric, meshing, and chemical techniques, are often expensive, ineffective, and may have adverse environmental-health impacts. This study investigated a promising control technique through light-induced phototaxis to concentrate rotifers in a specific spot, where they were electroshocked by local-limited exposure dose. The results showed that the rotifers had the most pronounced positive and negative phototropism with phototaxis rates of 66.7 % and -78.8 %, respectively, at blue-light irradiation of 30 µmol∙m-2∙s-1 and red-light irradiation of 22.5 µmol∙m-2∙s-1 for 20 min. The most effective electroshock configuration employed 1200 V/cm for 15 min with a 1-second cycle time and a 10 % duty cycle, resulting in a 75.0 % rotifer removal rate without impacting microalgae growth. The combination of the two light beams could effectively lead rotifers to designated areas where they were electrocuted successfully.
Collapse
Affiliation(s)
- Ji Hong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mostafa Sobhi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Agricultural and Bio-systems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - HongJing Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212013, China
| | - Xiangru Xu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Cheng S, Jessica, Yoshikawa K, Cross JS. Influence of synthetic and natural microfibers on the growth, substance exchange, energy accumulation, and oxidative stress of field-collected microalgae compared with microplastic fragment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167936. [PMID: 37875192 DOI: 10.1016/j.scitotenv.2023.167936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
Synthetic microfibers (MFs), which are Microplastics (MPs), have not received attention commensurate with their abundance in the environment. Currently, limited studies on MFs have focused on their effects on marine organisms. It is therefore necessary to conduct exposure experiments of MFs on freshwater organisms to provide reference data for the ecological risk assessment of MFs. As a primary producer in freshwater ecosystems, microalgae have an ecological niche that is highly overlapping with that of MFs. In this study, we examined the effects of MFs on the growth of Chlorella and indicators of oxidative stress to examine their potential risk on the microalgae population. The results showed that inhibition rate of microalgae increased with MF concentration in the range of 0.01-100 mg/L. Compared with natural fibers such as cotton and wool, PET and PP fibers showed significant growth inhibition, but less so when in fragment form with the same material and concentration. PP and PET particles, whether fibers or fragments, increased the total antioxidant capacity of microalgal cells and caused oxidative damage. To determine the influence of MFs on the interaction of cells in the environment, the exchanged substances and accumulated energy of microalgae cells were also detected. The results indicated that PP and PET fibers, as well as fragments, increased the diameter and membrane permeability of microalgae cell, thus interfering with the cell division and substance exchange processes. PET fibers and fragments showed different interactions at the level of individual cells and populations. This suggests that the evaluation of MPs should consider examinations from cells to population and even community levels in the future.
Collapse
Affiliation(s)
- Shuo Cheng
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan.
| | - Jessica
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| | - Kunio Yoshikawa
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| | - Jeffrey S Cross
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
10
|
Li X, Chen X, Yan Y, Wang F, Feng L, Chen Y. Nitrogen-doped graphene for tetracycline removal via enhancing adsorption and non-radical persulfate activation. ENVIRONMENTAL RESEARCH 2023; 235:116642. [PMID: 37442259 DOI: 10.1016/j.envres.2023.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Nitrogen-doped graphene (NG) was synthesized via direct thermal annealing treatment. The obtained NG showed outstanding removal ability for tetracycline (TC) ascribed to enhanced adsorption and persulfate activation. The maximum TC adsorption capacity calculated from the Langmuir model of NG was 227.3 mg/g, which was 1.66 times larger than nitrogen-free graphene. The coexistence of NG and persulfate (PS) exhibited complete degradation of TC within 120 min attributed to the successful modification of nitrogen. Further analysis demonstrated that non-radical electron transfer was the dominant degradation pathway, which was different from the widely acknowledgeable radical mechanism. An electron donor-mediator-acceptor system was introduced, in which TC, NG, and PS performed as electron donor, mediator, and acceptor, respectively. The potential intermediates in the TC degradation process were detected and toxicity assessment was also performed. In addition, more than 75.8% of total organic carbon was removed, and excellent reusability was manifested in multiple adsorption and degradation experiments.
Collapse
Affiliation(s)
- Xiaolu Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xutao Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yuanyuan Yan
- College of Chemistry and Environment Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province, 224002, China
| | - Feng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
11
|
Tang X, Chen M, Li M, Liu H, Tang H, Yang Y. Do differentially charged nanoplastics affect imidacloprid uptake, translocation, and metabolism in Chinese flowering cabbage? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161918. [PMID: 36736408 DOI: 10.1016/j.scitotenv.2023.161918] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Micro(nano)plastics are ubiquitous in the environment. Among the microplastics, imidacloprid (IMI) concentration has been increasing in some intensive agricultural regions, thus receiving increased attention. However, only a few studies have investigated the interaction of nanoplastics (polystyrene (PS)) and IMI in vegetable crops. We studied the effects of positively (PS-NH2) and negatively (PS-COOH) charged nanoplastics on the uptake, translocation, and degradation of IMI in Chinese flowering cabbage grown in Hoagland solution for 28 days. PS-NH2 co-exposure with IMI inhibited plant growth, resulting in decreased plant weight, height, and root length. Translocation of IMI from the roots to the shoots was significantly lower in the presence of PS-NH2, whereas PS-COOH accelerated the accumulation and translocation of IMI in plants, thus potentially affecting IMI metabolism in plants. Notably, IMI-NTG and 5-OH-IMI were the two dominant metabolites. PS-NH2 co-exposure with IMI induced significant oxidation stress and considerably affected the activities of superoxide dismutase (SOD) and peroxidase (POD), indicating that the antioxidant defense system was the main mechanism for reducing oxidative damage. Notably, both positively and negatively charged nanoplastics can accumulate in Chinese flowering cabbage. Plants in the PS-COOH alone treatment group had the highest concentration of nanoplastics in both roots and shoots. The accumulation of nanoplastics, IMI, and its metabolites in plants raises concerns about their combined potential toxicity because it compromises food safety.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China.
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Muzi Li
- College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Huanping Liu
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China
| | - Hao Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Yang Yang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China.
| |
Collapse
|
12
|
Ghaffar I, Hussain A, Hasan A, Deepanraj B. Microalgal-induced remediation of wastewaters loaded with organic and inorganic pollutants: An overview. CHEMOSPHERE 2023; 320:137921. [PMID: 36682632 DOI: 10.1016/j.chemosphere.2023.137921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The recent surge in industrialization has intensified the accumulation of various types of organic and inorganic pollutants due to the illegal dumping of partially and/or untreated wastewater effluents in the environment. The pollutants emitted by several industries pose serious risk to the environment, animals and human beings. Management and diminution of these hazardous organic pollutants have become an incipient research interest. Traditional physiochemical methods are energy intensive and produce secondary pollutants. So, bioremediation via microalgae has appeared to be an eco-friendly and sustainable technique to curb the adverse effects of organic and inorganic contaminants because microalgae can degrade complex organic compounds and convert them into simpler and non-toxic substances without the release of secondary pollutants. Even some of the organic pollutants can be exploited by microalgae as a source of carbon in mixotrophic cultivation. Literature survey has revealed that use of the latest modification techniques for microalgae such as immobilization (on alginate, carrageena and agar), pigment-extraction, and pretreatment (with acids) have enhaced their bioremedial potential. Moreover, microalgal components i.e., biopolymers and extracellular polymeric substances (EPS) can potentially be exploited in the biosorption of pollutants. Though bioremediation of wastewaters by microalgae is quite well-studied realm but some aspects like structural and functional responses of microalgae toward pollutant derivatives/by-products (formed during biodegradation), use of genetic engineering to improve the tolerance of microalgae against higher concentrations of polluatans, and harvesting cost reduction, and monitoring of parameters at large-scale still need more focus. This review discusses the accumulation of different types of pollutants into the environment through various sources and the mechanisms used by microalgae to degrade commonly occurring organic and inorganic pollutants.
Collapse
Affiliation(s)
- Imania Ghaffar
- Applied and Environmental Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Hussain
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Ali Hasan
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Balakrishnan Deepanraj
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia.
| |
Collapse
|
13
|
Seoane M, Conde-Pérez K, Esperanza M, Cid Á, Rioboo C. Unravelling joint cytotoxicity of ibuprofen and oxytetracycline on Chlamydomonas reinhardtii using a programmed cell death-related biomarkers panel. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106455. [PMID: 36841069 DOI: 10.1016/j.aquatox.2023.106455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceutical active compounds (PhACs) are emerging contaminants that pose a growing concern due to their ubiquitous presence and harmful impact on aquatic ecosystems. Among PhACs, the anti-inflammatory ibuprofen (IBU) and the antibiotic oxytetracycline (OTC) are two of the most used compounds whose presence has been reported in different aquatic environments worldwide. However, there is still scarce information about the cellular and molecular alterations provoked by IBU and OTC on aquatic photosynthetic microorganisms as microalgae, even more if we refer to their potential combined toxicity. To test the cyto- and genotoxicity provoked by IBU, OTC and their binary combination on Chlamydomonas reinhardtii, a flow cytometric panel was performed after 24 h of single and co-exposure to both contaminants. Assayed parameters were cell vitality, metabolic activity, intracellular ROS levels, and other programmed cell death (PCD)-related biomarkers as cytoplasmic and mitochondrial membrane potentials and caspase-like and endonuclease activities. In addition, a nuclear DNA fragmentation analysis by comet assay was carried out. For most of the parameters analysed (vitality, metabolic activity, cytoplasmic and mitochondrial membrane potentials, and DNA fragmentation) the most severe damages were observed in the cultures exposed to the binary mixture (IBU+OTC), showing a joint cyto- and genotoxicity effect. Both PhACs and their mixture caused a remarkable decrease in cell proliferation and metabolic activity and markedly increased intracellular ROS levels, parallel to a noticeable depolarization of cytoplasmic and mitochondrial membranes. Moreover, a strong increase in both caspase and endonuclease activities as well as a PCD-related loss of nuclear DNA integrity was observed in all treatments. Results analysis showed that the PhACs caused cell death on this non-target organism, involving mitochondrial membrane depolarization, enhanced ROS production and activation of PCD process. Thus, PCD should be an applicable toxicological target for unraveling the harmful effects of co-exposure to PhACs in aquatic organisms as microalgae.
Collapse
Affiliation(s)
- Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Kelly Conde-Pérez
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain.
| |
Collapse
|
14
|
Han K, Liu Y, Hu J, Jia J, Sun S. Effect of live and inactivated Chlamydomonas reinhardtii on the removal of tetracycline in aquatic environments. CHEMOSPHERE 2022; 309:136666. [PMID: 36220431 DOI: 10.1016/j.chemosphere.2022.136666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
With the development of medical drugs, the widely used tetracycline has brought many adverse effects on the ecosystem and human health. Tetracycline pollution of water environment is becoming more and more serious, and has become an emerging environmental problem. As single celled organisms, microalgae are not only model organisms for risk assessment of aquatic ecosystems, but also can efficiently purify sewage. Microalgae-mediated pollutant remediation has attracted more and more attention from researchers. In this paper, Chlamydomonas reinhardtii (C. reinhardtii) was used to remove tetracycline in aqueous solution, and the removal efficiency and mechanism of microalgae on tetracycline were studied. The results showed that the removal rates of tetracycline by active and inactivated microalgae at a density of 5 × 106 cells·mL-1 were 81.9% and 89.8%, respectively. C. reinhardtii removed tetracycline through biosorption and nonmetabolic processes. Microalgal cell supernatant and hydroxyl radicals could significantly promote the removal of tetracycline. The positively charged tetracycline was electrostatically adsorbed on the microalgae surface and extracellular polymeric substances. Microalgae biomass can promote the production of ROS and enhance the ability of microalgae to remove tetracycline.
Collapse
Affiliation(s)
- Kai Han
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yanjun Liu
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jianan Hu
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Junjie Jia
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shujuan Sun
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
15
|
de Jesus Oliveira Santos M, de Oliveira Souza C, Marcelino HR. Blue technology for a sustainable pharmaceutical industry: Microalgae for bioremediation and pharmaceutical production. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Effects of Tetracycline on Scenedesmus obliquus Microalgae Photosynthetic Processes. Int J Mol Sci 2022; 23:ijms231810544. [PMID: 36142466 PMCID: PMC9504007 DOI: 10.3390/ijms231810544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Tetracycline (TC) antibiotics can be detected worldwide in the aquatic environment due to their extensive use and low utilization efficiency, and they may affect the physiological processes of non-target organisms. In this study, the acute and sub-acute toxicities of TC on the freshwater microalga Scenedesmus obliquus were investigated with an emphasis on algal photosynthesis and transcription alterations during an 8 d TC exposure. The results showed that the IC10, IC30 and IC50 values were 1.8, 4.1 and 6.9 mg/L, respectively. During sub-acute exposure, the microalgae of the IC10 treatment was able to recover comparable growth to that of the control by day 7, while significantly lower cell densities were observed in the IC30 and IC50 treatments at the end of the exposure. The photosynthetic efficiency Fv/FM of S. obliquus first decreased as the TC concentration increased and then returned to a level close to that of the control on day 8, accompanied by an increase in photosynthetic activities, including light harvesting, electron transport and energy dissipation. Transcriptomic analysis of the IC10 treatment (1.8 mg/L TC) revealed that 2157 differentially expressed genes were up-regulated and 1629 were down-regulated compared with the control. KEGG and GO enrichments demonstrated that 28 photosynthesis-related genes involving light-harvesting chlorophyll protein complex, photosystem I, photosystem II, photosynthetic electron transport and enzymes were up-regulated, which may be the factor responsible for the enhanced photosynthesis and recovery of the microalgae. Our work may be helpful not only for gaining a better understanding of the environmental risk of TC at concentrations close to the real levels in natural waters, but also for explaining photosynthesis and related gene transcription induced by antibiotics.
Collapse
|
17
|
Li N, Liu Z, Wang P, Suman K, Zhang J, Song Y. Effects of sodium hypochlorite treatment on the chlorophyll fluorescence in photosystem II of microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155192. [PMID: 35421461 DOI: 10.1016/j.scitotenv.2022.155192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Chlorophyll fluorescence-based method shows great potentials for on-site assessing the vitality of algae in treated ship's ballast water. However, there is very limited information on the mechanism of chlorophyll fluorescence in photosystem II (PSII) after the NaClO treatment. In this paper, the effects of NaClO treatments with five concentrations (0.01, 0.04, 0.08, 0.12 and 0.15 mg/L) and treating periods (6, 24 and 48 h) on the chlorophyll fluorescence kinetics and spectra of Chlorella vulgaris (C. vulgaris) and Platymonas helgolandica (P. helgolandica) were investigated. Experimental results showed that both exposure time and dose were important factors that affect the toxicity of NaClO to microalgae. Further analyses showed that the maximum photochemical quantum yield of PSII, photochemical quenching and yield decreased rapidly with the increase in NaClO concentrations in the range of 0.04 mg/L to 0.15 mg/L, suggesting that NaClO seriously inhibited PSII reaction centers of algae. In addition, the maxima value of fluorescence at excitation wavelength still appeared near 437 nm and 468 nm under NaClO stress, pointing to the pigments for fluorescence produced by algae were mainly chlorophyll a and chlorophyll b antenna. As compared to chlorophyll a, the relative fluorescence intensity of chlorophyll b decreased significantly in the all of NaClO treatments. According to the fluorescence emission spectra, treatment of NaClO resulted in a shift of the maximum peak of C. vulgaris and P. helgolandica from 685.2 nm to 681.9 nm and 685.2 nm to 680.5 within 6 h, respectively. This indicates that the structure of antenna light-absorbing pigments of PSII changed under NaClO stress. These results revealed that the chlorophyll fluorescence mechanism in PSII of damaged microalgae occurred variation, which was important for the reliable application of on-site analysis of ballast water indicator based on chlorophyll fluorescence detection.
Collapse
Affiliation(s)
- Na Li
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhen Liu
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Pengcheng Wang
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Kapur Suman
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana 500078, India
| | - Junyan Zhang
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
18
|
Michelon W, Matthiensen A, Viancelli A, Fongaro G, Gressler V, Soares HM. Removal of veterinary antibiotics in swine wastewater using microalgae-based process. ENVIRONMENTAL RESEARCH 2022; 207:112192. [PMID: 34634313 DOI: 10.1016/j.envres.2021.112192] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Phycoremediation of swine wastewater is an attractive treatment to remove contaminants and simultaneously produce valuable feedstock biomass. However, there is a lack of information about the application of phycoremediation on veterinary antibiotic removal. Thus, this research investigated the degradation of tetracycline, oxytetracycline, chlortetracycline and doxycycline in swine wastewater treated with phycoremediation. The tetracyclines degradation kinetics was adjusted to the pseudo-first-order kinetics model, with kinetic constant k1 in the following: 0.36 > 0.27>0.19 > 0.18 (d-1) for tetracycline, doxycycline, oxytetracycline and chlortetracycline, respectively. The maximum concentration of microalgae biomass (342.4 ± 20.3 mg L-1) was obtained after 11 days of cultivation, when tetracycline was completely removed. Chlortetracycline concentration decreased, generating iso-chlortetracycline and 4-epi-iso-chlortetracycline. Microalgae biomass harvested after antibiotics removal presented a carbohydrate-rich content of 52.7 ± 8.1, 50.1 ± 3.3, 51.4 ± 5.4 and 57.4 ± 10.4 (%) when cultured with tetracycline, oxytetracycline, chlortetracycline and doxycycline, respectively, while the control culture without antibiotics presented a carbohydrate content of 40 ± 6.5%. These results indicate that could be a valuable source for bioenergy conversion.
Collapse
Affiliation(s)
- William Michelon
- Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering, Florianópolis, SC, 88040-700, Brazil.
| | | | - Aline Viancelli
- Universidade do Contestado, Concórdia, SC, 89711-330, Brazil.
| | - Gislaine Fongaro
- Federal University of Santa Catarina, Department of Microbiology, Immunology and Parasitology, Florianópolis, SC, 88040-700, Brazil.
| | | | - Hugo Moreira Soares
- Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering, Florianópolis, SC, 88040-700, Brazil.
| |
Collapse
|
19
|
Synthesis of bimetallic NbCo-piperazine catalyst and study on its advanced redox treatment of pharmaceuticals and personal care products by activation of permonosulfate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Xu L, Zhao Z, Yan Z, Zhou G, Zhang W, Wang Y, Li X. Defense pathways of Chlamydomonas reinhardtii under silver nanoparticle stress: Extracellular biosorption, internalization and antioxidant genes. CHEMOSPHERE 2022; 291:132764. [PMID: 34752836 DOI: 10.1016/j.chemosphere.2021.132764] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies have been investigated the toxic effects of silver nanoparticle (Ag-NPs) on algae; however, little attention has been paid to the defense pathways of algae cells to Ag-NPs. In the study, Chlamydomonas reinhardtii (C. reinhardtii) was selected as a model organism to investigate the defense mechanisms to Ag-NPs exposure. The results showed that exopolysaccharide and protein in bound-extracellular polymeric substances significantly increased under Ag-NPs stress. These metal-binding groups including C-O-C (exopolysaccharide), CH3/CH2 (proteins), O-H/N-H (hydroxyl group) and C-H (alkyl groups) played a key role in extracellular biosorption. The internalized or strongly bound Ag (1.90%-17.45% of total contents) was higher than the loosely surface biosorption (0.31%-1.79%). The accumulation of glutathione disulfide (GSSG), together with the decline of reduced glutathione/GSSG (GSH/GSSG) ratio in C. reinhardtii cells, indicated a significant oxidative stress caused by exposure of Ag-NPs. The increasing phytochelatin accompanied with the decreasing GSH level indicated a critical role to intracellular detoxification of Ag. Furthermore, upregulation of antioxidant genes (MSOD, QTOX2, CAT1, GPX2, APX and VTE3) can cope with oxidative stress of Ag-NPs or Ag+. The up-regulation of ascorbate peroxidase (APX) and glutathione peroxidase (GPX2) genes and the reduction in GSH contents showed that the toxicity of Ag-NPs could be mediated by an intracellular ascorbate-GSH defense pathway. These findings can provide valuable information on ecotoxicity of Ag-NPs, potential bioremediation and adaptation capabilities of algal cells to Ag-NPs.
Collapse
Affiliation(s)
- Limei Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China; College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhilin Zhao
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhen Yan
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Gaoxiang Zhou
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Wenming Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Xiaochen Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
21
|
Liu XY, Hong Y, Zhao GP, Zhang HK, Zhai QY, Wang Q. Microalgae-based swine wastewater treatment: Strain screening, conditions optimization, physiological activity and biomass potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151008. [PMID: 34662604 DOI: 10.1016/j.scitotenv.2021.151008] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 05/28/2023]
Abstract
Using microalgae to treat swine wastewater (SW) can achieve wastewater purification and biomass recovery at the same time. The algae species suitable for growth in SW were screened in this study, and the response surface combined with the desirability function method was used for multi-objective optimization to obtain high algal biomass and pollutant removal. Chlorophyll fluorescence parameters and biomass composition were analyzed to evaluate the cell physiological activity and its application potential. Chlorella sp. HL was selected as the most suitable species for growth in SW, and after 9 d of cultivation, the maximum specific growth rate and highest algal density were achieved 0.51 d-1 and 2.43 × 107 cells/mL, respectively. In addition, the removal of total phosphate and chemical oxygen demand were reached 69.13% and 72.95%, respectively. The optimum conditions for maximum algal density and highest pollutant removal were determined as the light intensity of 58.73 μmol/m2/s, inoculation density of 5.0 × 106 cells/mL, and a light/dark ratio of 3 using response surface model, and the predicted overall desirability value was 0.96. The potential maximum quantum yield of PSII (Fv/Fm) of Chlorella sp. HL in the early stage of cultivation was 0.60-0.70, while under high light and long photoperiod, the value of Fv/Fm and performance index of Chlorella decreased, trapped and dissipated energy flux per reaction center increased. The higher heating value of 18.25 MJ/kg indicated that the Chlorella cultivated in SW could be a good feedstock for biofuel production.
Collapse
Affiliation(s)
- Xiao-Ya Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Guang-Pu Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hong-Kai Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qing-Yu Zhai
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qiao Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
22
|
Hu D, Zhang J, Chu R, Yin Z, Hu J, Kristianto Nugroho Y, Li Z, Zhu L. Microalgae Chlorella vulgaris and Scenedesmus dimorphus co-cultivation with landfill leachate for pollutant removal and lipid production. BIORESOURCE TECHNOLOGY 2021; 342:126003. [PMID: 34571333 DOI: 10.1016/j.biortech.2021.126003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, landfill leachate was pre-treated with NaClO, and then diluted to 5%, 10% and 15% for microalgae growth of Chlorella vulgaris and Scenedesmus dimorphus in the mono- and co-culture modes to investigate the nutrient removal and growth characteristics of microalgae. The results revealed that landfill leachate with the 10% dilution rate was conducive for microalgae growth and exhibited robust biomass growth and the highest nutrient removal efficiency. The co-culture biomass in 10% landfill leachate achieved 0.266 g/L within 10 days and demonstrated the improved nutrient utilisation efficiency of microalgae. In addition, the chemical oxygen demand, ammonia nitrogen, total nitrate and total phosphorus removal efficiencies accordingly reached 81.0%, 80.1%, 72.1% and 86.0% in 10% landfill leachate. Meanwhile, both the enzyme activity and fluorescence parameters proved that the cell activity of co-culture was higher than that of mono-culture.
Collapse
Affiliation(s)
- Dan Hu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Jiaxing Zhang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Ruoyu Chu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Zhihong Yin
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Jiangjun Hu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | | | - Zhaohua Li
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, PR China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
23
|
Chatterjee A, Bhattacharya R, Chatterjee S, Saha NC. Acute toxicity of organophosphate pesticide profenofos, pyrethroid pesticide λ cyhalothrin and biopesticide azadirachtin and their sublethal effects on growth and oxidative stress enzymes in benthic oligochaete worm, Tubifex tubifex. Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108943. [PMID: 33220514 DOI: 10.1016/j.cbpc.2020.108943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 11/14/2020] [Indexed: 01/30/2023]
Abstract
The present study was aimed to assess the acute toxicity of organophosphate pesticide, profenofos; synthetic pyrethroid pesticide, λ cyhalothrin and biopesticide, azadirachtin and their sublethal effects on growth rate and oxidative stress biomarkers in Tubifex tubifex in vivo. The results showed that 96 h LC50 value of profenofos, λ cyhalothrin and azadirachtin to Tubifex tubifex are 0.59, 0.13 and 82.15 mg L-1 respectively. Pesticide treated worms showed several behavioral abnormalities including increased mucus secretion, erratic movements, wrinkling activity and decreased clumping tendency during acute exposure. The percentage of autotomy increased significantly (p < 0.05) with the increasing concentration of the pesticides at 96 h of exposure. Sublethal concentrations of profenofos (0.059 and 0.118 mg L-1), λ cyhalothrin (0.013 and 0.026 mg L-1) and azadirachtin (8.2 and 16.4 mg L-1) caused significant alterations in growth rate and oxidative stress enzymes in T. tubifex during 14 days exposure period. The growth rate of the pesticide exposed worms decreased significantly (P < 0.05) in a concentration and duration-dependent manner. Superoxide dismutase (SOD), reduced glutathione (GSH), glutathione-s-transferase (GST) and glutathione peroxidase (GPx) demonstrated a noteworthy (p < 0.05) initial induction followed by a subsequent reduction, while catalase (CAT) and malondialdehyde (MDA) exhibited noteworthy induction (p < 0.05) all through the exposure time. Through principal component analysis, correlation matrix, and integrated biomarker response, the effects of profenofos, λ cyhalothrin and azadirachtin on T. tubifex were distinguished. These results indicate that exposure to profenofos, λ cyhalothrin and azadirachtin affect survivability, change the behavioral responses, reduce the growth rate and induce oxidative stress enzymes in T. tubifex.
Collapse
Affiliation(s)
- Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India.
| |
Collapse
|
24
|
Zhao Z, Xu L, Wang Y, Li B, Zhang W, Li X. Toxicity mechanism of silver nanoparticles to Chlamydomonas reinhardtii: photosynthesis, oxidative stress, membrane permeability, and ultrastructure analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15032-15042. [PMID: 33222069 DOI: 10.1007/s11356-020-11714-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (Ag-NPs) are widely used in daily life and inevitably discharged into the aquatic environment, causing increasingly serious pollution. Research on the toxicity of Ag-NPs is still in infancy, little information is available on the relationships between oxidative stress and antioxidant, as well as damaging degrees of Ag-NPs to cellular structural components of Chlamydomonas reinhardtii (C. reinhardtiii). In the present study, we revealed the toxicity mechanism of C. reinhardtii under Ag-NPs stress using flow cytometry (FCM), metabolic methods, and transmission electron microscopy. The results showed that the chloroplasts were damaged and the synthesis of photosynthetic pigments was inhibited under Ag-NPs stress, which inhibited the growth of C. reinhardtii. Meanwhile, Ag-NPs also caused C. reinhardtii to produce excessive reactive oxygen species (ROS), increased malondialdehyde content and changed the permeability of cell membrane, resulting in the acceleration of internalization of Ag-NPs. The decrease of cell size and intracellular chlorophyll autofluorescence was observed with FCM. To deal with the induced excessive ROS that could lead to lethal and irreversible structure damage, C. reinhardtii activated antioxidant enzymes including superoxide dismutase and peroxidase. This study provides new information for better understanding the potential toxicity risks of Ag-NPs in the aquatic environment.
Collapse
Affiliation(s)
- Zhilin Zhao
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Limei Xu
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Bihan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wenming Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Xiaochen Li
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
25
|
Nong QY, Liu YA, Qin LT, Liu M, Mo LY, Liang YP, Zeng HH. Toxic mechanism of three azole fungicides and their mixture to green alga Chlorella pyrenoidosa. CHEMOSPHERE 2021; 262:127793. [PMID: 32799142 DOI: 10.1016/j.chemosphere.2020.127793] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Currently, few studies have investigated the joint toxicity mechanism of azole fungicides at different exposure times and mixed at the relevant environmental concentrations. In this study, three common azole fungicides, namely, myclobutanil (MYC), propiconazole (PRO), and tebuconazole (TCZ), were used in studying the toxic mechanisms of a single substance and its ternary mixture exposed to ambient concentrations of Chlorella pyrenoidosa. Superoxide dismutase (SOD), catalase (CAT), chlorophyll a (Chla), and total protein (TP), were used as physiological indexes. Results showed that three azole fungicides and ternary mixture presented obvious time-dependent toxicities at high concentrations. MYC induced a hormetic effect on algal growth, whereas PRO and TCZ inhibit algal growth in the entire range of the tested concentrations. The toxicities of the three azole fungicides at 7 days followed the order PRO > TCZ > MYC. Three azole fungicides and their ternary mixture induced different levels of SOD and CAT activities in algae at high concentrations. The ternary mixture showed additive effects after 4 and 7 days exposure, but no effect was observed at actual environmental concentrations. The toxic mechanisms may be related to the continuous accumulation of reactive oxygen species, which not only affected protein structures and compositions but also damaged thylakoid membranes, hindered the synthesis of proteins and chlorophyll a, and eventually inhibited algal growth. These findings increase the understanding of the ecotoxicity of azole fungicides and use of azole fungicides in agricultural production.
Collapse
Affiliation(s)
- Qiong-Yuan Nong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yong-An Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Li-Tang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Min Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Ling-Yun Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Yan-Peng Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hong-Hu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
26
|
Yang L, Ren L, Tan X, Chu H, Chen J, Zhang Y, Zhou X. Removal of ofloxacin with biofuel production by oleaginous microalgae Scenedesmus obliquus. BIORESOURCE TECHNOLOGY 2020; 315:123738. [PMID: 32659423 DOI: 10.1016/j.biortech.2020.123738] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Microalgae-based technology is an environmental-friendly and cost-effective method for biofuel production and pollutants removal. In this study, Scenedesmus obliquus (S. obliquus) was cultured with varying concentrations of ofloxacin (OFL) in BG11 medium. In the algae-antibiotics culture system, S. obliquus could effectively remove OFL with a concentration of 10 mg/L; however, the removal efficiency was restricted under higher doses (20-320 mg/L). Meanwhile, the lipid content significantly increased by 21.10-49.63%, which was caused by carbon being converted from carbohydrate to lipid. The greatest lipid productivity (7.53 mg/L/d) occurred at an OFL concentration of 10 mg/L, which was approximately 1.5-fold greater than the control. Moreover, S. obliquus cultured with OFL was able to improve the biodiesel quality due to an increase of saturated fatty acids and a decrease of unsaturated fatty acids. This study demonstrates that an algae-antibiotics system is a promising solution to simultaneously achieve antibiotics removal and biofuel production.
Collapse
Affiliation(s)
- Libin Yang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Li Ren
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Xiaobo Tan
- Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, College of Urban and Environment Sciences, Hunan University of Technology, Hunan Province 412007, China
| | - Huaqiang Chu
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Xuefei Zhou
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
27
|
Tong M, Li X, Luo Q, Yang C, Lou W, Liu H, Du C, Nie L, Zhong Y. Effects of humic acids on biotoxicity of tetracycline to microalgae Coelastrella sp. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101962] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Li S, Chu R, Hu D, Yin Z, Mo F, Hu T, Liu C, Zhu L. Combined effects of 17β-estradiol and copper on growth, biochemical characteristics and pollutant removals of freshwater microalgae Scenedesmus dimorphus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138597. [PMID: 32428803 DOI: 10.1016/j.scitotenv.2020.138597] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Contamination by estrogens and heavy metals can cause great environment concern and necessitate efficient approaches for their removals. In this study, the combined effects of 17β-estradiol (E2) and Cu(II) on microalgae growth and biochemical characteristics were investigated. Results showed that 1 mg/L Cu(II) promoted the growth of Scenedesmus dimorphus, while 2 mg/L Cu(II) exhibited growth inhibition, compared with the same concentration of E2. Biochemical characteristics including enzyme activities as well as the contents of chlorophyll, protein and carbohydrate were significantly affected by the coexistence of E2 and Cu(II) after 12 d of cultivation. S. dimorphus exhibited high E2 and Cu(II) removal efficiencies (89.9% of E2 and 76.6% Cu(II) under the coexistence of 0.5 mg/L E2 and 1 mg/L Cu(II), respectively). Lower concentration of Cu(II) might serve as a bridge during E2 removal by S. dimorphus while competitive adsorption of Cu(II) and E2 occurred under the condition of excessive Cu(II). Results could confirm that S. dimorphus was a potential bioresource for the effective removal of E2 and Cu(II).
Collapse
Affiliation(s)
- Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Ruoyu Chu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Dan Hu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Zhihong Yin
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Fan Mo
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Tianyi Hu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Chenchen Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China; Faculty of Technology and Innovations, University of Vaasa, Vaasa FI65101, Finland.
| |
Collapse
|
29
|
Qu W, Loke Show P, Hasunuma T, Ho SH. Optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomonas sp. QWY37 used for cell-displayed bioethanol production. BIORESOURCE TECHNOLOGY 2020; 305:123072. [PMID: 32163881 DOI: 10.1016/j.biortech.2020.123072] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along with high pollutant removal efficiencies (chemical oxygen demand: 81%, total nitrogen: 96%, total phosphate: nearly 100%) by optimizing culture conditions and using an appropriate operation strategy. Through a cell-displayed technology that utilizes combined engineered system, a maximum microalgal bioethanol yield of 61 g/L was achieved. This is the first report demonstrating the highest microalgal carbohydrate productivity using swine wastewater without any pretreatments associated with direct high-density bioethanol production from the subsequent microalgal biomass. This work may represent a breakthrough in achieving feasible microalgal bioethanol conversion from real swine wastewater.
Collapse
Affiliation(s)
- Wenying Qu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Pau Loke Show
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor Darul Ehsan, Malaysia
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe 657-8501, Japan
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
30
|
Yin E, Zhao Z, Chi Z, Zhang Z, Jiang R, Gao L, Cao J, Li X. Effect of Chlamydomonas reinhardtii on the fate of CuO nanoparticles in aquatic environment. CHEMOSPHERE 2020; 247:125935. [PMID: 31978663 DOI: 10.1016/j.chemosphere.2020.125935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
In this study, the effect of Chlamydomonas reinhardtii on the fate of CuO nanoparticles (CuO-NPs) in aquatic environment were investigated in terms of the colloidal stability, the free Cu2+ releasing, extracellular adsorption Cu (Cuex) and intracellular assimilation Cu (Cuin). The results showed that, with the increasing microalgal density, the absolute value of zeta potential of CuO-NPs decreased and the mean hydrodynamic diameter (MHD) became larger, leading to a better aggregation and settling behavior of CuO-NPs. The microalgae also promoted the free Cu2+ releasing, however, inhibited adsorption and assimilation of metal nanoparticles (MNPs) into microalgal cells, resulting in the reduction of the Cuex and Cuin per microalgal cell. The phenomenon was probably due to the reduced chance of contact between microalgae and MNPs. The internalization of CuO-NPs was also observed in microalgal cells by high resolution transmission electron microscope (HRTEM). Furthermore, the results of fast fourier transform (FFT)/inversed FFT (IFFT) analysis indicated that the CuO-NPs was reduced to Cu2O-NPs in the microalgae cells. The above results suggested that the microalgae can significantly affect the fate of MNPs, and subsequently, influencing the bioavailability and toxicity of MNPs in the aquatic environment.
Collapse
Affiliation(s)
- Erqin Yin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China; Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Zhilin Zhao
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Zhongwen Chi
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Ziqi Zhang
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Ruixue Jiang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China; Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Li Gao
- Future Water Strategy Group, South East Water, WatersEdge 101 Wells Street, Frankston, Melbourne, 3199, Australia
| | - Jiashun Cao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China.
| | - Xiaochen Li
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
31
|
Long S, Yang Y, Pavlostathis SG, Xiang F, Sun P, Li N, Zhao L. Toxicity of tetracycline and its transformation products to a phosphorus removing Shewanella strain. CHEMOSPHERE 2020; 246:125681. [PMID: 31896014 DOI: 10.1016/j.chemosphere.2019.125681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Tetracycline (TC) as an emerging contaminant has raised serious concerns about its toxicity and removal in wastewater treatment processes. The more toxic transformation products of TC, 4-epitetracycline (ETC), anhydrotetracycline (ATC) and 4-epianhydrotetracycline (EATC) are also widely detected. This study investigated the antibacterial and bactericidal activity of TC, ETC, ATC, EATC against Shewanella sp, using Escherichia coli and Pseudomonas aeruginosa strains as quality controls. Further, batch assays were conducted to investigate the inhibition of these antibiotics on the phosphorus removal of the Shewanella strain, and removal mechanisms of TC and its transformation products (TCs). The inhibition on phosphorus removal by the Shewanella strain at 20 mg L-1 was in the order of ATC > EATC > TC > ETC. COD removal, poly-P accumulation and glycogen synthesis by the Shewanella strain were also inhibited. Biodegradation was the main removal mechanism of TC and ETC, while adsorption was the main one of ATC and EATC. This study helps to further understand the structure-activity relationship of TC.
Collapse
Affiliation(s)
- Sha Long
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0512, USA
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0512, USA
| | - Feng Xiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Na Li
- Central Laboratory of Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
32
|
Li S, Wang P, Zhang C, Zhou X, Yin Z, Hu T, Hu D, Liu C, Zhu L. Influence of polystyrene microplastics on the growth, photosynthetic efficiency and aggregation of freshwater microalgae Chlamydomonas reinhardtii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136767. [PMID: 31981864 DOI: 10.1016/j.scitotenv.2020.136767] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/02/2020] [Accepted: 01/16/2020] [Indexed: 05/20/2023]
Abstract
Microplastics are ubiquitous in aquatic ecosystems worldwide, but knowledge on their impacts on phytoplankton, especially freshwater microalgae, is still limited. To investigate this issue, microalgae Chlamydomonas reinhardtii was exposed to polystyrene (PS) microplastics with 4 concentration gradients (5, 25, 50 and 100 mg/L), and the growth, chlorophyll a fluorescence, photosynthetic activities (Fv/Fm), the contents of malondialdehydes (MDA), soluble proteins, extracellular polymeric substances (EPS) and settlement rate were accordingly measured. Results showed that the density of microalgae decreased as the increase of PS microplastics concentrations, and the highest inhibitory rate (IR) was 45.8% on the 7th day under the concentration of 100 mg/L. The high concentration (100 mg/L) of microplastics evidently inhibited the content of EPS released by microalgae into the solution. PS under all dosages tested could reduce both the chlorophyll a fluorescence yields and photosynthetic activities. The scanning electron microscope (SEM) images demonstrated that microplastic beads were wrapped on the surface of microalgae and damaged their membranes, which could suggest the reduction of photosynthetic activities and the increase of soluble proteins and MDA content. The results also showed that PS microplastics could inhibit the settlement of microalgae at the later stage, which also indicated the recovery of microalgae from the toxic environment. Our findings will contribute to understanding the effects of microplastics on freshwater microalgae, as well as evaluating the possible influences of microplastics on aquatic ecosystems.
Collapse
Affiliation(s)
- Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Panpan Wang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Chao Zhang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Xiangjun Zhou
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Zhihong Yin
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Tianyi Hu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Dan Hu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Chenchen Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China; Faculty of Technology and Innovations, University of Vaasa, Vaasa, FI65101, Finland.
| |
Collapse
|
33
|
Wang XD, Lu YC, Xiong XH, Yuan Y, Lu LX, Liu YJ, Mao JH, Xiao WW. Toxicological responses, bioaccumulation, and metabolic fate of triclosan in Chlamydomonas reinhardtii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11246-11259. [PMID: 31960244 DOI: 10.1007/s11356-020-07704-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Triclosan (TCS) is a broad-spectrum antimicrobial agent that is broadly used in personal care products. It has been shown to cause the contamination of a variety of aquatic environments. Since algae has been the primary producers of aquatic ecosystems, understanding the toxicological mechanisms and the metabolic fate of TCS is vital for assessing its risk in an aquatic environment. In our study, 0.5-4 mg L-1 TCS treatments for 72 h in a culture of Chlamydomonas reinhardtii (C. reinhardtii) showed progressive inhibition of cell growth and reduced the chlorophyll content. The EC50 value of C. reinhardtii after 72 h was 1.637 mg L-1, which showed its higher level of resistance to TCS in comparison with other algal species. The exposure to TCS led to oxidative injuries of algae in relation to the increment of malonaldehyde content, cell membrane permeability, and H2O2 levels. Furthermore, the oxidative stress from TCS stimulated a series of antioxidant enzyme activities and their gene expressions. Simultaneously, the accumulated TCS in C. reinhardtii arouses the detoxification/degradation-related enzymes and related gene transcriptions. In the medium, approximately 82% of TCS was removed by C. reinhardtii. Importantly, eight TCS metabolites were identified by ultra-performance liquid chromatography-high-resolution mass spectrometry and their relative abundances were measured in a time-course experiment. Six of these metabolites are reported here for the first time. The metabolic pathways of triclosan via C. reinhardtii including reductive dechlorination, hydroxylation, sulfhydrylation, and binding with thiol/cysteine/GSH/glycosyl were manifested to broaden our understanding of the environmental fate of TCS. Graphical Abstract.
Collapse
Affiliation(s)
- Xiao Dong Wang
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| | - Yi Chen Lu
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China.
| | - Xiao Hui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| | - Yi Yuan
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Li Xia Lu
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| | - Yuan Jian Liu
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| | - Jia Hao Mao
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| | - Wei Wei Xiao
- College of Food Science and Light Industry, Nanjing Tech University, Puzhu South Street No. 30, Nanjing, 211816, China
| |
Collapse
|
34
|
Chang T, Wei B, Wang Q, He Y, Wang C. Toxicity assessment of municipal sewage treatment plant effluent by an integrated biomarker response in the liver of crucian carp (Carassius auratus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7280-7288. [PMID: 31883072 DOI: 10.1007/s11356-019-07463-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
In this study, crucian carp (Carassius auratus) was exposed to the increasing concentrations of municipal sewage treatment plant effluent (MSTPE) for 15 days, and the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and acetylcholinesterase (AChE), together with the contents of malondialdehyde (MDA) and glutathione (GSH) in the liver of C. auratus were investigated. Moreover, the integrated biomarker response (IBR) approach was applied to assess the adverse effects of MSTPE in freshwater. The aim of the study was to provide an effective biological indicator for evaluating the toxicity effects and ecological risks of MSTPE in the freshwater environment quantitatively. Results showed that MSTPE could cause oxidative damage to the liver of C. auratus, which reflected through the increasing MDA content over the exposure period. MSTPE also led to the biochemical responses of antioxidant defense in C. auratus liver, such as the enhancement of SOD, CAT, and GPx activities, as well as the inhibition of AChE activity and GSH content. It was found that MDA, SOD, GPx, and GSH could be used as the biomarkers for reflecting the adverse effects of MSTPE in the receiving freshwater on the 12th day of exposure. A significant increase of IBR values was observed as the increasing concentration of MSTPE, and the IBR values presented a significant positive correlation (r = 0.891, P < 0.05) with the increasing concentrations of MSTPE, indicating that IBR approach is a promising tool for assessing the toxicity effects of MSTPE in environmental freshwater.
Collapse
Affiliation(s)
- Tong Chang
- Zibo Center for Disease Control and Prevention, Zibo Key Laboratory for Monitoring and Analysis of Environmental Organic Pollution and Population Health, No. 44 Dongyi Road, Zibo, 255026, Shandong, China.
| | - Bin Wei
- Zibo Center for Disease Control and Prevention, Zibo Key Laboratory for Monitoring and Analysis of Environmental Organic Pollution and Population Health, No. 44 Dongyi Road, Zibo, 255026, Shandong, China
| | - Qin Wang
- Zibo Center for Disease Control and Prevention, Zibo Key Laboratory for Monitoring and Analysis of Environmental Organic Pollution and Population Health, No. 44 Dongyi Road, Zibo, 255026, Shandong, China
| | - Yi He
- Zibo Center for Disease Control and Prevention, Zibo Key Laboratory for Monitoring and Analysis of Environmental Organic Pollution and Population Health, No. 44 Dongyi Road, Zibo, 255026, Shandong, China
| | - Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo, 255000, Shandong, China.
| |
Collapse
|
35
|
Nagarajan D, Kusmayadi A, Yen HW, Dong CD, Lee DJ, Chang JS. Current advances in biological swine wastewater treatment using microalgae-based processes. BIORESOURCE TECHNOLOGY 2019; 289:121718. [PMID: 31296361 DOI: 10.1016/j.biortech.2019.121718] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
There is an exponential increase in swine farms around the world to meet the increasing demand for proteins, resulting in a significant amount of swine/piggery wastewater. The wastewater produced in swine farms are rich in ammonia with high eutrophication potential and negative environmental impacts. Safe methods for treatment and disposal of swine wastewater have attracted increased research attention in the recent decades. Conventional wastewater treatment methods are limited by the high ammonia content and chemical/biological oxygen demand of swine wastewater. Recently, microalgal cultivation is being proposed for the phytoremediation of swine wastewater. Microalgae are tolerant to high ammonia levels seen in swine wastewater and they also ensure phosphorus removal simultaneously. This review first gives a brief overview on the conventional methods used for swine wastewater treatment. Microalgae-based processes for the clean-up of swine wastewater are discussed in detail, with their potential advantages and limitations. Future research perspectives are also presented.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Adi Kusmayadi
- Department of Chemical and Material Engineering, Tunghai University, Taichung, Taiwan
| | - Hong-Wei Yen
- Department of Chemical and Material Engineering, Tunghai University, Taichung, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
36
|
Song T, Li S, Lu Y, Yan D, Sun P, Bao M, Li Y. Biodegradation of hydrolyzed polyacrylamide by a Bacillus megaterium strain SZK-5: Functional enzymes and antioxidant defense mechanism. CHEMOSPHERE 2019; 231:184-193. [PMID: 31129399 DOI: 10.1016/j.chemosphere.2019.05.143] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/27/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Hydrolyzed polyacrylamide (HPAM) is the most widely used water-soluble linear polymer with high molecular weight in polymer flooding. Microbiological degradation is an environment-friendly and effective method of treating HPAM-containing oilfield produced water. In this study, a strain SZK-5 that could degrade HPAM was isolated from soil contaminated by oilfield produced water. Based on morphological, biochemical characteristics and 16S rDNA sequence homology analysis, the strain was identified as Bacillus megaterium. The biodegradation capability of strain SZK-5 was determined by incubation in a mineral salt medium (MSM) containing HPAM under different environmental conditions, showing 55.93% of the HPAM removed after 7 d of incubation under the optimum conditions ((NH4)2SO4 = 1667.9 mg L-1, temperature = 24.05 °C and pH = 8.19). Cytochrome P450 (CYP) and urease (URE) played significant roles in biological carbon and nitrogen removal, respectively. The strain SZK-5 could resist the damages caused by oxidative stress given by crude oil and HPAM. To our knowledge, this is the first report about the biodegradation of HPAM by B. megaterium. These results suggest that strain SZK-5 might be a new auxiliary microbiological resource for the biodegradation of HPAM residue in wastewater and soil.
Collapse
Affiliation(s)
- Tianwen Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Shanshan Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yifeng Lu
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dong Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Peiyan Sun
- Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, 266033, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Yang Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; China Petrochemical Corporation (Sinopec Group), Beijing, 100728, China
| |
Collapse
|
37
|
Cheng DL, Ngo HH, Guo WS, Chang SW, Nguyen DD, Kumar SM. Microalgae biomass from swine wastewater and its conversion to bioenergy. BIORESOURCE TECHNOLOGY 2019; 275:109-122. [PMID: 30579101 DOI: 10.1016/j.biortech.2018.12.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/02/2018] [Accepted: 12/06/2018] [Indexed: 05/21/2023]
Abstract
Ever-increasing swine wastewater (SW) has become a serious environmental concern. High levels of nutrients and toxic contaminants in SW significantly impact on the ecosystem and public health. On the other hand, swine wastewater is considered as valuable water and nutrient source for microalgae cultivation. The potential for converting the nutrients from SW into valuable biomass and then generating bioenergy from it has drawn increasing attention. For this reason, this review comprehensively discussed the biomass production, SW treatment efficiencies, and bioenergy generation potentials through cultivating microalgae in SW. Microalgae species grow well in SW with large amounts of biomass being produced, despite the impact of various parameters (e.g., nutrients and toxicants levels, cultivation conditions, and bacteria in SW). Pollutants in SW can effectively be removed by harvesting microalgae from SW, and the harvested microalgae biomass elicits high potential for conversion to valuable bioenergy.
Collapse
Affiliation(s)
- D L Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - H H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| | - W S Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - S W Chang
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - D D Nguyen
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - S M Kumar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036, India
| |
Collapse
|
38
|
Jiang R, Wei Y, Sun J, Wang J, Zhao Z, Liu Y, Li X, Cao J. Degradation of cefradine in alga-containing water environment: a mechanism and kinetic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9184-9192. [PMID: 30715707 DOI: 10.1007/s11356-019-04279-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Large quantities of antibiotics are manufactured, used, and eventually discharged into alga-containing water environment as prototypes, by-products, or transformation products. Different activities of Chlamydomonas reinhardtii toward cefradine (CFD) were studied, and the results indicated that CFD is resistant (removal rate of 5.45-14.72%) in simulated natural water environment. Cefradine was mainly removed by hydrolysis, adsorption, desorption, photodecarboxylation, and photoisomerization. The effects of C. reinhardtii density, initial solution pH, and different light sources on CFD removal efficiency were investigated. The optimum conditions occurred at a density of algae 10 × 104 cells/mL, a solution pH of 9.0, and the ultraviolet (UV) light. Additionally, the removal kinetics under 16 different conditions was explored. The results showed that the removal of CFD fits well with a pseudo-first-order kinetic, and the half-life times are from 0.8 to 261.6 days. This study summarizes the CFD removal mechanisms in alga-containing water environment, highlights the important role played by light irradiation in eliminating CFD, and obtains the important kinetic data on CFD removal.
Collapse
Affiliation(s)
- Ruixue Jiang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Xikang Road No. 1, Nanjing, Jiangsu, 210098, People's Republic of China
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, 271018, People's Republic of China
| | - Yaru Wei
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, 271018, People's Republic of China
| | - Jiayu Sun
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, 271018, People's Republic of China
| | - Jiaqin Wang
- Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Zhilin Zhao
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, 271018, People's Republic of China
| | - Yifei Liu
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, 271018, People's Republic of China
| | - Xiaochen Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, 271018, People's Republic of China.
| | - Jiashun Cao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Xikang Road No. 1, Nanjing, Jiangsu, 210098, People's Republic of China.
| |
Collapse
|
39
|
Cao J, Jiang R, Wang J, Sun J, Feng Q, Zhao Z, Chen G, Zhou C, Yin E. Study on the interaction mechanism between cefradine and Chlamydomonas reinhardtii in water solutions under dark condition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:56-62. [PMID: 29730409 DOI: 10.1016/j.ecoenv.2018.04.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/13/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Our research investigated the hormesis effect of cefradine on the specific growth rates (μ) of single-celled algae (Chlamydomonas reinhardtii) from aqueous solutions. We found the specific growth rate of C. reinhardtii slightly increased with cefradine concentrations within the range 0.5-10 mg/L. Effects of algae density, initial solution pH, and temperature on the adsorption batch assays were investigated. The optimum conditions for cefradine adsorption occurred at a density of 5 × 106 algae cells/mL, a solution pH of 7.0, and a temperature of 25.0 °C. A Box-Behnken design was employed to evaluate correlations between influential factors and cefradine adsorption. The results showed a significant interaction between algae density and temperature. The maximum removal rate could reach 50.13% under the optimal conditions. Additionally, the adsorption mechanisms were explored through Langmuir and Freundlich isotherm equations, adsorption kinetics, and thermodynamics. The results suggested that the adsorption process was monolayer, spontaneous, and endothermic with an increase in randomness at the algae-solution interface, which followed a pseudo-second-order model. All the data indicated that the alga performed a better removal capacity in the antibiotic-containing wastewater treatment process. This study lays the groundwork for a better understanding of the interaction mechanism between cefradine and Chlamydomonas reinhardtii in water solutions under dark condition.
Collapse
Affiliation(s)
- Jiashun Cao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Ruixue Jiang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China; Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Jiaqin Wang
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, PR China
| | - Jiayu Sun
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qian Feng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Zhilin Zhao
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Guodong Chen
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Changren Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China; Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Erqin Yin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China; Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| |
Collapse
|