1
|
Jia Z, Zhang Y, Mo L. Influence of Ultrafine Fly Ash and Slag Powder on Microstructure and Properties of Magnesium Potassium Phosphate Cement Paste. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2556. [PMID: 38893820 PMCID: PMC11173768 DOI: 10.3390/ma17112556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
This study investigated the influences of ultrafine fly ash (UFA) and ultrafine slag powder (USL) on the compressive strengths, autogenous shrinkage, phase assemblage, and microstructure of magnesium potassium phosphate cement (MKPC). The findings indicate that the aluminosilicate fractions present in both ultrafine fly ash and ultrafine slag participate in the acid-base reaction of the MKPC system, resulting in a preferential formation of irregularly crystalline struvite-K incorporating Al and Si elements or amorphous aluminosilicate phosphate products. UFA addition mitigates early age autogenous shrinkage in MKPC-based materials, whereas USL exacerbates this shrinkage. In terms of the sustained mechanical strength development of the MKPC system, ultrafine fly ash is preferred over ultrafine slag powder. MKPC pastes with ultrafine fly ash show greater compressive strength compared to those with ultrafine slag powder at 180 days due to denser interfaces between the ultrafine fly ash particles and hydration products like struvite-K. The incorporation of 30 wt% ultrafine fly ash enhances compressive strengths across all testing ages.
Collapse
Affiliation(s)
- Zheng Jia
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (Z.J.); (Y.Z.)
| | - Yuhui Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (Z.J.); (Y.Z.)
| | - Liwu Mo
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China; (Z.J.); (Y.Z.)
- State Key Laboratory of Materials-Orientated Chemical Engineering, Nanjing 210009, China
| |
Collapse
|
2
|
Liu X, Zhou W, Feng L, Wu L, Lv J, Du W. Characteristics and Mechanisms of Phosphorous Adsorption by Peanut Shell-Derived Biochar Modified with Magnesium Chloride by Ultrasonic-Assisted Impregnation. ACS OMEGA 2022; 7:43102-43110. [PMID: 36467952 PMCID: PMC9713878 DOI: 10.1021/acsomega.2c05474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/03/2022] [Indexed: 06/05/2023]
Abstract
Recovery of phosphate (P) from sludge, domestic wastewater, and industrial wastewater is beneficial for overcoming the problem of shortage of P rock resources. In this study, Mg-functionalized peanut shell-derived biochar was prepared by ultrasound-assisted impregnation. The obtained Mg-laden biochar had a higher content of Mg, a larger specific surface area, and more porosity. The prepared Mg-modified biochar exhibited excellent adsorption properties of phosphorus. Modified biochar has a higher amount of adsorbed P than raw biochar. The capacity of P adsorption by modified biochar was 30.48-114.24% higher than that by raw biochar. Moreover, the Mg-laden biochar can be applied in a wide working environment (pH: 2-10; temperature range: 15-40 °C). This study not only develops a new strategy for the preparation of high-capacity P adsorbents but also provides a new green use for agricultural peanut shells.
Collapse
Affiliation(s)
- Xiaoqi Liu
- College
of Natural Resources and Environment, Northwest
A&F University, Yangling District, Xianyang712100, Shaanxi, China
| | - Wei Zhou
- College
of Natural Resources and Environment, Northwest
A&F University, Yangling District, Xianyang712100, Shaanxi, China
| | - Lei Feng
- College
of Resource and Environment, Xinjiang Agricultural
Universit, Urumqi830052, China
| | - Lulu Wu
- College
of Natural Resources and Environment, Northwest
A&F University, Yangling District, Xianyang712100, Shaanxi, China
| | - Jialong Lv
- College
of Natural Resources and Environment, Northwest
A&F University, Yangling District, Xianyang712100, Shaanxi, China
| | - Wei Du
- College
of Natural Resources and Environment, Northwest
A&F University, Yangling District, Xianyang712100, Shaanxi, China
| |
Collapse
|
3
|
Yue Y, Ren J, Yang K, Wang D, Qian J, Bai Y. Investigation and Optimisation of the Rheological Properties of Magnesium Potassium Phosphate Cement with Response Surface Methodology. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6815. [PMID: 36234160 PMCID: PMC9573288 DOI: 10.3390/ma15196815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Magnesium phosphate cement (MPC) is a promising alternative cement. However, the rheological property of this new binder is still to be explored. In this study, Response Surface Methodology (RSM) was adopted with Central Composite Design (CCD) to establish mathematical models describing the rheological characteristics of MPC in terms of initial mini slump (Y1), mini-slump loss (Y2), yield stress (Y3) and plastic viscosity (Y4), as a function of three independent variables, namely, water-to-solid ratio (W/S ratio, X1), MgO to MKP ratio (M/P ratio, X2) and borax dosage (X3). The results show that the M/P ratio and borax dosage could significantly affect the yield stress and mini-slump loss of MPC, while the W/S ratio was the significant coefficient influencing plastic viscosity and initial mini slump. The numerical optimised values of X1, X2 and X3 were 0.280, 7.528 and 0.170, respectively, and an MPC paste with desirable rheological characteristics (Y1 161.858 mm, Y2 11.282, Y3 0.680 Pa, Y4 0.263 Pa·s) with the highest desirability of 0.867 can be obtained.
Collapse
Affiliation(s)
- Yanfei Yue
- College of Materials Science and Engineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing 400044, China
| | - Jun Ren
- School of Architecture and Planning, Yunnan University, Kunming 650051, China
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Kai Yang
- College of Materials Science and Engineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing 400044, China
- School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Danqian Wang
- College of Materials Science and Engineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing 400044, China
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Jueshi Qian
- College of Materials Science and Engineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing 400044, China
| | - Yun Bai
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
4
|
Ji W, Yan S, Xie K, Yuan X, Wang Z, Li Y. A clean process for phosphorus recovery and gallium enrichment from phosphorus flue dust by sodium carbonate roasting. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127580. [PMID: 34736211 DOI: 10.1016/j.jhazmat.2021.127580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus flue dust (PFD) is a solid waste product from phosphorus (P) production that contains P and is enriched with gallium (Ga). The recovery of these valuable components not only protects the environment, but also reduces resource waste. This study aimed to develop a green and efficient method to recover P and enriched Ga from PFD. The effects of different parameters on the P leaching rate and Ga loss rate during Na2CO3 roasting and water leaching were investigated and optimized. The reaction mechanisms during the experiment were characterized, revealing that the P-containing compounds in PFD mainly transformed into water-soluble Na3PO4. Furthermore, the leaching rate of P reached 85.38%, while Ga was mainly concentrated in the residue and its loss rate was only about 1%. Ga content in the residue reached about 0.1%. An attempt was made to recover Na+ and PO43- from the aqueous solution by evaporative crystallization and XRD analysis showed that the main phase of the crystallization product was Na2HPO4. The proposed process is technically simple, only Na2CO3 is added and no hazardous substances are generated, and represents a new method for recovering P and enriching Ga from PFD.
Collapse
Affiliation(s)
- Wentao Ji
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Engineering Laboratory for Vacuum Metallurgy, Kunming 650093, Yunnan, China
| | - Shiyu Yan
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Engineering Laboratory for Vacuum Metallurgy, Kunming 650093, Yunnan, China
| | - Keqiang Xie
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Engineering Laboratory for Vacuum Metallurgy, Kunming 650093, Yunnan, China.
| | - Xiaolei Yuan
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Engineering Laboratory for Vacuum Metallurgy, Kunming 650093, Yunnan, China
| | - Zhixiang Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Engineering Laboratory for Vacuum Metallurgy, Kunming 650093, Yunnan, China
| | - Yang Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Engineering Laboratory for Vacuum Metallurgy, Kunming 650093, Yunnan, China
| |
Collapse
|
5
|
Zhang Q, Hogen T, Zhou K, Berendts S, Hu K, Zhang Y, Geißen SU. Dynamic and equilibrium precipitation of struvite from the concentrated cellulosic ethanol stillage. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3859-3870. [PMID: 34928848 DOI: 10.2166/wst.2021.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The phosphate rock mineral is the main source of P-fertilizer production. It is estimated to become depleted in next century. Thus, the recovery of phosphorus from waste streams has attracted great interest. The cellulosic ethanol production is seen as more and more important in future. During the production of cellulosic ethanol, the phosphorus element is released from lignocellulosic biomasses and ends up dissolved as phosphate ions in the stillage stream. In this study, the struvite (MgNH4PO4 · 6 H2O) recovery from the concentrated cellulosic ethanol stillage (ES) was conducted under room conditions with an initial pH at 7-9. The effect of Mg2+, PO43-, NH4+ and Ca2+ during struvite precipitation tests was investigated. The optimized pH value for struvite recovery is estimated at 8.5, by which 85% of PO43- and 46% of Mg2+ are removed from the liquid stream. The mass fraction of struvite in recovered crystal sample reaches 82 wt.%. The economic evaluation of struvite recovery from ES was also investigated. This work proves that the struvite is potentially to be recovered with high purity from the concentrated cellulosic ethanol stillage.
Collapse
Affiliation(s)
- Qiqi Zhang
- Environmental Process Engineering, Technical University of Berlin, Berlin 10623, Germany E-mail:
| | - Tobias Hogen
- Environmental Process Engineering, Technical University of Berlin, Berlin 10623, Germany E-mail:
| | - Kuangxin Zhou
- Berlin Centre of Competence for Water, Berlin 10709, Germany
| | - Stefan Berendts
- Solid State Chemistry, Technical University of Berlin, Berlin 10623, Germany
| | - Kang Hu
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Yongjun Zhang
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Sven-Uwe Geißen
- Environmental Process Engineering, Technical University of Berlin, Berlin 10623, Germany E-mail:
| |
Collapse
|
6
|
Zhang J, Xie M, Yang D, Tong X, Qu D, Feng L, Zhang L. The design of multi-stage open-loop hollow fiber membrane contactor and its application in ammonia capture from hydrolyzed human urine. WATER RESEARCH 2021; 207:117811. [PMID: 34763277 DOI: 10.1016/j.watres.2021.117811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Hollow fiber membrane contactor (HFMC) is a promising technology for removing or recovering wastewaters' volatile components. Developing a rational design method is very important for guiding its further application. In this study, we proposed a method to design the multi-stage open-loop hollow fiber membrane contactor (HFMC) employing shell-side influent. In addition, a three-stage HFMC was designed to capture ammonia from real hydrolyzed human urine. A continuous 1344 h performance was conducted. The results showed that the experimental effluent total ammonium nitrogen (TAN) concentration and ammonia mass transfer coefficient matched the predicted results well, which indicated that the design method was feasible and accurate. The three-stage HFMC showed excellent ammonia capture capacity with a TAN recovery efficiency of 93.29%, and the final effluent TAN concentration was 30.98±14.70 mg/L which met our design requirement (lower than 50 mg/L). More than 98.92% of the inorganic ions and 96.85% of the organic matter were retained in the effluent. The stripping solution after ammonia capture was the high-purity ammonium sulfate solution with low concentration of small molecular weight hydrophilic organic substances. The inorganic and organic membrane fouling was mild and randomly distributed. The inorganic membrane fouling was attributed to the deposition of calcium-, magnesium-, phosphate-related inorganic compounds, while the organic membrane fouling was mainly protein and carbohydrate. After the ammonia capture process, the surface hydrophobicity and pore properties of the membranes had no significant changes. These results demonstrated that the multi-stage open-loop HFMC could be a potential alternative for ammonia recovery from the high concentration of ammonium nitrogen wastewater.
Collapse
Affiliation(s)
- Junhui Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Mengfei Xie
- Jinan Environmental Research Academy, 25th Floor, Xinsheng Building, 1299 Xinluo Street, Lixia District, Jinan, Shandong, 250014, China
| | - Dandan Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Xin Tong
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, GA 30308, United States
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
7
|
Lavanya A, Ramesh SKT. Crystal seed-enhanced ammonia nitrogen and phosphate recovery from landfill leachate using struvite precipitation technique. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60569-60584. [PMID: 34156615 DOI: 10.1007/s11356-021-14950-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen and phosphorous are limiting and crucial elements for all living organisms. The recovery of nitrogen and phosphorous as struvite gained attention due to its ecofriendly fertilizer application. In the present study, feasible recovery of NH4+ -N available in the landfill leachate with addition of economically viable waste resources like sewage sludge and Mg2+ source as struvite is investigated. However, the fertilizer application of struvite depends upon its purity, which in turn is influenced by pH, molar ratio, and presence of other ions. Laboratory scale studies are conducted to find optimum pH and molar ratio. The results of the studies demonstrated the optimum pH being 9.5 along with PO43- -P: Mg2+: NH4+ -N molar ratio of 1:1.3:1 is the best condition for struvite formation. To further augment the struvite precipitation kaolinite seed is added to the solution and optimized seed dose is 20 g/L. Existence of Ca2+ and Na+ ions in the solution exhibits a negative impact on struvite precipitation. Response surface methodology is employed to understand the interactive influence of parameters on recovery efficiency. The recovered precipitate consists of 82.5% struvite with PO43- -P: Mg2+: NH4+ -N ratio 1:1.1:0.9. Also, bioavailability of PO43- -P in the recovered precipitate is 89.3%; this signifies high performance of precipitate as fertilizer. Economic assessment highlights that the struvite production is profitable and the profit gained is 159.5$/m3.
Collapse
Affiliation(s)
- Addagada Lavanya
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu, 620 015, India.
| | | |
Collapse
|
8
|
Yogev U, Vogler M, Nir O, Londong J, Gross A. Phosphorous recovery from a novel recirculating aquaculture system followed by its sustainable reuse as a fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137949. [PMID: 32208278 DOI: 10.1016/j.scitotenv.2020.137949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Phosphorus (P) is an essential element for life that is introduced through feed in modern aquaculture-the fastest growing food production sector. P can also be a source of environmental contamination and eutrophication if mistreated. Fish assimilate only 20-40% of the applied P; the rest is released into the water. The goals of this research were to study the fate of P in a novel intensive near-zero discharge (<1%) recirculating aquaculture system (RAS). We also tested means to recover and reuse the removed P. Water, sludge and the microbial communities in the different treatment units of the system were analyzed. The treated sludge was tested as a potential substitute for P fertilization in a planter experiment. Of the applied P, 29.5% was recovered by fish, 69.8% was found in the fish sludge and 3.8% was released into the water as soluble reactive P. The P concentration in the fish tank remained stable, likely due to its uptake by denitrifying polyphosphate-accumulating organisms and its precipitation in the RAS's anaerobic reactor. Thus, only 1.5% of the applied P was discharged as effluent, and 69% recovered. The dominant minerals were from the apatite group, followed by the struvite family. Differences in mineral abundance between thermodynamic prediction and actual findings were most probably due to biomineralization by bacteria. Similar plant biomass was recorded for the commercial and digested-sludge fertilization treatments. Biological P removal and recovery from RAS was successfully studied and demonstrated.
Collapse
Affiliation(s)
- Uri Yogev
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Maximilian Vogler
- Bauhaus-Universität Weimar, Bauhaus-Institute for Infrastructure Solutions, Coudraystr. 7, 99423 Weimar, Germany
| | - Oded Nir
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Jörg Londong
- Bauhaus-Universität Weimar, Bauhaus-Institute for Infrastructure Solutions, Coudraystr. 7, 99423 Weimar, Germany
| | - Amit Gross
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.
| |
Collapse
|
9
|
Shaddel S, Grini T, Ucar S, Azrague K, Andreassen JP, Østerhus SW. Struvite crystallization by using raw seawater: Improving economics and environmental footprint while maintaining phosphorus recovery and product quality. WATER RESEARCH 2020; 173:115572. [PMID: 32062222 DOI: 10.1016/j.watres.2020.115572] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Seawater, as an alternative magnesium source, has the potential to improve the overall economics and environmental footprint of struvite production compared to the use of pure magnesium salts. However, the dilution effect and the presence of other ions in seawater can reduce the phosphorus recovery potential and the simultaneous precipitation of other compounds may reduce the quality of the produced struvite. This work presents a comparative study of seawater and MgCl2 by performing a series of thermodynamic equilibrium modeling and crystallization experiments. The results revealed that acceptable phosphorus recovery (80-90%) is achievable by using seawater as the magnesium source for struvite precipitation. Further, the simultaneous precipitation of calcium phosphates was successfully controlled and minimized by optimum selection of reaction pH and seawater volume (i.e. Mg:P and Mg:Ca molar ratios). The increase of temperature from 20 °C to 30 °C reduced the phosphorus recovery by 15-20% while it increased the particle size by 30-35%. The presence of suspended solids in reject water did not have significant effects on phosphorus recovery but it made the struvite separation difficult as the obtained struvite was mixed with suspended solids. The experimental results and economic evaluation showed that the use of seawater can reduce the chemical costs (30-50%) and the CO2-footprint (8-40%) of struvite production. It was concluded that seawater is a potential alternative to pure magnesium sources in struvite production, while studies in larger scale and continuous mode are needed for further verification before full-scale applications.
Collapse
Affiliation(s)
- Sina Shaddel
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Tonje Grini
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Seniz Ucar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kamal Azrague
- SINTEF Community, Infrastructure Department, Water and Environment Group, Oslo, Norway
| | - Jens-Petter Andreassen
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Stein W Østerhus
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
10
|
Peng L, Dai H, Wu Y, Peng Y, Lu X. A comprehensive review of phosphorus recovery from wastewater by crystallization processes. CHEMOSPHERE 2018; 197:768-781. [PMID: 29407841 DOI: 10.1016/j.chemosphere.2018.01.098] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 06/07/2023]
Abstract
The presence of phosphorus (P) in discharged wastewater can lead to water pollution events and eutrophication. Given the increasing consumption of phosphate (PO43-) rocks, wastewater containing large quantities of P is deemed as a potential source of P recovery. Crystallization of P is an ideal way to recover P because of its simple design, ease of operation, high efficiency, and limited environmental impact. This paper provides a comprehensive review of P recovery by crystallization processes with respect to the mechanisms involved, operational parameters that influence the quality of the crystal, and available seed materials for inducing crystallization. Various operational parameters including pH, molar ratio of participating ions, mixing intensity, reactor type, and seeding conditions, were detailedly investigated. Different kinds of seeds were reviewed critically with regard to their principal properties, application, and long-term prospects. Crystallized products with a high P content can be used directly as slow-release fertilizers for agricultural production, and some test methods have been developed to determine their efficiency as a fertilizer and to evaluate their availability for plants. Further, the feasibility of P recovery by crystallization was evaluated in terms of economic benefits and environmental sustainability. This work serves as a basis for future research of P recovery by crystallization processes and responses to the increasingly stringent problems of eutrophication and the growing depletion of P resources.
Collapse
Affiliation(s)
- Lihong Peng
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China; ERC Taihu Lake Water Environment (Wuxi), No. 99 Linghu Road, Wuxi 214135, China.
| | - Hongliang Dai
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China; ERC Taihu Lake Water Environment (Wuxi), No. 99 Linghu Road, Wuxi 214135, China; School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
| | - Yifeng Wu
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China.
| | - Yonghong Peng
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China; ERC Taihu Lake Water Environment (Wuxi), No. 99 Linghu Road, Wuxi 214135, China.
| | - Xiwu Lu
- School of Energy and Environment, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China; ERC Taihu Lake Water Environment (Wuxi), No. 99 Linghu Road, Wuxi 214135, China.
| |
Collapse
|
11
|
Wang W, Ren X, Yang K, Hu Z, Yuan S. Inhibition of ammonia on anaerobic digestion of synthetic coal gasification wastewater and recovery using struvite precipitation. JOURNAL OF HAZARDOUS MATERIALS 2017; 340:152-159. [PMID: 28715738 DOI: 10.1016/j.jhazmat.2017.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/19/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
Coal gasification wastewater (CGW) contains very high concentrations of phenols and ammonia. However, the potential impact of ammonia on the anaerobic digestion of phenols remained unclear. Firstly, the methanogens and phenols degraders had a good tolerance up to 1gL-1 of total ammonia nitrogen (TAN), but the substrate utilization rate for phenol, and specific methanogenic activity of sludge were decreased by 89% and 67% at 5g TAN L-1, and 94% and 100% at 10g TAN L-1, respectively. Secondly, the optimum struvite crystallization conditions (pH=8.5, 10g TAN L-1, n(Mg2+):n(TAN):n(PO43-)=1:1:1) were obtained by the orthogonal tests. Thirdly, the removal efficiencies of chemical oxygen demand (COD) and phenols were recovered to around 82% and 66%, respectively in the upflow anaerobic sludge blanket reactor using the pretreatment of struvite precipitation at 10g TAN L-1 and 1g phenols L-1. Therefore, anaerobic digestion coupled with struvite precipitation was considered as an alternative way for CGW treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xuesong Ren
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kai Yang
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Shoujun Yuan
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
12
|
Shih YJ, Abarca RRM, de Luna MDG, Huang YH, Lu MC. Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions. CHEMOSPHERE 2017; 173:466-473. [PMID: 28135681 DOI: 10.1016/j.chemosphere.2017.01.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 11/11/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
The crystallization of struvite in fluidized-bed crystallizer (FBC) was performed to treat synthetic wastewaters that contain phosphorous. Under optimal conditions (pH 9.5, molar ratio Mg/N/P = 1.3/4/1, struvite seed dose (53-297 μm) = 30 g L-1, total flow rate = 12 ml min-1, reflux = 120 ml min-1), the removal of phosphate (PR) and the crystallization ratio (CR) were 95.8% and 93.5%, respectively. Based on a thermodynamic prediction, the supersaturation, which was obtained from the difference between the theoretical solubility and phosphate concentration, predominated the crystallization efficiency and the properties of the struvite pellets, such as their morphology, particle size and apparent density. Coexisting ions NO3- (80, 160 ppm), CH2COOH- (260, 520 ppm), F- (650, 1300 ppm) and SO42- (650, 1300 ppm), were utilized to prepare P-containing wastewaters. Of these ions, SO42- (1300 ppm) remarkably reduced the capability of FBC to remove phosphate from solution. In the presence of NO3- and CH3COO- (for synthesizing TFT-LCD wastewater), and F- and SO42- (for synthesizing semiconductor wastewater), CR% was lower than in pure water, although the ultimate PR% did not differ significantly.
Collapse
Affiliation(s)
- Yu-Jen Shih
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, 70101 Tainan City, Taiwan
| | - Ralf Ruffel M Abarca
- Department of Chemical Engineering and Technology, Mindanao State University-Iligan Institute of Technology, Tibanga, 9200 Iligan City, Philippines; Department of Chemical Engineering, University of the Philippines, 1101, Diliman, Quezon City, Philippines
| | - Mark Daniel G de Luna
- Department of Chemical Engineering, University of the Philippines, 1101, Diliman, Quezon City, Philippines
| | - Yao-Hui Huang
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, 70101 Tainan City, Taiwan
| | - Ming-Chun Lu
- Department of Environmental Resources Management, Chia-Nan University of Pharmacy and Science, No.60, Sec. 1, Erren Rd., Rende Dist., 71710 Tainan, Taiwan.
| |
Collapse
|
13
|
He ZW, Liu WZ, Wang L, Tang CC, Guo ZC, Yang CX, Wang AJ. Clarification of phosphorus fractions and phosphorus release enhancement mechanism related to pH during waste activated sludge treatment. BIORESOURCE TECHNOLOGY 2016; 222:217-225. [PMID: 27718404 DOI: 10.1016/j.biortech.2016.10.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/30/2016] [Accepted: 10/02/2016] [Indexed: 05/24/2023]
Abstract
This study aimed to clarify phosphorus (P) fractions in waste activated sludge (WAS) and explore release performance and enhancement mechanism of different P species related to pH. Results showed that inorganic P (IP) was the major P fraction in raw sludge (87.86% of total solid P), and non-apatite inorganic P (NAIP), the most labile P forms, occupied 81.30% of IP, suggesting that WAS could be selected as potential substitution of phosphate rock. The optimized acid and alkaline conditions were pH=4 and pH=12 for molybdate reactive P accumulation, increased by 311.20mg/L and 479.18mg/L compared to raw sludge, which were 3.80 and 5.84 times higher than that of control, respectively. The mechanism study demonstrated that high pH promoted NAIP release, and apatite P was sensitive to low pH. Moreover, the releasable and recoverable P depended on both fractions of different P species in sludge and pH adjustment for sludge treatment.
Collapse
Affiliation(s)
- Zhang-Wei He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), 202 Haihe Road, Harbin 150090, China
| | - Wen-Zong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Ling Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), 202 Haihe Road, Harbin 150090, China
| | - Cong-Cong Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), 202 Haihe Road, Harbin 150090, China
| | - Ze-Chong Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), 202 Haihe Road, Harbin 150090, China
| | - Chun-Xue Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), 202 Haihe Road, Harbin 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), 202 Haihe Road, Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China.
| |
Collapse
|