1
|
Cun D, Wang H, Jiang M, Lin R, Deng S, Chang J, Zhao Y, Duan C. Effective remediation of agricultural drainage at three influent strengths by bioaugmented constructed wetlands filled with mixture of iron‑carbon and organic solid substrates: Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174615. [PMID: 38997019 DOI: 10.1016/j.scitotenv.2024.174615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Agricultural drainage containing a large quantity of nutrients can cause quality deterioration and algal blooming of receiving water bodies, thus needs to be effectively remediated. In this study, iron‑carbon (FeC) composite-filled constructed wetlands (Fe-C-CWs) were employed to treat farmland drainage at three pollution levels, and organic solid substrates (walnut shells) and phosphate-accumulating denitrifying bacteria (Pseudomonas sp. DWP1) were supplemented to enhance the treatment performance. The results showed that the Fe-C-CWs exhibited notably superior removal efficiency for total nitrogen (TN, 52.0-58.2 %), total phosphorus (TP, 67.8-70.2 %) and chemical oxygen demand (COD, 56.7-70.4 %) than the control systems filled solely with gravel (28.5-32.5 % for TN, 33.2-40.5 % for TP and 30.2-55.0 % for COD) at all influent strengths, through driving autotrophic denitrification, Fe-based dephosphorization, and organic degradation processes. The addition of organic substrates and functional bacteria markedly enhanced pollutant removal in the Fe-C-CWs. Furthermore, use of FeC and organic substrates and denitrifier inoculation decreased CO2 and CH4 emissions from the CWs, and reduced global warming potential of the CWs at low influent strength. Pollutant removal efficiencies in the CWs were only marginally impacted by the increasing influent loads except for NO3--N, and pollutant removal mass was largely increased with the increase of influent strengths. The microbial community in the FeC composite-filled CWs exhibited distinct distribution patterns compared to the gravel-filled CWs regardless of the influent strengths, with obviously higher proportions of dominant genera Trichococcus, Geobacter and Ferritrophicum. Keystone taxa associated with pollutant removal in the Fe-C-filled CWs were identified to be Pseudomonas, Geobacter, Ferritrophicum, Denitratisoma and Sediminibacterium. The developed augmented Fe-C-filled CWs show great promises for remediating agricultural drainage with varied pollutant loads.
Collapse
Affiliation(s)
- Deshou Cun
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming 650091, China
| | - Haoyu Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Ming Jiang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Nanjing Academy of Water Sciences Ruidi Technology Group Co., Ltd, Nanjing 210009, China
| | - Rufeng Lin
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Shengjiong Deng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Junjun Chang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming 650091, China.
| | - Yonggui Zhao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming 650091, China
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming 650091, China.
| |
Collapse
|
2
|
Wang Y, Zhang Z, Lin L, Xing G, Jiang Y, Cao W, Zhang Y. Interspecies electron transfer and microbial interactions in a novel Fe(II)-mediated anammox coupled mixotrophic denitrification system. BIORESOURCE TECHNOLOGY 2024; 403:130852. [PMID: 38761867 DOI: 10.1016/j.biortech.2024.130852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
This study effectively coupled anammox and mixotrophic denitrification at a high nitrogen load rate of 6.84 g N/L/d with 40 mg/L Fe(II). Fe(II) enhanced the activity of nitrate reductase, nitrite reductase, and hydrazine dehydrogenase enzymes, facilitating accelerated ATP synthesis. Through electrochemical experiments, interspecies electron transfer processes in coupled system were explored. Fe(II) promoted flavin mononucleotide secretion, enhancing electron-donating and electron-accepting capacity by 2.8 and 1.3 times, respectively. Fe(II) triggered the enrichment of autotrophic denitrifying bacteria (Azospira and Hydrogenophaga), transitioning from single organic nutrient to mixotrophic denitrification. Meanwhile, Fe(II) increased Candidatus_Kuenenia abundance from 35.2 % to 49.0 %, establishing the competitive advantage of anammox bacteria over completed denitrifying bacteria (Comamonas). The synergistic interactions between anammox and various denitrification pathways achieved a nitrogen removal rate of 5.88 g N/L/d, with anammox contribution rate of 88.3 %. This study provides insights into broadening the application of partial denitrification /anammox and electron transfer in multi-bacterial coupling systems.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Zikun Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Lan Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Guowei Xing
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yushi Jiang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yanlong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; Fujian Institute for Sustainable Oceans, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
3
|
Xie H, Zhao W, Li J, Li J. Degradation of different wastewater by a biological sponge iron system: microbial growth and influencing factors. RSC Adv 2024; 14:17318-17325. [PMID: 38813119 PMCID: PMC11134168 DOI: 10.1039/d4ra02696a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
The bio-ZVI process has undergone widespread development in wastewater treatment in recent years. However, there has been limited examination of the growth and degradation characteristics of functional microorganisms within the system. In the present research, strains were isolated and identified from the bio-ZVI system constructed by sponge iron (encoded as SFe-M). The consistency of operating conditions in treating different wastewater was explored. Three SFe-acclimated microorganisms exhibiting characteristics of degrading organic pollutants and participating in the nitrogen removal process were isolated. The adaptation time of these microorganisms prolonged as the substrate toxicity increased, while the pollutant degradation was related to their metabolic rate in the logarithmic phase. All these functional bacteria exhibited the ability to treat wastewater in a wide pH range (5-8). However, the improper temperature (such as 10 °C and 40 °C) significantly inhibited their growth, and the optimal working temperature was identified as 30 °C. The iron dosage had a significant impact on these function bacteria, ranging from 1 g L-1 to 150 g L-1. It was inferred that the SFe-acclimated microorganisms are capable of resisting the poison of excessive iron, that is, they all have strong adaptability. The results provide compelling evidence for further understanding of the degradation mechanism involved in the bio-ZVI process.
Collapse
Affiliation(s)
- Huina Xie
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Wei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Jing Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Jie Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| |
Collapse
|
4
|
Wan Q, Li X, Wang F, Yang G, Ju K, Jing H, Li K, He P, Zhang X. Study on the transformation of nitrate nitrogen by manganese-catalyzed iron-carbon micro-electrolysis and microbial coupling. RSC Adv 2024; 14:10905-10919. [PMID: 38577425 PMCID: PMC10993045 DOI: 10.1039/d4ra00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
Nitrate-nitrogen pertains to the nitrogen component of the overall nitrate present in a given sample in order to reduce nitrate nitrogen pollution in water, nitrate nitrogen removal methods based on iron-carbon micro-electrolysis have become a key research focus. The process and mechanism of nitrate nitrogen removal by microbial coupling was comprehensively explored in a novel iron-carbon micro-electrolysis (ICME) system. In order to establish the transformation pathway of nitrate nitrogen in water, the transformation paths of nitrate nitrogen in water before and after coupling microorganisms in three groups of continuous flow reaction devices, namely sponge iron (s-Fe0), sponge iron + biochar (s-Fe0/BC) and sponge iron + biochar + manganese sand (s-Fe0/BC/MS), were studied. The morphology and composition changes of sponge iron were analyzed by means of characterization, and the microbial population changes in the three groups were analyzed by high-throughput sequencing. Results showed that the nitrate conversion rate in the s-Fe0, s-Fe0/BC and s-Fe0/BC/MS systems reached 99.48%, 99.57% and 99.36%, respectively, with corresponding ammonia nitrogen generation, rates of 3.77%, 9.34% and 11.24% and nitrogen generation rates of 95.71%, 90.23% and 88.12%. Scanning electron microscopy imaging showed that in the s-Fe0/BC and s-Fe0/BC/MS systems the surface of sponge iron was highly corroded, with granular substances in the corrosion product clusters. X-ray photoelectron spectroscopy analysis found that the relative contents of Fe2O3 in the surface oxides of sponge iron after microbial coupling were 38.02% and 71.27% in the s-Fe0/BC and s-Fe0/BC/MS systems, while the relative Fe3O4 contents were 61.98% and 28.72%, respectively. Microbial high-throughput sequencing analysis revealed that the Chao and Ace index values in the s-Fe0 system were 871.89 and 880.78, while in the s-Fe0/BC system they were 1012.05 and 1017.29, and in the s-Fe0/BC/MS system were 1241.09 and 1198.29, respectively. The relative proportion of Thauera in the s-Fe0, s-Fe0/BC, and s-Fe0/BC/MS systems was 16.76%,14.25% and 10.01%, while the proportion of Acetoanaerobium was 15.36%, 13.27% and 11.11%, and the proportion of Chloroflexi was 0%, 1.11% and 2.18%, respectively. Furthermore, FAPROTAX function annotation found that the expression levels of chemoheterotrophs in the s-Fe0, s-Fe0/BC and s-Fe0/BC/MS systems were 43 316 OTU, 37 289 OTU and 34 205 OTU, while nitrate respiration expression levels were 16 230 OTU, 15 483 OTU and 9149 OTU, with nitrogen respiration expression levels of 16 328 OTU, 15 493 OTU and 9154 OTU, respectively. These findings suggest that nitrate is converted into nitrogen gas and ammonia nitrogen through the actions of the coupled system of sponge iron/biochar/manganese sand and microorganisms. The catalytic effect of MnO2 promotes the conversion of Fe2+ to Fe3+, generating more electrons, allowing denitrifying bacteria to reduce more nitrate nitrogen, effectively coupling the manganese-catalyzed ICME reaction and microbial denitrification. The micro-electrolysis system and the addition of manganese sand enhanced biodiversity within the s-Fe0/BC/MS system. The heterotrophic bacteria Thauera and Acetoanaerobium were the dominant microorganisms in all three systems, although the micro-electrolysis system with added manganese sand significantly reduced the proportion of facultative bacteria Thauera and Acetoanaerobium and promoted the growth of autotrophic Chloroflexi bacteria. The ecological functions of the three systems were mainly nitrate respiration and nitrogen respiration. By comparing the expression levels of nitrate respiration and nitrogen respiration in s-Fe0/BC and s-Fe0/BC/MS systems, it can be seen that the addition of manganese sand reduced microbial activity.
Collapse
Affiliation(s)
- Qiong Wan
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Xiayin Li
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Feng Wang
- Shaanxi Water Group Water Ecology Comprehensive Development Co., Ltd 2206 Hongqi Road, Weiyang District Xi'an 710018 China
| | - Guohong Yang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Kai Ju
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Hongbin Jing
- Shaanxi Water Group Water Ecology Comprehensive Development Co., Ltd 2206 Hongqi Road, Weiyang District Xi'an 710018 China
| | - Kun Li
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Peng He
- Shaanxi Water Group Water Ecology Comprehensive Development Co., Ltd 2206 Hongqi Road, Weiyang District Xi'an 710018 China
| | - Xinyan Zhang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| |
Collapse
|
5
|
Gao Y, Shen J, Yinzhang H, Yang L. Performance and microbial response to nitrate nitrogen removal from simulated groundwater by electrode biofilm reactor with Ti/CNT/Cu5-Pd5 catalytic cathode. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10974. [PMID: 38214427 DOI: 10.1002/wer.10974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024]
Abstract
To enhance the removal of nitrate nitrogen (NO3 - -N) in groundwater with a low C/N ratio, electrocatalytic reduction of NO3 - -N has received extensive attention since its electrons can be directly produced in situ while simultaneously providing a clean electronic donor of hydrogen for denitrifying bacteria. In this study, Ti/CNT/CuPd bimetallic catalytic electrodes with different copper-palladium (CuPd) ratios were prepared by electrodeposition onto carbon nanotube (CNT) using titanium (Ti) plates. The results showed that the NO3 - -N conversion rate by Ti/CNT/Cu5-Pd5 electrode was the highest (53.60%) compared with other CuPd electrode ratios because of the combined role of the copper's high NO3 - -N catalytic activity and the palladium's high N2 selectivity. A new type of electrode biofilm reactor (EBR) with Ti/CNT/Cu5-Pd5 cathode, biochar substrate was constructed to explore the removal ability of NO3 - -N in simulated low C/N groundwater. When the influent NO3 - -N concentration was 30 mg/L, under the condition of a 30 mA electronic current and hydraulic retention time (HRT) of 12 h, the removal rate of NO3 - -N could reach as high as 78.1 ± 1.2%, and the N2 conversion rate was 99.7%. The horizontal distribution of microbial communities in EBR showed that the denitrification capacity was significantly improved through the electrochemical catalytic reduction of the Ti/CNT/Cu5-Pd5 cathode and the supply of the hydrogen electron donor to autotrophic denitrogenerating microbes such as Anaerobacillus, Thauera, and Hydrophaga. This study provides a new bimetallic catalytic cathode to enhance the removal of NO3 - -N in groundwater with a low C/N ratio. PRACTITIONER POINTS: The Cu5Pd5/CNTs/Ti electrode is beneficial to the adsorption and reduction of NO3 - -N to N2 . The production of hydrogen electron donors by cathode promoted nitrogen degradation. Activated electrodes together with denitrifying microorganisms contributed to the improved N removal rate.
Collapse
Affiliation(s)
- Yan Gao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, P. R. China
| | - Jianing Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Hongyu Yinzhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
6
|
Wu H, Li A, Gao S, Xing Z, Zhao P. The performance, mechanism and greenhouse gas emission potential of nitrogen removal technology for low carbon source wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166491. [PMID: 37633391 DOI: 10.1016/j.scitotenv.2023.166491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
Excessive nitrogen can lead to eutrophication of water bodies. However, the removal of nitrogen from low carbon source wastewater has always been challenging due to the limited availability of carbon sources as electron donors. Biological nitrogen removal technology can be classified into three categories: heterotrophic biological technology (HBT) that utilizes organic matter as electron donors, autotrophic biological technology (ABT) that relies on inorganic electrons as electron donors, and heterotrophic-autotrophic coupling technology (CBT) that combines multiple electron donors. This work reviews the research progress, microbial mechanism, greenhouse gas emission potential, and challenges of the three technologies. In summary, compared to HBT and ABT, CBT shows greater application potential, although pilot-scale implementation is yet to be achieved. The composition of nitrogen removal microorganisms is different, mainly driven by electron donors. ABT and CBT exhibit the lowest potential for greenhouse gas emissions compared to HBT. N2O, CH4, and CO2 emissions can be controlled by optimizing conditions and adding constructed wetlands. Furthermore, these technologies need further improvement to meet increasingly stringent emission standards and address emerging pollutants. Common measures include bioaugmentation in HBT, the development of novel materials to promote mass transfer efficiency of ABT, and the construction of BES-enhanced multi-electron donor systems to achieve pollutant prevention and removal. This work serves as a valuable reference for the development of clean and sustainable low carbon source wastewater treatment technology, as well as for addressing the challenges posed by global warming.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
7
|
Ding C, Chen LB, Yu LP, Wang R, Yuan LJ, Wang L, Deng LW. Applying sheet iron to enhance the treatment efficiency of digested effluent with continuous flow and the corresponding mechanism. CHEMOSPHERE 2023; 340:139912. [PMID: 37611761 DOI: 10.1016/j.chemosphere.2023.139912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/25/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Because of the unstable wastewater quantity and quality, the biological treatment efficiency of digested effluent was not as expected. A convenient and effective way was eagerly required to improve the efficiency of biological treatment. By sheet iron addition (R1), the COD and TN removal efficiencies under continuous flow condition increased by 59% and 37% respectively. The bulk pH maintained at around 7.5 which benefited most bacteria, while in the control (R0, without sheet iron addition) the pH decreased to 5.0. Both chemical and bio-removal of COD existed in R1, but the chemical removal dominated (63.71%). The enhanced COD removal efficiency came from the chemical oxidation by Fe3+ (47.43%) and Fe0 (10.86%). For the TN removal, the enhancement mainly came from the improvement of anammox activity by Fe3+ (14.87%), the bio-oxidation of ammonium with Fe3+ as electron acceptor (8.78%), and the bio-reduction of nitrate/nitrite with Fe2+ and H2 as electron donor (35.76%). By the first-order kinetic fitting analysis, the COD and TN removal rate in R1 was higher than that in R0. Thus, for a quick and high COD and TN removal from digested effluent, the addition of Fe0/Fe2+/Fe3+ was suggested, and the best form should be Fe0 (e.g., sheet iron). The addition of sheet iron reduces the cost of nitrogen removal and improves the efficiency of COD and TN removal. Comparing with the combined processes, this novel approach has potential advantages with simple operation and high efficiency. It endows the biological process much broader application in digested effluent treatment.
Collapse
Affiliation(s)
- Cong Ding
- Department of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Li-Bin Chen
- Shaanxi Land Engineering Construction Group Co. Ltd., Xi'an, 710075, PR China.
| | - Li-Ping Yu
- Shuifa Technology Group Co. Ltp, Jinan, 250000, PR China.
| | - Ru Wang
- Department of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Lin-Jiang Yuan
- Department of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Lan Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China.
| | - Liang-Wei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China.
| |
Collapse
|
8
|
Li W, Gao M, Wang H, Hou Y, Chen Y, Wang Y, Gao Y. Enhanced biological phosphorus removal in low-temperature sewage with iron-carbon SBR system. ENVIRONMENTAL TECHNOLOGY 2023; 44:3018-3032. [PMID: 35244523 DOI: 10.1080/09593330.2022.2049889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
This study proposed an AO-SBR (Anaerobic Aerobic Sequencing Batch Reactor) combined with iron-carbon micro-electrolysis (ICME) particles system for sewage treatment at low temperature and explored the dephosphorisation mechanism and microbial community structure. The experimental results illustrated that ICME particles contributed to phosphorus removal, metabolic mechanism of poly-phosphorus accumulating organism (PAO) and microbial community structure in the AO-SBR system. The optimal treatment effect was achieved under the conditions of pH 7, DO 3.0 mg/L and particle dosage of 2.6 g Fe-C/g MLSS, and the removal rates of COD, TP, NH4+-N and TN reached 80.56%, 91.46%, 69.42% and 57.57%. The proportion of phosphorus accumulating organisms (PAOs) increased from 4.54% in the SBR system to 10.89% in the ICME-SBR system at 10°C. Additionally, the metabolic rate of PAOs was promoted, and the activities of DHA and ETS both reached the maximum value of 13.34 and 102.88 μg·mg-1VSS·h-1. These results suggest that the ICME particles could improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading the performance of sewage treatment in the cold area.
Collapse
Affiliation(s)
- Wei Li
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Mingjie Gao
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
- Liaoning Urban and Rural Construction Planning Design Institute Co., LTD., Shenyang, People's Republic of China
| | - He Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Yunhe Hou
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Yiming Chen
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Yuqi Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, People's Republic of China
| | - Yunan Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, People's Republic of China
| |
Collapse
|
9
|
Deng S, Wang C, Ngo HH, Guo W, You N, Tang H, Yu H, Tang L, Han J. Comparative review on microbial electrochemical technologies for resource recovery from wastewater towards circular economy and carbon neutrality. BIORESOURCE TECHNOLOGY 2023; 376:128906. [PMID: 36933575 DOI: 10.1016/j.biortech.2023.128906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Newly arising concepts such as the circular economy and carbon neutrality motivate resource recovery from wastewater. This paper reviews and discusses state-of-the-art microbial electrochemical technologies (METs), specifically microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial recycling cells (MRCs), which enable energy generation and nutrient recovery from wastewater. Mechanisms, key factors, applications, and limitations are compared and discussed. METs are effective in energy conversion, demonstrating advantages, drawbacks and future potential as specific scenarios. MECs and MRCs exhibited greater potential for simultaneous nutrient recovery, and MRCs offer the best scaling-up potential and efficient mineral recovery. Research on METs should be more concerned with lifespan of materials, secondary pollutants reduction and scaled-up benchmark systems. More up-scaled application cases are expected for cost structures comparison and life cycle assessment of METs. This review could direct the follow-up research, development and successful implementation of METs for resource recovery from wastewater.
Collapse
Affiliation(s)
- Shihai Deng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chaoqi Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Na You
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Hao Tang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hongbin Yu
- Southern Branch of China National Gold Engineering Corporation, Guangzhou 440112, PR China
| | - Long Tang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
10
|
Hua W, Hu W, Chen Q, Fan C, Jiang S, Zhao M, Wang Z, Zheng X, Wu S, Zeng Q, Zhong C. Identification of microbial consortia for sustainable disposal of constructed wetland reed litter wastes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58019-58029. [PMID: 36973628 DOI: 10.1007/s11356-023-26649-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Reed is a typical emerged plant in constructed wetlands (CWs). Its litters were used as raw materials for preparing Fe-C ceramic-filler (Fe-C-CF). The physical and chemical properties of Fe-C-CF were studied under different conditions, including the mass ration of Fe to carbon (Fe/C ratio), sintering temperature, and time, to determine the optimum preparing conditions. Meanwhile, the denitrification performance and CO2 emission flux of the surface flow constructed wetland (SFCW) systems were investigated when using Fe-C-CF as the matrix. The optimum preparing conditions for Fe-C-CF were Fe/C ratio of 1:1, sintering temperature and time of 500 °C and 20 min, respectively. The SFCW system with Fe-C-CF obtained a higher total nitrogen (TN), nitrate nitrogen (NO3--N), and ammonia nitrogen (NH3-N) removal efficiencies than the control SFCW system without Fe-C-CF. Compared with the heterotrophic denitrification process, the SFCW system with Fe-C-CF decreased CO2 emission by 67.9 g m-2 per year. The results of microbial community analysis indicated that addition of Fe-C-CF increased the diversity and abundance of microbial communities in the SFCW systems. The dominant genus of the SFCW system with Fe-C-CF was Bacillus, while Uliginosibacterium was the dominant genus in the system without the filler.
Collapse
Affiliation(s)
- Wanting Hua
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Wenqian Hu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Qi Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Chunzhen Fan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Shunfeng Jiang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Zhiquan Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Suqing Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, People's Republic of China.
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, People's Republic of China.
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, People's Republic of China.
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Chunjie Zhong
- Wenzhou Drainage Co., Ltd, Wenzhou, Zhejiang, 325000, People's Republic of China
| |
Collapse
|
11
|
Ahmed SM, Rind S, Rani K. Systematic review: External carbon source for biological denitrification for wastewater. Biotechnol Bioeng 2023; 120:642-658. [PMID: 36420631 DOI: 10.1002/bit.28293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/29/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Nitrogen mitigation is serious environmental issue around the globe. Several methods for wastewater treatment have been introduced, but biological denitrification has been recommended, particularly with addition of the best external carbon source. The key sites of denitrification are wetlands; it can be carried out with different methods. To highlight the aforementioned technology, this paper deals to review the literature to evaluate biological denitrification and to demonstrate cost effective external carbon sources. The results of systematic review disclose the denitrification process and addition of different external carbon sources. The online literature exploration was accomplished using the most well-known databases, that is, science direct and the web of science database, resulting 625 review articles and 3084 research articles, published in peer-reviewed journals between 2015 and 2021 were identified in first process. After doing an in-depth literature survey and exclusion criteria, we started to shape the review from selected review and research articles. A number of studies confirmed that both nitrification and denitrification are significant for biological treatment of wastewater. The studies proved that the carbon source is the main contributor and is a booster for the denitrification. Based on the literature reviewed it is concluded that biological denitrification with addition of external carbon source is cost effective and best option in nitrogen mitigation in a changing world. Our study recommends textile waste for recovery of carbon source.
Collapse
Affiliation(s)
- Sanjrani Manzoor Ahmed
- College of Environmental Science and Engineering, Donghua University, Shanghai, China.,HANDS-Institute of Development Studies, Karachi, Pakistan
| | - Saeeda Rind
- Department of Chemistry, University of Sindh Jamshoro, Jamshoro, Pakistan
| | - Keenjhar Rani
- Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| |
Collapse
|
12
|
Zhang J, Fan C, Zhao M, Wang Z, Jiang S, Jin Z, Bei K, Zheng X, Wu S, Lin P, Miu H. A comprehensive review on mixotrophic denitrification processes for biological nitrogen removal. CHEMOSPHERE 2023; 313:137474. [PMID: 36493890 DOI: 10.1016/j.chemosphere.2022.137474] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Biological denitrification is the most widely used method for nitrogen removal in water treatment. Compared with heterotrophic and autotrophic denitrification, mixotrophic denitrification is later studied and used. Because mixotrophic denitrification can overcome some shortcomings of heterotrophic and autotrophic denitrification, such as a high carbon source demand for heterotrophic denitrification and a long start-up time for autotrophic denitrification. It has attracted extensive attention of researchers and is increasingly used in biological nitrogen removal processes. However, so far, a comprehensive review is lacking. This paper aims to review the current research status of mixotrophic denitrification and provide guidance for future research in this field. It is shown that mixotrophic denitrification processes can be divided into three main kinds based on different kinds of electron donors, mainly including sulfur-, hydrogen-, and iron-based reducing substances. Among them, sulfur-based mixotrophic denitrification is the most widely studied. The most concerned influencing factors of mixotrophic denitrification processes are hydraulic retention times (HRT) and ratio of chemical oxygen demand (COD) to total inorganic nitrogen (C/N). The dominant functional bacteria of sulfur-based mixotrophic denitrification system are Thiobacillus, Azoarcus, Pseudomonas, and Thauera. At present, mixotrophic denitrification processes are mainly applied for nitrogen removal in drinking water, groundwater, and wastewater treatment. Finally, challenges and future research directions are discussed.
Collapse
Affiliation(s)
- Jintao Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Chunzhen Fan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Zhiquan Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Shunfeng Jiang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Zhan Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Ke Bei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China.
| | - Suqing Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou, Zhejiang, 325035, PR China; Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, Zhejiang, 325035, PR China.
| | - Ping Lin
- Wenzhou Drainage Co., Ltd, Wenzhou, Zhejiang, 325000, PR China
| | - Huanyi Miu
- Wenzhou Ecological Park Development and Construction Investment Group Co., Ltd, Wenzhou, Zhejiang, 325000, PR China
| |
Collapse
|
13
|
Liu Y, Feng L, Liu Y, Zhang L. A novel constructed wetland based on iron carbon substrates: performance optimization and mechanisms of simultaneous removal of nitrogen and phosphorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23035-23046. [PMID: 36319923 DOI: 10.1007/s11356-022-23754-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
In recent years, the combination of iron carbon micro-electrolysis (ICME) with constructed wetlands (CWs) for removal of nitrogen and phosphorus has attracted more and more attention. However, the removal mechanisms by CWs with iron carbon (Fe-C) substrates are still unclear. In this study, the Fe-C based CW (CW-A) was established to improve the removal efficiencies of nitrogen and phosphorus by optimizing the operating conditions. And the removal mechanisms of nitrogen and phosphorus were explored. The results shown that the removal rates of COD, NH4+-N, NO3--N, TN, and TP in CW-A could reach up to 84.4%, 94.0%, 81.1%, 86.6%, and 84.3%, respectively. Wetland plants and intermittent aeration have dominant effects on the removal of NH4+-N, while the removal efficiencies of NO3--N, TN, and TP were mainly affected by Fe-C substrates, wetland plants, and HRT. XPS analysis revealed that Fe(0)/Fe2+ and their valence transformation played important roles on the pollutants removal. High-throughput sequencing results showed that Fe-C substrates and wetland plants had considerable impacts on the microbial community structures, such as richness and diversity of microorganism. The relative abundance of autotrophic denitrification bacteria (e.g., Denitatsoma, Thauera, and Sulfuritalea) increased in CW-A than CW-C. The electrons and H2/[H] produced from Fe-C substrates were utilized by autotrophic denitrification bacteria for NO3--N reduction. Microbial degradation was the main removal mechanism of nitrogen in CW-A. Removal efficiency of phosphorus was enhanced resulted from the reaction of phosphate with iron ion. The application of CWs with Fe-C substrates and plants presented great potential for simultaneous removal of nitrogen and phosphorus.
Collapse
Affiliation(s)
- Yashun Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
14
|
Chen S, Zhou B, Chen H, Yuan R. Iron mediated autotrophic denitrification for low C/N ratio wastewater: A review. ENVIRONMENTAL RESEARCH 2023; 216:114687. [PMID: 36356669 DOI: 10.1016/j.envres.2022.114687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In recent years, iron mediated autotrophic denitrification has been a concern because it overcomes the absence of organic carbon and has been successfully used in denitrification for low C/N ratio wastewater. However, there is currently a lack of a more systematic summary of iron-based materials that can be used for denitrification, and no detailed overview about the mechanism of iron mediated autotrophic denitrification has been reported. In this study, the iron materials with different valence states that can be used for denitrification were summarized, and emphasized, as well as the mechanism in different interaction systems were emphasize. In addition, the contribution of various microorganisms in nitrate reduction were analyzed and the effects of operating conditions and water quality were evaluated. Finally, the challenges and shortcomings of the denitrification process were discussed aiming to find better practical engineering applications of iron-based denitrification.
Collapse
Affiliation(s)
- Shaoting Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
15
|
Liu W, Li T, Wang J, Shen Y, Ji X, Yang D. A new concept of waste iron recycling for the enhancement of the anammox process. CHEMOSPHERE 2022; 307:136151. [PMID: 36028122 DOI: 10.1016/j.chemosphere.2022.136151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
As a by-product of industry, waste iron scraps (WIS) are low-cost and widely available, which was potential for the development of iron-assisted anammox. In this study, the feasibility of adding WIS to enhance the nitrogen removal of the anammox process (also called WIS-assisted anammox) was demonstrated. Results indicated that the WIS-assisted anammox reactors performed a 15-35% higher nitrogen removal efficiency than that of the control. Compared to the sludge from the control, the sludge from the WIS-assisted anammox reactors had a higher iron content (78-113 g kg-1 SS) and a better specific anammox activity (10.8-15.5 mg N g-1 VSS h-1). The enhanced growth of the anammox bacteria (related to Ca. Kuenenia stuttgartiensis with 99% similarity) in the WIS-assisted anammox reactors was also confirmed by high-throughput sequencing and qPCR. Furthermore, the functional genes predicted by PICRUSt2 revealed a higher level of hydroxylamine oxidoreductase (hao)-like proteins expression of the biomass from the WIS-assisted anammox reactors, implying that the hydroxylamine-related anammox pathway was promoted. Additionally, the observation of cytoplasmic nitrate reductase (narG), copper-containing nitrite reductase (nirK), and nitric oxide reductase (norB) suggested that the introduction of WIS might promote the denitrification ability. This was correlated to the lower ΔNO3-/ΔNH4+ ratio observed in these WIS-assisted anammox reactors. Overall, the WIS-assisted anammox offers a sustainable nitrogen removal process for wastewater treatment with waste iron recycling.
Collapse
Affiliation(s)
- Wenru Liu
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Tianhao Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jianfang Wang
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yaoliang Shen
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| |
Collapse
|
16
|
Zhang G, Ren R, Li L, Zhu Y, Miao J, Li Y, Meng S. Positive and negative effects of nanoscale zero-valent iron-enriched biochar on sulfamethoxazole remediation in contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114133. [PMID: 36201916 DOI: 10.1016/j.ecoenv.2022.114133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
This study prepared surface-modified biochar, including acid washing biochar (HBC) and biochar supported with nanoscale zero-valent iron (nZVI-HBC). The surface-modified biochar was added to sulfamethoxazole (SMX)-contaminated soil with and without earthworms to examine the effects of surface-modified biochar and/or earthworms (Eisenia fetida) on the levels of SMX and its relevant genes (sul1, sul2, and intI1) in the soil. Additionally, the joint toxicity of these exogenous substances on earthworms was investigated. The results showed that although earthworms significantly enhanced the dissipation of SMX in the soils with and without HBC, this effect was not observed in the soil with nZVI-HBC. Among all treatments, nZVI-HBC most effectively accelerated SMX dissipation in the soil, regardless of coexisting earthworms. However, the presence of earthworms significantly increased the total relative abundances of sul1, sul2, and intI1 in the soil. A reasonable explanation for this is the shift in the bacterial community composition rather than the residual level of SMX. When earthworms coexisted, the richness of Proteobacteria evidently increased, which was the main host of the above genes. Both HBC and nZVI-HBC decreased these genes in the soil with earthworms, which was mainly due to the decrease in host genera from Proteobacteria, Actinobacteria, and Gemmatimonadetes. Although there was toxicity of single-surface-modified biochar or SMX on earthworms, the synergistic interaction of surface-modified biochar and SMX resulted in the most serious histopathological changes in earthworms and their highest superoxide dismutase activity.
Collapse
Affiliation(s)
- Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Rui Ren
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Lingzhi Li
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Yuen Zhu
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China.
| | - Jiarui Miao
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Yuanyuan Li
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Shuhui Meng
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| |
Collapse
|
17
|
Enhanced phosphate removal by coral reef-like flocs: Coagulation performance and mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Yuan Y, Liu J, Gao B, Sillanpää M, Al-Farraj S. The effect of activated sludge treatment and catalytic ozonation on high concentration of ammonia nitrogen removal from landfill leachate. BIORESOURCE TECHNOLOGY 2022; 361:127668. [PMID: 35878770 DOI: 10.1016/j.biortech.2022.127668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
This study adopted the combination of activated sludge treatment and catalytic ozonation technology to efficiently remove the high concentration of ammonia nitrogen from landfill leachate. Through optimizing the parameters continuously, the COD, NH4+-N, UV254 and colority respectively descended to 417.75 ± 6.72 mg/L, 9.77 mg/L, 1.98 ± 0.04 and 40 times, and 3D fluorescence also reduced significantly within 14 days. Target genes of AOB-amoA, nxrA, napA, nirS and nosZ analysis indicated that ammonia-oxidizing bacteria, nitrated bacteria, and denitrifying bacteria played a key role on nitrogen removal, aerobic denitrifying bacteria was dominated especially. The nitrogen removal process was as follows: catalytic ozonation converted nitrogen-containing organic matter into NH4+-N, then NH4+-N was converted into NO2--N and NO3--N with the action of ammonia oxidation, nitrification and catalytic ozonation. Finally, the denitrification microorganisms transformed NO3--N or NO2--N to N2. Therefore, this coupled process realized the nitrogen removal effectively from landfill leachate.
Collapse
Affiliation(s)
- Yuchen Yuan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiadong Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Bo Gao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO. 588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, China; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
| | - Saleh Al-Farraj
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Zhang L, Zhang L, Xu D. Application of low-intensity ultrasound to enhance simultaneous nitrification/iron-based autotrophic denitrification. Biotechnol Lett 2022; 44:1001-1010. [PMID: 35767163 DOI: 10.1007/s10529-022-03273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/12/2022] [Indexed: 11/26/2022]
Abstract
Intermittent ultrasound with an intensity of 0.2 W/ml was applied during simultaneous nitrification/iron-based autotrophic denitrification to evaluate its impacts on total nitrogen (TN) removal efficiency and microbial characteristics during low carbon/nitrogen ratio (C/N) wastewater treatment. At an optimal dissolved oxygen (DO) concentration of 1.2 mg/L, the TN removal rate was 91 ± 4%, and the TN concentration in the effluent decreased by 31% owing to the ultrasound treatment. In addition, the number of iron-compounds that formed in the sludge and wastewater increased by 55% and 37%, respectively. Low-intensity ultrasound caused a substantial increase in ammonia monooxygenase activity. Moreover, when the DO concentration increased to 1.2 mg/L, the activities of nitrate reductase and nitrite reductase, both of which are associated with denitrification, were effectively maintained. High-throughput sequencing indicated that low-intensity ultrasound enriched ammonium oxidising bacteria (Nitrosomonas) and suppressed the growth of heterotrophic denitrifying bacteria (Zoogloea and Simplicispira). These changes benefited simultaneous nitrification and autotrophic denitrification. Thus, low-intensity ultrasound promoted the simultaneous nitrification/iron-based autotrophic denitrification process during low C/N wastewater treatment.
Collapse
Affiliation(s)
- Lei Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China.
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Danyu Xu
- Tianjin Academy of Eco-Environmental Sciences, Tianjin, 300191, China
| |
Collapse
|
20
|
Fe0-Supported Anaerobic Digestion for Organics and Nutrients Removal from Domestic Sewage. WATER 2022. [DOI: 10.3390/w14101623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Results from different research suggest that metallic iron (Fe0) materials enhance anaerobic digestion (AD) systems to remove organics (chemical oxygen demand (COD)), phosphorus and nitrogen from polluted water. However, the available results are difficult to compare because they are derived from different experimental conditions. This research characterises the effects of Fe0 type and dosage in AD systems to simultaneously remove COD and nutrients (orthophosphate (PO43−), ammonium (NH4+), and nitrate (NO3− Lab-scale reactors containing domestic sewage (DS) were fed with various Fe0 dosages (0 to 30 g/L). Batch AD experiments were operated at 37 ± 0.5 °C for 76 days; the initial pH value was 7.5. Scrap iron (SI) and steel wool (SW) were used as Fe0 sources. Results show that: (i) SW performed better than SI on COD and PO43− removal (ii) optimum dosage for the organics and nutrients removal was 10 g/L SI (iii) (NO3− + NH4+) was the least removed pollutant (iv) maximum observed COD, PO43− and NO3− + NH4+ removal efficiencies were 88.0%, 98.0% and 40.0% for 10 g/L SI, 88.2%, 99.9%, 25.1% for 10 g/L SW, and 68.9%, 7.3% and 0.7% for the reference system. Fe0-supported AD significantly removed the organics and nutrients from DS.
Collapse
|
21
|
Li P, Wang C, Liu G, Luo X, Rauan A, Zhang C, Li T, Yu H, Dong S, Gao Q. A hydroponic plants and biofilm combined treatment system efficiently purified wastewater from cold flowing water aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153534. [PMID: 35101486 DOI: 10.1016/j.scitotenv.2022.153534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Recently, more and more cold flowing water aquaculture has been adopted, but its wastewater treatment is always ignored, which causes great pressure on the environment. In this study, a compound in-situ treatment system that applied hydroponic plants and biofilm was constructed to treat the wastewater produced by cold flowing water culture of sturgeon. The removal efficiency of the nutrients from culture and the microbial composition in water and biofilm were tested, the correlation between the water quality indexes and bacterium was analyzed, and the abundance of nitrogen and phosphorus cycling genes was quantified. The results show that the system respectively achieved 90%, 100%, 100%, 100% and 48% removal efficiency of NH4+-N, NO3--N, TN, TP and COD which were produced by experimental sturgeon culture. Chinese cabbage (Brassica rapa var. chinensis) and water dropwort (Oenanthe javanica) showed obvious growth in the four plants, which contributed to the removal of nutrients from wastewater. Besides, in the biofilm, Proteobacteria, Bacteroidetes and Verrucomicrobia became the top three dominant flora at the phylum level, and Flavobacterium, Rhodoferax, Sphaerotilus and Chitinimonas became the top four dominant flora at the genus level, which promoted the removal of nitrogen in the wastewater. The FAPROTAX analysis result shows that the highest functions within the carbon and nitrogen metabolisms were significantly identified in the biofilm, such as chemoheterotrophy, aerobic chemoheterotrophy and nitrate reduction. Further, the abundance of denitrifying genes (narG and napA) was higher than the nitrifying related genes (nxrB and amoA), indicating the more active denitrifying process. In summary, the compound in-situ treatment system efficiently removed nutrients from cold flowing water aquaculture. And the combined purification of hydroponic plants and biofilm which is rich in denitrifying bacterium plays an essential role in this process.
Collapse
Affiliation(s)
- Pengju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Guohao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaolong Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Abdessan Rauan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Cheng Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Tian Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Haibo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Shuanglin Dong
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266100, PR China
| | - Qinfeng Gao
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266100, PR China
| |
Collapse
|
22
|
Zhang H, Ma B, Huang T, Yang W, Liu X, Niu L. Nitrogen removal from low carbon/nitrogen polluted water is enhanced by a novel synthetic micro-ecosystem under aerobic conditions: Novel insight into abundance of denitrification genes and community interactions. BIORESOURCE TECHNOLOGY 2022; 351:127013. [PMID: 35306134 DOI: 10.1016/j.biortech.2022.127013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The main limiting factor in treatment of wastewater with a low carbon/nitrogen ratio is insufficient electron donors for aerobic denitrification. A novel synthetic micro-ecosystem (SM) with functional materials as the core structure was prepared to enhance nitrate removal during wastewater treatment. Nitrate removal in the reactors with SM increased by more than 40 % and reached 97.43 % under aerobic conditions. The abundance of denitrification functional genes in activated sludge increased by 2.7 folds after adding SM. Network analysis showed that the denitrifying bacterial community in the reactors with SM displayed a more abundant symbiotic structure. In the reactors with SM, bacteria with both denitrification and inorganic electron transfer capabilities (such as Paracoccus sp., Thaurea sp., and Achromobacter sp.) occupied dominant niche. A species abundance distribution model indicated more intense competition for the dominant niche for the denitrification community in the reactor with SM. Thus, SM promotes denitrification in polluted water bodies under aerobic conditions.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
23
|
El-Lateef HMA, Khalaf MM, Al-Fengary AED, Elrouby M. Removal of the Harmful Nitrate Anions from Potable Water Using Different Methods and Materials, including Zero-Valent Iron. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082552. [PMID: 35458747 PMCID: PMC9031846 DOI: 10.3390/molecules27082552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Drinking water containing nitrate ions at a higher concentration level of more than 10 mg/L, according to the World Health Organization (WHO), poses a considerable peril to humans. This danger lies in its reduction of nitrite ions. These ions cause methemoglobinemia during the oxidation of hemoglobin into methemoglobin. Many protocols can be applied to the remediation of nitrate ions from hydra solutions such as Zn metal and amino sulfonic acid. Furthermore, the electrochemical process is a potent protocol that is useful for this purpose. Designing varying parameters, such as the type of cathodic electrode (Sn, Al, Fe, Cu), the type of electrolyte, and its concentration, temperature, pH, and current density, can give the best conditions to eliminate the nitrate as a pollutant. Moreover, the use of accessible, functional, and inexpensive adsorbents such as granular ferric hydroxide, modified zeolite, rice chaff, chitosan, perlite, red mud, and activated carbon are considered a possible approach for nitrate removal. Additionally, biological denitrification is considered one of the most promising methodologies attributable to its outstanding performance. Among these powerful methods and materials exist zero-valent iron (ZVI), which is used effectively in the deletion process of nitrate ions. Non-precious synthesis pathways are utilized to reduce the Fe2+ or Fe3+ ions by borohydride to obtain ZVI. The structural and morphological characteristics of ZVI are elucidated using UV–Vis spectroscopy, zeta potential, XRD, FE-SEM, and TEM. The adsorptive properties are estimated through batch experiments, which are achieved to control the feasibility of ZVI as an adsorbent under the effects of Fe0 dose, concentration of NO3− ions, and pH. The obtained literature findings recommend that ZVI is an appropriate applicant adsorbent for the remediation of nitrate ions.
Collapse
Affiliation(s)
- Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82425, Egypt;
- Correspondence: or (H.M.A.E.-L.); or (M.E.)
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82425, Egypt;
| | | | - Mahmoud Elrouby
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82425, Egypt;
- Faculty of Science, King Salman International University, Sinai 46612, Egypt
- Correspondence: or (H.M.A.E.-L.); or (M.E.)
| |
Collapse
|
24
|
Xu L, Su J, Ali A, Chang Q, Shi J, Yang Y. Denitrification performance of nitrate-dependent ferrous (Fe 2+) oxidizing Aquabacterium sp. XL4: Adsorption mechanisms of bio-precipitation of phenol and estradiol. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127918. [PMID: 34863560 DOI: 10.1016/j.jhazmat.2021.127918] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, a nitrate-dependent ferrous (Fe2+) oxidizing strain under anaerobic conditions was selected and identified as XL4, which belongs to Aquabacterium. The Box-Behnken design (BBD) was used to optimize the growth conditions of strain XL4, and the nitrate removal efficiency of strain XL4 (with 10% inoculation dosage, v/v) could reach 91.41% under the conditions of 30.34 ℃, pH of 6.91, and Fe2+ concentration of 19.69 mg L-1. The results of Fluorescence excitation-emission matrix spectra (EEM) revealed that the intensity of soluble microbial products (SMP), aromatic proteins and the fulvic-like materials were obvious difference under different Fe2+ concentration, pH, and temperature. X-ray diffraction (XRD) data confirmed that the main components of bio-precipitation were Fe3O4 and FeO(OH), which were believed to be responsible for the adsorption of phenol and estradiol. Furthermore, the maximum adsorption capacity of bio-precipitation for phenol and estradiol under the optimal conditions were 192.6 and 65.4 mg g-1, respectively. On the other hand, the adsorption process of phenol and estradiol by bio-precipitation confirmed to the pseudo-second-order and Langmuir model, which shows that the adsorption process is chemical adsorption and occurs on the uniform surface.
Collapse
Affiliation(s)
- Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
25
|
Cui X, Zhang M, Ding Y, Sun S, He S, Yan P. Enhanced nitrogen removal via iron‑carbon micro-electrolysis in surface flow constructed wetlands: Selecting activated carbon or biochar? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152800. [PMID: 34982986 DOI: 10.1016/j.scitotenv.2021.152800] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The iron-assisted autotrophic denitrification was plagued by passivation when introduced in surface flow constructed wetlands (SFCWs). Iron‑carbon micro-electrolysis (Fe/C-M/E) could facilitate the transfer of electrons during the utilization of iron. In this study, iron scraps coupling with activated carbon and biochar were applied to explore the effects of carbon materials on autotrophic denitrification. The results showed that TN removal rate in the SFCW with iron scraps and activated carbon (SFCW-IAC) and the SFCW with iron scraps and biochar (SFCW-IBC) were improved by 31.61% ± 8.18% and 14.09% ± 7.15%, and N2O fluxes were reduced to 2.73 and 3.12 mg m-2 d-1, respectively. The greater iron mass loss rate (0.91%) was confirmed in SFCW-IAC. Microbial community analysis reported that autotrophic denitrification and iron related genera were increased. This study proved that activated carbon was more suitable than biochar to Fe/C-M/E for denitrification enhancement and N2O emission reduction.
Collapse
Affiliation(s)
- Xijun Cui
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - YiJing Ding
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
26
|
Wu H, Cui M, Yang N, Liu Y, Wang X, Zhang L, Zhan G. Aerobic biocathodes with potential regulation for ammonia oxidation with concomitant cathodic oxygen reduction and their microbial communities. Bioelectrochemistry 2022; 144:107997. [PMID: 34801809 DOI: 10.1016/j.bioelechem.2021.107997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022]
Abstract
Aerobic biocathodes are effective construct for the simultaneous nitrification and denitrification, but the disturbance of cathodic oxygen reduction on ammonia oxidation and denitrification remains unclear. In this study, we revealed the oxygen reduction peak at -0.4 V (versus silver/silver chloride) by cyclic voltammetry analysis at a cathode without a biofilm. The reduction peak, however, showed a right shift from -0.4 to -0.3 V for the biocathode, indicating that the aerobic biocathode could simultaneously perform traditional nitrification and cathode oxygen reduction. Therefore, different electrode potentials ranging from -0.5 to -0.1 V were designed for regulating the ammonia oxidation rate, and the results showed that the highest oxidation rate reached 3.08 mg/h/L at a potential of -0.2 V under a low-aeration rate of 5 mL/min. High-throughput sequencing showed that Nitrosomonas and Rhodococcus were the dominant nitrogen removal genera in the biocathode, and the abundance of Devosia was related to the interactions between the aeration rate and the electrode potential. Furthermore, the amoC and hao genes responded to aeration and electrode potential regulation, and -0.2 V was more suitable for promoting the denitrification process under low-aeration conditions. Therefore, these findings provided new insights on cathodic potential control for ammonia oxidation and nitrogen removal as well as for the regulation of microbial communities.
Collapse
Affiliation(s)
- Heng Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mengyao Cui
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Nuan Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xiaomei Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
27
|
Zhu L, Yuan H, Shi Z, Deng L, Yu Z, Li Y, He Q. Metagenomic insights into the effects of various biocarriers on moving bed biofilm reactors for municipal wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151904. [PMID: 34838558 DOI: 10.1016/j.scitotenv.2021.151904] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Preferable biocarrier is vital for start-up and operation of moving bed biofilm reactor (MBBR). Effects of three separate biocarriers - PPC, PU, and PP on MBBRs were systematically investigated including nutrients removal performances, biomass attachment, microbial community, and relevant functional genes. Results showed that three biocarriers achieved similar removal efficiencies for chemical oxygen demand (COD) and total phosphorus (TP), though much higher biomasses were found attached onto PPC and PU carriers. PPC and PU performed better than PP for ammonia nitrogen (NH4+-N) removal. However, PPC exhibited the greatest and most reliable denitrifying efficiency, mainly due to stronger simultaneous nitrification and denitrification during better micro-anoxic-environment created within PPC carriers than others. Further studies by 16S rRNA gene and metagenomic sequencing analysis uncovered the bacterial diversity and structures, and relevant functional genes for nitrogen-transformation and pathways of nitrogen metabolisms, which laid the biological basis for the best performances via biocarrier PPC. This study inspired a feasible approach for municipal wastewater treatment through PPC filled MBBR.
Collapse
Affiliation(s)
- Liang Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Huizhou Yuan
- School of Materials & Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Zhou Shi
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Lin Deng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Zefang Yu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Yong Li
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
28
|
Cheng B, Du J, Bao J, Tufail H, Xu T, Zhang Y, Mao Q, Faheem M. Insight into enrichment of anammox bacteria by a polyurethane sponge carrier coupled with iron-carbon micro-electrolysis under no strict anaerobic condition. BIORESOURCE TECHNOLOGY 2022; 347:126673. [PMID: 35007733 DOI: 10.1016/j.biortech.2022.126673] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
A novel composite carrier (ICME-PS) was formed by coupling polyurethane sponge carriers (PS) with different pore sizes (15, 25, 40 ppi) and iron-carbon micro-electrolysis (ICME), which was used for enrichment of anammox bacteria and stable operation under no strict anaerobic condition. An increase of 5.67%-38.55% in specific anammox activity (SAA), an significant enhancement of biofilm stability and an improvement of 14.61%-42.38% in Ca.Brocadia were observed in ICME-PS, compared to PS carriers. ICME played a dual role: 1) contributed to the formation of an anaerobic microenvironment; 2) used for nitrogen cycle reactions. Additionally, small-pore carriers with highest biofilm stability can be used in high shear environments, while medium-pore carriers achieved the highest SAA in stable environments. Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that ICME application reduced the energy barrier and improved aggregation performance. This study designed a novel composite carrier to broaden the application of anammox under no strict anaerobic condition.
Collapse
Affiliation(s)
- Benai Cheng
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Jiangkun Du
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - JianGuo Bao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Haseeb Tufail
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Tiantian Xu
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yi Zhang
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Qidi Mao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Muhammad Faheem
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
29
|
Zhou Q, Sun H, Jia L, Wu W. Simultaneously advanced removal of nitrogen and phosphorus in a biofilter packed with ZVI/PHBV/sawdust composite: Deciphering the succession of dominant bacteria and keystone species. BIORESOURCE TECHNOLOGY 2022; 347:126724. [PMID: 35065223 DOI: 10.1016/j.biortech.2022.126724] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
In this study, a biofilter was developed with a ZVI/PHBV/sawdust (ZPS) composite for treating simulative secondary effluent from wastewater treatment plants. Results showed that effluent concentrations of NO3--N and TP in the ZPS biofilter were stable below 2.0 mg/L and 0.1 mg/L, corresponding to 95% NO3--N removal and 99% TP removal, respectively. Microbial community analysis revealed that the transformation of dominant taxa from Dechloromonas to Clostridium sensu stricto_7 from 30 d to 120 d suggested that the ZVI-induced succession of dominant fermentation bacteria ensured the stable carbon supply for denitrification. Co-occurrence network analysis showed that the ZVI directly enhanced the interaction of microbial community. Fe-related bacteria occupied a key position in the rare species, which might maintain the function of iron-mediated organic matter decomposition and denitrification. These findings provide an alternative for advanced removal of nitrogen and phosphorus in biofilters packed with ZPS composites.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haimeng Sun
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences (Peking University), Ministry of Education, Beijing 100871, China.
| |
Collapse
|
30
|
Peng Y, He S, Gu X, Yan P, Tang L. Zero-valent iron coupled plant biomass for enhancing the denitrification performance of ecological floating bed. BIORESOURCE TECHNOLOGY 2021; 341:125820. [PMID: 34454238 DOI: 10.1016/j.biortech.2021.125820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The ecological floating bed (EFB) coupled with zero-valent iron (ZVI) is proposed to treat low carbon-to-nitrogen ratio water. However, the application of ZVI is limited by low electron transfer efficiency. Coupling ZVI with carbon materials may improve the performance. In this study, the EFB with ZVI coupled plant biomass (IB-EFB) was established to enhance denitrification performance and compared to the EFB with ZVI coupled activated carbon (IC-EFB). The results showed that higher denitrification rate was observed in IB-EFB (68.8%) than that in IC-EFB (54.40%), which attributed to the synergistic effect of ZVI and plant biomass. Plant biomass also promoted the electron transfer of ZVI which enhanced the Fe(II)-mediated denitrification. High-throughput sequencing analysis revealed that IB-EFB enriched iron-related denitrifying bacteria more effectively than IC-EFB, and obtained high abundance of phototrophic Fe(II)-oxidizing bacteria Rhodopseudomonas (19.26%). Thus coupling ZVI with plant biomass has a potential for enhanced nitrogen removal in EFB.
Collapse
Affiliation(s)
- Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Li Tang
- Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China
| |
Collapse
|
31
|
Lu X, Wan Y, Zhong Z, Liu B, Zan F, Zhang F, Wu X. Integrating sulfur, iron(II), and fixed organic carbon for mixotrophic denitrification in a composite filter bed reactor for decentralized wastewater treatment: Performance and microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148825. [PMID: 34243004 DOI: 10.1016/j.scitotenv.2021.148825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Decentralized wastewater treatment in rural areas is an imperative challenge around the world, particularly in developing countries. The composite filter bed reactor is viable for decentralized wastewater treatment, but its performance on nitrogen removal often fluctuates with the unstable influent characteristics and loadings. Here, a composite filter bed reactor integrating sulfur, iron(II), and fixed organic carbon (shaddock peel) was developed and continuously operated under different conditions. The fixed organic carbon source promoted nitrogen removal with an efficiency higher than 90% and reduced effluent sulfate level by 40%, indicating that the integrated electron donors could improve the resistance and stability of the reactor. Moreover, sulfur-oxidizing bacteria (Thiomonas, Sulfuriferula, and Acidithiobacillus), iron-oxidizing bacteria (Ferritrophicum), and denitrifiers (Simplicispira and Hydrogenophaga) were identified in the anoxic/anaerobic layer of the reactor, suggesting that mixotrophic denitrification was stimulated by sulfur, iron(II), and fixed organic carbon. The findings of this study indicate that the developed reactor with the integrated electron donors could be reliable for carbon, nitrogen, and phosphorus removal and promising for the application of decentralized wastewater treatment.
Collapse
Affiliation(s)
- Xiejuan Lu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanlei Wan
- Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430015, China
| | - Zhenxing Zhong
- College of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Bo Liu
- China shipbuilding NDRI engineering Co. Ltd., Shanghai 200063, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Fugang Zhang
- Three Gorges Base Development, Co. Ltd., Yichang 443002, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
32
|
Li Q, Chen Z, Wang H, Yang H, Wen T, Wang S, Hu B, Wang X. Removal of organic compounds by nanoscale zero-valent iron and its composites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148546. [PMID: 34465057 DOI: 10.1016/j.scitotenv.2021.148546] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/30/2021] [Accepted: 06/15/2021] [Indexed: 05/07/2023]
Abstract
During the latest several decades, the continuous development of the economy and industry has brought more and more serious organic pollutants to the natural environment, which have inevitably aroused severe menace to human health and the environmental system. The nano zero-valent iron (NZVI) particles and NZVI-based materials have widely applied to remove organic pollutants. This article reviews the key advancements of different methods for the synthesis of NZVI and NZVI-based materials. Different modification methods (e.g., doped NZVI, encapsulated NZVI and supported NZVI) are also introduced detailedly for overcoming the defects of NZVI such as aggregation and easy oxidation. The removal of different organic pollutants including dyes, halogenated organic compounds, nitro-organic compounds, phenolic compounds, pesticides, and antibiotics are summarized. The interaction mechanisms, including adsorption, reduction, and active oxidation of organic pollutants by NZVI/NZVI-based composites, are discussed. The dyes are mainly removed by destroying their chromogenic group according to the reduction or the Fenton-like reaction with NZVI. The removal of halogenated organic compounds (HOCs) is realized by the dehalogenation process, including reductive elimination, hydrogenolysis, and hydrogenation. As for the nitro-organic compounds, three different reduction pathways as nitro-reduction (into amino), cleavage at the carbon‑nitrogen bond or denitration of the NO2 group may take effect. The phenolic compounds can be mineralized into inorganic molecules, including CO2 and H2O, by Fenton oxidation. This review might provide the basis for future studies on developing more effective NZVI-based materials for the treatment of wastewaters contaminated by organic pollutants.
Collapse
Affiliation(s)
- Qian Li
- School of Life Science, Shaoxing University, Shaoxing 312000, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhongshan Chen
- School of Life Science, Shaoxing University, Shaoxing 312000, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Huihui Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hui Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Tao Wen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shuqin Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, China.
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
33
|
Xiao X, Guo H, Ma F, You S, Geng M, Kong X. Biological mechanism of alleviating membrane biofouling by porous spherical carriers in a submerged membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148448. [PMID: 34146804 DOI: 10.1016/j.scitotenv.2021.148448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
In this study, porous spherical carriers were fixed around the hollow fiber membrane module to mitigate membrane biofouling. Two MBRs (R1 without carriers, R2 with carriers) were operated for 31 days under identical operating conditions to investigate the effects of the carriers on the reactor performances, the production of extracellular polymeric substances (EPS), the level of N-acyl-homoserine lactones (AHLs), and the microbial communities. The results showed that the presence of carriers in MBR was conducive to nitrogen removal and decreased the total membrane filtration resistance by about 1.7 times. Slower transmembrane pressure (TMP) rise-up, thinner bio-cakes, lower EPS production, and fewer tryptophan and aromatic proteins substances on the membrane surface were observed in R2. The polysaccharides secretion of EPS in bio-cakes was mainly regulated by C4-HSL and 3OC6-HSL in the presence of carriers. The microbial community analysis revealed that carriers addition reduced the relative abundance of EPS and AHL producing bacteria in the membrane bio-cakes and enriched the accumulation of functional bacteria conducive to nutrient removal in the mixed liquor. This study provided an in-depth understanding for the application of porous spherical carriers to alleviate membrane biofouling.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haijuan Guo
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, PR China..
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Mingyue Geng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiangzhen Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
34
|
Fan L, Yao H, Deng S, Jia F, Cai W, Hu Z, Guo J, Li H. Performance and microbial community dynamics relationship within a step-feed anoxic/oxic/anoxic/oxic process (SF-A/O/A/O) for coking wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148263. [PMID: 34144239 DOI: 10.1016/j.scitotenv.2021.148263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
A step-feed anoxic/oxic/anoxic/oxic (SF-A/O/A/O) was developed and successfully applied to full-scale coking wastewater treatment. The performance and microbial community were evaluated and systematically compared with the anoxic/oxic/oxic (A/O/O) process. SF-A/OA/O process exhibited efficient removal of COD, NH4+-N, TN, phenols, and cyanide with corresponding average effluent concentrations of 317.9, 1.8, 46.2, 1.1, and 0.2 mg·L-1, respectively. In particular, the TN removal efficiency of A/O/O process was only 7.8%, with an effluent concentration of 300.6 mg·L-1. Furthermore, polycyclic aromatic hydrocarbons with high molecular weight were the dominant compounds in raw coking wastewater, which were degraded to a greater extent in SF-A/OA/O. The abundance in Thiobacillus, SM1A02, and Thauera could be the main reason why SF-A/O/A/O was superior to A/O/O in treating TN. The microbial community structure of SF-A/O/A/O was similar among stages in system (P ≥ 0.05, Welch's t-test) and was less affected by environmental factors, which may have been one of the important factors in the system's strong stability.
Collapse
Affiliation(s)
- Liru Fan
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China.
| | - Shihai Deng
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Fangxu Jia
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Weiwei Cai
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Zhifeng Hu
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Huan Li
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| |
Collapse
|
35
|
Li J, Wang Y, Xie H, Zhao W, Zhang L, Li J. Enhanced refractory organics removal by sponge iron-coupled microbe technology: performance and underlying mechanism analysis. Bioprocess Biosyst Eng 2021; 45:117-130. [PMID: 34617132 DOI: 10.1007/s00449-021-02645-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Sponge iron (SFe) is a zero-valent iron (Fe0) composite with a high-purity and porous structure. In this study, SFe was coupled with microorganisms that were gradually domesticated to form a Fe0/iron-oxidizing bacteria system (Fe0-FeOB system). The enhancement effect of the Fe0-FeOB system on refractory organics was verified, the mechanism of its strengthening action was investigated, and the relationship and influencing factors between the Fe0 and microorganisms were revealed. The average removal rates of the Fe0-FeOB system were 8.98%, 5.69%, and 40.67% higher than those of the SBR system for AF, AN, and NB wastewater treatment, respectively. With the addition of SFe, the microbial community structure was gradually enhanced with a large number of FeOB were detected. Moreover, the bacteria with strong iron corrosion and Fe(II) oxidation abilities plays a critical role in improving the Fenton-like effect. Interestingly, the variation trend of ⋅OH was fairly consistent with that of Fe(II). Thus, the main drivers of the Fenton-like effect are biological corrosion and metabolism. Consequently, microbial degradation and Fenton-like effect contributed to the degradation performance of the Fe0-FeOB system. Among them, the microbial degradation accounted for 96.09%, of which the biogenic Fenton effect accounted for 8.9%, and the microbial metabolic activity accounted for 87.19%. However, the augmentation of the Fe0-FeOB system was strongly dependent on SFe for the strengthening effect of microorganisms disappeared after leaving the SFe 35 days.
Collapse
Affiliation(s)
- Jie Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 88 Anning West Road, Anning District, Lanzhou, 730070, Gansu, People's Republic of China.
| | - Yae Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 88 Anning West Road, Anning District, Lanzhou, 730070, Gansu, People's Republic of China
| | - Huina Xie
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 88 Anning West Road, Anning District, Lanzhou, 730070, Gansu, People's Republic of China
| | - Wei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 88 Anning West Road, Anning District, Lanzhou, 730070, Gansu, People's Republic of China
| | - Lihong Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 88 Anning West Road, Anning District, Lanzhou, 730070, Gansu, People's Republic of China.,Gansu Membrane Science and Technology Research Institute Co., Ltd., Lanzhou, 730020, People's Republic of China
| | - Jing Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, 88 Anning West Road, Anning District, Lanzhou, 730070, Gansu, People's Republic of China
| |
Collapse
|
36
|
Zhang Q, Deng S, Li J, Yao H, Li D. Cultivation of aerobic granular sludge coupled with built-in biochemical cycle galvanic-cells driven by dual selective pressure and its denitrification characteristics. BIORESOURCE TECHNOLOGY 2021; 337:125454. [PMID: 34198243 DOI: 10.1016/j.biortech.2021.125454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Dual selective pressure was applied as the driving condition to cultivate an enhanced aerobic granular sludge (AGS) with Fe(0)-based biochemical cycle galvanic-cells (BCGC) as the core. The BCGC-AGS coupled micro-electrolysis with synergistic autotrophic-heterotrophic denitrification to enhance nitrogen removal. COD and total nitrogen removal of 91.8% and 95.9% were achieved, respectively. The formation of circulation channel between Fe3+ and Fe2+ provided a solid foundation for the biochemical cycle of galvanic-cells with low consumption. The existence of micro-electrolysis selective pressure in BCGC-AGS was also confirmed. Facultative aerobic bacteria Methylocystis and Azospirillum were the most abundant genera. Facultative iron redox bacteria and autotrophic denitrifying bacteria Geobacter, Thiobacillus, Aquabacterium, Thauera and Azospirillum showed high abundance, affirming the success culture of EAGS system. Load shock test verified BCGC-AGS possessed excellent load shock resistance. Obtaining the advantages of fast-cultivation, high-efficiency and low galvanic-cells consumption, BCGC-AGS showed significant potential for practical application.
Collapse
Affiliation(s)
- Qi Zhang
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China.
| | - Shihai Deng
- Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jinlong Li
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hong Yao
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing 100044, PR China
| | - Desheng Li
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing 100044, PR China
| |
Collapse
|
37
|
Tarhan T. Removal of carbol fuchsin from aqueous solution by using three-dimensional porous, economic, and eco-friendly polymer. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1789-1803. [PMID: 33931914 DOI: 10.1002/wer.1578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
In this study, a three-dimensional (3D) porous polydimethylsiloxane (PDMS) was prepared using a cheap material with a highly simple and different method. PDMS was firstly applied for the removal of carbol fuchsin (CF) cationic organic dye pollution in this study. Besides, the adsorption capacity of 3D PDMS for removal of the CF was found quite high compared to other materials in already published results. The synthesized PDMS was characterized using several spectroscopic and imaging techniques such as FTIR, Raman, SEM, stereomicroscope, EDX, UV/Vis, and TGA. The optimal conditions were found as 10 mg L-1 initial concentration, 20 mg of adsorbent dose, 2 h contact time, pH 10, and 25°C temperature. The removal % of CF and the maximum adsorption capacity were calculated at approximately 89% and 88.8 mg g-1 , respectively. Furthermore, the equilibrium studies showed that the Langmuir isotherm model fitted well with the removal of CF. Moreover, according to the kinetic results, the second-order kinetic model was found suitable (qe,cal 89.3 mg g-1 and qe,exp 88.8 mg g-1 close to each other) for the adsorption of CF. Also, the thermodynamic studies indicated that adsorption occurs spontaneously, and the adsorption process was physical adsorption. Besides, the reusability of the adsorbent was studied. PRACTITIONER POINTS: Water treatment technology should be low cost, economically viable and in the meantime, eco-friendly. The 3D porous PDMS was prepared by using cheap material with a highly simple method and eco-friendly This unique material was firstly applied for the removal of organic dye in water in this study.
Collapse
Affiliation(s)
- Tuba Tarhan
- Vocational High School of Health Services, Mardin Artuklu University, Mardin, Turkey
| |
Collapse
|
38
|
Qi S, Lin J, Wang Y, Yuan S, Wang W, Xiao L, Zhan X, Hu Z. Fermentation liquid production of food wastes as carbon source for denitrification: Laboratory and full-scale investigation. CHEMOSPHERE 2021; 270:129460. [PMID: 33423004 DOI: 10.1016/j.chemosphere.2020.129460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/19/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen removal is often limited in municipal wastewater treatment due to the insufficiency of carbon source, and using food wastes fermentation liquid as carbon source could cut down the cost of operating and recycle food wastes. Food wastes fermentation liquid production and application as external carbon source were explored in the laboratory and full-scale system in this study. In the laboratory scale, lactic acid and VFAs were the main components of fermentation liquid, and the highest total chemical oxygen demand (TCOD) production was obtained with activated sludge as inoculum. The yield of TCOD was around 794.5 mg/g TSfed and NH4+-N was 3.5 mg/g TSfed. The denitrification rate with fermentation liquid was slightly lower than acetic acid and butyric acid, but higher than lactic acid and starch. In the full-scale investigation, the TCOD concentration in fermentation liquid was in the range of 6.9-12.8 g/L and the ratio of TCOD/inorganic nitrogen was 210.5-504.5:1. NO3--N removal increased from 52.1% to 94.2% after fermentation liquid addition, confirming the potentiality of food wastes fermentation liquid replace the commercial carbon source in wastewater treatment plants.
Collapse
Affiliation(s)
- Shasha Qi
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China; Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Jinbiao Lin
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China; Hong Kong Hua Yi Design Consultants (S.Z.) LTD., Shenzhen, 518057, China
| | - Yulan Wang
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Shoujun Yuan
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Xinmin Zhan
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Zhenhu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
39
|
Lin Z, Cheng S, Yu Z, Yang J, Huang H, Sun Y. Enhancing bio-cathodic nitrate removal through anode-cathode polarity inversion together with regulating the anode electroactivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142809. [PMID: 33097251 DOI: 10.1016/j.scitotenv.2020.142809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Bio-cathodic nitrate removal uses autotrophic nitrate-reducing bacteria as catalysts to realize the nitrate removal process and has been considered as a cost-effective way to remove nitrate contamination. However, the present bio-cathodic nitrate removal process has problems with long start-up time and low performance, which are urgently required to improve for its application. In this study, we investigated an anode-cathode polarity inversion method for rapidly cultivating high-performance nitrate-reducing bio-cathode by regulating bio-anodic bio-oxidation electroactivities under different external resistances and explored at the first time the correlation between the oxidation performance and the reduction performance of one mixed-bacteria bioelectrode. A high bio-electrochemical nitrate removal rate of 2.74 ± 0.03 gNO3--N m-2 d-1 was obtained at the bioelectrode with high bio-anodic bio-oxidation electroactivity, which was 4.0 times that of 0.69 ± 0.03 gNO3--N m-2 d-1 at the bioelectrode with low bio-oxidation electroactivity, and which was 1.3-7.9 times that of reported (0.35-2.04 gNO3--N m-2 d-1). 16S rRNA gene sequences and bacterial biomass analysis showed higher bio-cathodic nitrate removal came from higher bacterial biomass of electrogenic bacteria and nitrate-reducing bacteria. A good linear correlation between the bio-cathodic nitrate removal performance and the reversed bio-anodic bio-oxidation electroactivity was presented and likely implied that electrogenic biofilm had either action as autotrophic nitrate reduction or promotion to the development of autotrophic nitrate removal system. This study provided a novel strategy not only to rapidly cultivate high-performance bio-cathode but also to possibly develop the bio-cathode with specific functions for substance synthesis and pollutant detection.
Collapse
Affiliation(s)
- Zhufan Lin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Zhen Yu
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jiawei Yang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Haobin Huang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yi Sun
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
40
|
Liu Z, Tang J, Ren X, Schaeffer SM. Effects of phosphorus modified nZVI-biochar composite on emission of greenhouse gases and changes of microbial community in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116483. [PMID: 33508717 DOI: 10.1016/j.envpol.2021.116483] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/20/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The effect of modified biochar on the greenhouse gas emission in soil is not clear until now. In this study, biochar (BC) was modified by phosphoric acid (P) and further combined with nano-zero-valent iron (nZVI) to form nZVI-P-BC composite. The P modified biochar could significantly increase the available phosphorus in soil. The release of CO2 and N2O in soil was inhibited during the initial stage of the experiment, with inhibition becoming more obvious over time. On the contrary, CH4 and N2O emission in soil was enhanced by nZVI-P-BC composite. The proportion of Sphingomonas and Gemmatimonas were the most abundant bacterial species, which were related to the metabolism and transformation of nitrogen. The community structure of the fungus was also affected by nZVI-P-BC composite with Fusarium as the main species. PCoA analysis result suggested that bacterial community was more affected by the incubation time while fungal community was more related to the addition of different biochar and modified biochars.
Collapse
Affiliation(s)
- Zhihui Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Xinwei Ren
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Sean M Schaeffer
- Department of Biosystems Engineering and Soil Science, University of Tennessee - Knoxville, 2506 E. J. Chapman Drive, Knoxville, TN, 37996, USA
| |
Collapse
|
41
|
Qin S, Zhang X, He S, Huang J. Improvement of nitrogen removal with iron scraps in floating treatment wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17878-17890. [PMID: 33398766 DOI: 10.1007/s11356-020-12177-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Floating treatment wetland (FTW) in restoration of low C/N ratio wastewater was deemed to a frequently used method. However, the nitrate removal performance in floating beds was limited due to insufficient organic carbon sources. Iron scraps as a potential electron donor was beneficial to the NO3--N reduction. To research the removal performance and mechanism of denitrification in FTW with iron scraps, FTW with Iris pseudacorus was built, and iron scraps were added as an electron donor to improve nitrogen removal efficiency. The batch experimental results demonstrated that the proper mass ratio of iron scraps to NO3--N was 500:1. With iron scraps, the NO3--N removal efficiency of FTW and control system increased significantly to 98.04% and 44.42% respectively in 2 weeks, while there was no obvious influence on the removal of NH4+-N. After adding iron scraps, the proportion of bacteria in the systems related to iron cycle and the relative abundance of nitrifying and denitrifying bacteria have increased obviously. By calculating the nitrogen balance, nitrogen reduction via plant uptake accounted for 8.79%, and the microbial denitrification was the main nitrogen removal pathway in FTW.
Collapse
Affiliation(s)
- Si Qin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| | - Xiaoyi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
- Shanghai Engineering Research Center of Landscape Water Environment, Shanghai, 200031, People's Republic of China.
| | - Jungchen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| |
Collapse
|
42
|
Zhu M, Fan J, Zhang M, Li Z, Yang J, Liu X, Wang X. Current intensities altered the performance and microbial community structure of a bio-electrochemical system. CHEMOSPHERE 2021; 265:129069. [PMID: 33257046 DOI: 10.1016/j.chemosphere.2020.129069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/14/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
A novel integrated bio-electrochemical system with sulfur autotrophic denitrification (SAD) and electrocoagulation (BESAD-EC) system was established to remove nitrate (NO3--N) and phosphorus from contaminated groundwater. The impacts of a current intensity gradient on the system's performance and microbial community were investigated. The results showed that NO3--N and total phosphorus (TP) could be effectively removed with maximum NO3--N reduction and TP removal efficiencies of 94.2% and 75.8% at current intensities of 200 and 400 mA, respectively. Lower current intensities could improve the removal efficiencies of NO3--N (≤200 mA) and phosphorus (≤400 mA), while higher current intensity (600 mA) caused the inhibition of nutrients removal in the system. MiSeq sequencing analysis revealed that low electrical stimulation improved the diversity and richness of microbial community, while high electrical stimulation reduced their diversity and richness. The relative abundance of some genus involved in denitrification and phosphorus removal processes such as Rhizobium, Hydrogenophaga, Denitratisoma and Gemmobacter, significantly (P < 0.05) reduced under high current conditions. This could be one of the main reasons for the deterioration of denitrification and phosphorus removal performance. The results of this study could be helpful to enhance the nutrient removal performance of bio-electrochemical systems in groundwater treatment processes.
Collapse
Affiliation(s)
- Minghan Zhu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingkai Fan
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minglu Zhang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhenyang Li
- Airport New City in Xixian New Area Management Commission of Shaanxi Province, Xi'an, 712034, China
| | - Jingdan Yang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaotong Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
43
|
Xie HN, Li J, Wang YE, Zhao W, Zhang LH, Li J. Influencing factors for the Fenton-like of biological sponge iron system and its degradation mechanism of aniline. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Deng S, Xie B, Kong Q, Peng S, Wang H, Hu Z, Li D. An oxic/anoxic-integrated and Fe/C micro-electrolysis-mediated vertical constructed wetland for decentralized low-carbon greywater treatment. BIORESOURCE TECHNOLOGY 2020; 315:123802. [PMID: 32683289 DOI: 10.1016/j.biortech.2020.123802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The treatment of decentralized low-carbon greywater in rural area, particularly in cold weather, remains a challenge. Oxic/anoxic process and Fe/C micro-electrolysis were incorporated into vertical constructed wetland to develop ME-(O/A)CW for practical decentralized low-carbon greywater treatment. ME-(O/A)CW provided NH4+-N, TN, TP and COD removal of 94.3%, 86.2%, 98.0% and 92.7%, respectively, at hydraulic loading rate of 0.9 m3/(m2·d) under low ambient temperature of -11.5 to 8.0 °C. Effective nitrification, phosphorus-accumulating and organic-degradation were proceeded in the aerobic layers and efficient H2-/Fe2+-mediated autotrophic denitrification and Fe3+-based phosphorus immobilization were developed in the anaerobic layers through in-situ H2-/Fe2+-supply by Fe/C micro-electrolysis. AOB (e.g. Nitrosomonadales), NOB/PAOs (e.g. Nitrospira), autotrophic denitrificans (e.g. Thiobacillus, Hydrogenophaga and Sulfurimonas), heterotrophic denitrificans (e.g. Denitratisoma) and Fe(II)-oxidizing bacteria (e.g. Ferritrophicum) dominated ME-(O/A)CW and confirmed the reaction mechanisms. The developed ME-(O/A)CW presented significant potential in the practical application for decentralized low-carbon greywater treatment under low ambient temperature.
Collapse
Affiliation(s)
- Shihai Deng
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Qiang Kong
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| | - Shuai Peng
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hengchen Wang
- China School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China
| | - Zhifeng Hu
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Desheng Li
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| |
Collapse
|
45
|
Wang L, Zhan H, Wu G, Zeng Y. Effect of operational strategies on the rapid start-up of nitrogen removal aerobic granular system with dewatered sludge as inoculant. BIORESOURCE TECHNOLOGY 2020; 315:123816. [PMID: 32688252 DOI: 10.1016/j.biortech.2020.123816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
In both sequencing batch reactors with dewatering sludge as inoculant, the strategies by step-feeding (R1) or step-feeding combined with low aeration (R2) were performed under alternating anoxic/aerobic condition to discover superior methods launching nitrogen removal aerobic granule system. Interestingly, two reactors accomplished granulation at day 0, two days later, possessed prominent settling performance (SVI < 45 ml/g. MLSS) and denitrifying ability (TIN > 80%). Thereinto, R2 had lower crushing rate, larger granules, higher biomass and better pollutant removal performance owing to low aeration and more filamentous bacteria on AGS surface. Moreover, effluent NH4+-N was used as indicator of excess filaments due to its quick response for the filaments. After effluent NH4+-N exceeded 5 mg/L, causative filaments Sphaerotilus were effectively inhibited and eliminated by enhancing pH value to 8.0 ± 0.2. As a result, this study provides a new insight into rapid start-up nitrogen removal granule system by promoting and limiting filaments in proper period.
Collapse
Affiliation(s)
- Lei Wang
- School of Civil Engineering, Southwest Jiaotong University, 610031 Chengdu, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, 221116 Xuzhou, China.
| | - Hanhui Zhan
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 221116 Xuzhou, China
| | - Gang Wu
- School of Life Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Yong Zeng
- School of Civil Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| |
Collapse
|
46
|
Huang X, Yang X, Zhu J, Yu J. Microbial interspecific interaction and nitrogen metabolism pathway for the treatment of municipal wastewater by iron carbon based constructed wetland. BIORESOURCE TECHNOLOGY 2020; 315:123814. [PMID: 32682264 DOI: 10.1016/j.biortech.2020.123814] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
In order to explore the pollutant removal performance and interspecific interaction in constructed wetland (CW) with Fe0-C filler, constructed wetland with Fe0-C filler (CW-Fe) and with ceramsite filler (CW-C) were set up. Besides, the nutrients removal and interspecific interaction were analyzed, and the results showed that total nitrogen (TN) removal efficiency of CW-Fe system without carbon source was lower than that in CW-C system though CW-Fe system could convert macro-molecular organic matter into micro-molecular organic matter. However, ammonia nitrogen (NH4+-N) increase was observed in CW-Fe system with better total phosphorus (TP) removal performance. High-throughput sequencing showed that the microbial richness and abundance of Bacteroides, Firmicutes, Chlorofeli and Actinobacteria in the CW with Fe0-C filler was significantly higher than with ceramsite filler. The interaction between two CWs was significantly different, and the functional enzymes abundance of nitrate nitrogen (NO3--N) to NH4+-N transformation in CW-Fe system significantly increased.
Collapse
Affiliation(s)
- Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Xinmei Yang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jia Zhu
- Department of Architecture and Environment, Shenzhen Polytechnic College, Shenzhen 518055, Guangdong, China
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
47
|
Zhang J, Qu Y, Qi Q, Zhang P, Zhang Y, Tong YW, He Y. The bio-chemical cycle of iron and the function induced by ZVI addition in anaerobic digestion: A review. WATER RESEARCH 2020; 186:116405. [PMID: 32932096 DOI: 10.1016/j.watres.2020.116405] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Zero-valent iron (ZVI) is known to be an additive in facilitating waste treatment and improving biogas production in anaerobic digestion (AD) systems. This review concentrates on the chemical cycle of iron as well as the function of the iron cycle in the removal of four kinds of pollutants: organic carbon, nitrogen, sulphur and phosphorus, which are commonly encountered in waste treatment. In recent studies, the addition of ZVI to an AD system promoted the in-situ production of CH4 from CO2, enabling carbon capture through biotechnology. Additionally, using iron-carbon microbial electrolytic cells in AD systems in order to accelerate electron transport, as well as specific pollutant degradation mechanisms, are illustrated in the present study. Particularly, the main factors affecting the removal efficiency of contaminants in a ZVI-AD system such as pH, VFA/ Alkalinity (ALK), oxidation-reduction potential and particle size are reviewed. According to the above characteristics, combined with technical model and economic analyses, an AD system based on ZVI was considered to be an economical, efficient and carbon-neutral pollutant treatment technology. Accordingly, Iron-based AD is suggested to be a promising and sustainable approach orientated to a circular economy, which may be applied to many waste treatments fields.
Collapse
Affiliation(s)
- Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yiyuan Qu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuxian Qi
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengshuai Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaobin Zhang
- School of Environmental Science and Technology, Dalian University of Technology, China
| | - Yen Wah Tong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
48
|
Zhu M, Jing Z, Zheng Q, Du S, Ya T, Wang X. Microbial network succession along a current gradient in a bio-electrochemical system. BIORESOURCE TECHNOLOGY 2020; 314:123741. [PMID: 32650263 DOI: 10.1016/j.biortech.2020.123741] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
A lab-scale three dimensional biofilm-electrode reactor (3DBER) coupled with sulfur/iron (3DBER-Fe/S) system was established to examine the impacts of current gradient on the performances and microbial network dynamics. Results showed that generally low current could promote nitrogen and phosphorus removal, while high current caused the inhibition of nutrients removal. Molecular ecological network (MEN) analysis showed that the current altered the overall architecture of the networks, and low currents could improve the scale and complexity of networks (<100 mA), while high current (≥100 mA) likely decrease the networks scale and complexity. Stronger competition was observed among Proteobacteria and Chloroflexi at high current conditions, which may be relevant to the deterioration of nutrients removal. In addition, the current dramatically altered the network interactions among denitrifiers, and the keystone species were intensively dynamic among various networks under the current gradient.
Collapse
Affiliation(s)
- Minghan Zhu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zibo Jing
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Quan Zheng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuai Du
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tao Ya
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
49
|
Wang X, Xin J, Yuan M, Zhao F. Electron competition and electron selectivity in abiotic, biotic, and coupled systems for dechlorinating chlorinated aliphatic hydrocarbons in groundwater: A review. WATER RESEARCH 2020; 183:116060. [PMID: 32750534 DOI: 10.1016/j.watres.2020.116060] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated aliphatic hydrocarbons (CAHs) have been frequently detected in aquifers in recent years. Owing to the bioaccumulation and toxicity of CAHs, it is essential to explore high-efficiency technologies for their complete dechlorination in groundwater. At present, the most widely used abiotic and biotic remediation technologies are based on zero-valent iron (ZVI) and functional anaerobic bacteria (FAB), respectively. However, the main obstacles to the full potential of both technologies in the field include their lowered efficiencies and increased economic costs due to the co-existence of a variety of natural electron acceptors in the environment, such as dissolved oxygen (DO), nitrate (NO3-), sulfate (SO42-), ferric iron (Fe (III)), bicarbonate (HCO3-), and even water, which compete for electrons with the target contaminants. Therefore, a clear understanding of the mechanisms governing electron competition and electron selectivity is significant for the accurate evaluation of the effectiveness of both technologies under natural hydrochemical conditions. We collected data from both abiotic and biotic CAH-remediation systems, summarized the dechlorination and undesired reactions in groundwater, discussed the characterization methods and general principles of electron competition, and described strategies to improve electron selectivity in both systems. Furthermore, we reviewed the emerging ZVI-FAB coupled system, which integrates abiotic and biotic processes to enhance dechlorination performance and electron utilization efficiency. Lastly, we propose future research needs to quantitatively understand the electron competition in abiotic, biotic, and coupled systems in more detail and to promote improved electron selectivity in groundwater remediation.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Mengjiao Yuan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fang Zhao
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
50
|
Si Z, Song X, Wang Y, Cao X, Wang Y, Zhao Y, Ge X, Sand W. Untangling the nitrate removal pathways for a constructed wetland- sponge iron coupled system and the impacts of sponge iron on a wetland ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122407. [PMID: 32135362 DOI: 10.1016/j.jhazmat.2020.122407] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Sponge iron (s-Fe0) is a potential alternative electron donor for nitrate reduction. To gain insight into the mechanism of denitrification in a constructed wetland- sponge iron coupled system (CW-Fe0 system), the removal performance and reduction characteristics of nitrate in constructed wetlands (CWs) with and without s-Fe0 application were compared. Results indicated that s-Fe0 intensified the removal of nitrate with a 6h-HRT. The nitrate removal efficiency was improved by 16-76 % with various influent NO3--N concentrations (10-30 mg L-1) and at a chemical oxygen demand(COD)/N ratio of 5. The rates of chemical denitrification were positively correlated with the dosage of s-Fe0 and negatively correlated with the influent COD concentration. 16S rDNA sequencing revealed that hydrogen-utilizing autotrophic denitrifier of Hydrogenophaga was highly enriched (accounting for 10 % of the total OTUs) only in CW-Fe0 system. The micro-environment created by s-Fe0 was suitable for heterotrophic denitrifiers of Thauera, Tessaracoccus and Simplicispira. The determination of physiological indicators for plants showed that the application of s-Fe0 causes abiotic stress to wetland plants (Canna indica L.). Nevertheless, s-Fe0 can be used as a substrate for CWs, since it allows a high-efficiency removal of nitrate by mediating chemical denitrification and hydrogen-driven autotrophic denitrification.
Collapse
Affiliation(s)
- Zhihao Si
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China.
| | - Yuhui Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yifei Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yufeng Zhao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xiaoyan Ge
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Wolfgang Sand
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| |
Collapse
|