1
|
Wei X, Li S, Li C, Liao J, Yang Y, He Z, Dong K, Lee SS. Characterization and genomic insights into the nitrogen metabolism of heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas aeruginosa WS-03. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124405. [PMID: 39955900 DOI: 10.1016/j.jenvman.2025.124405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 02/18/2025]
Abstract
To achieve effective removal of various inorganic nitrogen in aquatic ecosystems, while expanding the applicability of existing heterotrophic nitrifying-aerobic denitrifying (HN-AD) strains and enhancing their stress tolerance, we isolated the Pseudomonas aeruginosa WS-03 from a sewage treatment plant. The results of parameter optimization indicated that the following were the most favorable conditions for nitrogen removal: using sodium citrate as the carbon source, a C/N ratio of 9, a pH of 7, a temperature of 30 °C and an NH4+-N concentrations below 300 mg/L. The maximum reduction rates of nitrogen are 8.96 mg/(L·h), 4.64 mg/(L·h) and 5.12 mg/(L·h) of NH4+-N, NO3--N and TN, respectively. The result of genome analysis and polymerase chain reaction (PCR) amplification electrophoresis revealed the presence of genes related to nitrogen metabolism, which involves nitrification, denitrification, and assimilation pathways. It also verified that absence of key nitrification genes in strain WS-03, suggesting it operates via a unique denitrification mechanism. Notably, nitrogen assimilation has been identified as the predominant pathway for nitrogen removal by the strain. The strain demonstrated an impressive efficiency of 54.28% in reducing the concentration of NH4+-N in untreated landfill leachate, highlighting its potential for application in practical wastewater treatment. This study comprehensively explored the denitrification characteristics and showed its significant role in environmental remediation.
Collapse
Affiliation(s)
- Xinyu Wei
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shanshan Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Jun Liao
- Wusong Sewage Treatment Plant of Shanghai Chengtou Sewage Treatment Co., Ltd., Shanghai, 201900, China
| | - Yinchuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhengming He
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ke Dong
- Department of Life Science, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Sang-Seob Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
2
|
Qi Y, Fu R, Yan C, Liu X, Liu N. Enrichment of a heterotrophic nitrifying and aerobic denitrifying bacterial consortium: Microbial community succession and nitrogen removal characteristics and mechanisms. BIORESOURCE TECHNOLOGY 2025; 419:132013. [PMID: 39719199 DOI: 10.1016/j.biortech.2024.132013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
This study cultivated a bacterial consortium (S60) from landfill leachate that exhibited effective heterotrophic nitrification and aerobic denitrification (HN-AD) properties. Under aerobic conditions, the removal of NH4+-N reached 100 % when the S60 consortium utilised NH4+-N either as the sole nitrogen source or in combination with NO2--N and NO3--N. Optimal HN-AD performance was achieved with sodium acetate as a carbon source and a pH of 7.0-8.0, dissolved oxygen concentration of 4.0-5.0 mg/L, and a C/N ratio of 10. Furthermore, the presence of functional genes (amoA, hao, napA, nirK, nirS, nosZ), hydroxylamine oxidase, nitrate reductase, and nitrite reductase was confirmed in the S60 consortium. Drawing from these findings, two HN-AD pathways were delineated: NH4+-N → NH2OH → NO2--N → NO3--N → NO2--N → NO → N2O → N2 and NH4+-N → NH2OH → N2O → N2. Metagenomic binning analysis of the S60 consortium uncovered complete pathways for dissimilatory nitrate reduction and denitrification within Halomonas, Zobellella, Stutzerimonas, Marinobacter, and Pannonibacter. These findings offer new insights into the application of HN-AD bacteria and their collaborative nitrogen removal in environments with varying nitrogen sources.
Collapse
Affiliation(s)
- Yuqi Qi
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Renchuan Fu
- College of Environment and Climate, Jinan University, Guangzhou 510632, Guangdong, China
| | - Chao Yan
- College of Environment and Climate, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiao Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Na Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
3
|
Yan W, Wang N, Wang Z, Shi J, Tang T, Liu L. Nitrogen removal characteristics and mechanism of the aerobic denitrifying bacterium Stutzerimonas stutzeri os3 isolated from shrimp aquaculture sediment. MARINE POLLUTION BULLETIN 2025; 214:117711. [PMID: 39978129 DOI: 10.1016/j.marpolbul.2025.117711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/09/2024] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
To overcome the limitations of denitrification under high dissolved oxygen conditions, an efficient aerobic denitrifier, Stutzerimonas stutzeri os3, was isolated from shrimp aquaculture sediment. The strain os3 achieved complete removal of nitrate without significant nitrite accumulation, when sodium citrate was used as the carbon source, with a C/N ratio of 5, and at a shaking speed of 50 r/min. Moreover, the strain os3 demonstrated a high TIN removal efficiency, reaching 98.29 % - 99.28 % under various nitrogen sources. Whole-genome sequencing revealed the presence of denitrification genes (napAB, nirS, norBC and nosZ) in the strain os3, which combined with nitrogen balance analysis, confirmed that the strain os3 primarily utilized aerobic denitrification for nitrate removal under aerobic conditions, as follows: NO3--N→NapABNO2--N→NirSNO→NorBCN2O→NosZN2. Furthermore, the strain os3 significantly increased the removal efficiencies of TIN and NO3--N in shrimp aquaculture wastewater, reaching 90.20 % and 94.43 %, respectively. Therefore, the strain os3 contributes to enhancing aerobic denitrification, providing a biotechnological solution for improving nitrogen cycling in shrimp aquaculture water.
Collapse
Affiliation(s)
- Weizhi Yan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China
| | - Tao Tang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| |
Collapse
|
4
|
Guo C, Chen C, Yan M, Huang X, Jiang J, Zhou L, Yang G. Carbon sources derived from the invasive plant Spartina alterniflora improved the nitrogen removal in seawater constructed wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1404-1414. [PMID: 39731670 DOI: 10.1007/s11356-024-35845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
Invasive alien plants pose a great threat to local plants and ecosystems. How to effectively alleviate this hazard is an unresolved issue. This study explored the carbon release characteristics of an invasive plant Spartina alterniflora and evaluated the ability of nitrogen removal from shrimp culture wastewater through constructing seawater wetland. The results showed that fresh S. alterniflora had a significantly higher carbon release potential and bioavailability than that of withered S. alterniflora, and alkali-heat treatment could increase the carbon release with an average COD release rate of 33.39 mg/g from fresh S. alterniflora. The removal rate of total nitrogen was improved by about 22% in seawater constructed wetlands by adding fresh S. alterniflora biomass. Moreover, the addition of fresh S. alterniflora biomass was beneficial to the increase in the abundance of denitrification-related genera Vibrio, which might be the key to the improvement of nitrate removal efficiency in seawater constructed wetland systems. These findings indicated that invasive plants S. alterniflora as carbon sources of seawater wetland was a feasible and effective resource utilization strategy.
Collapse
Affiliation(s)
- Chong Guo
- School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Chen Chen
- Zhejiang Key Laboratory of Exploitation and Preservation of Costal Bio-Resource, Zhejiang Mariculture Research Institute, Wenzhou, 325000, China
| | - Maocang Yan
- Zhejiang Key Laboratory of Exploitation and Preservation of Costal Bio-Resource, Zhejiang Mariculture Research Institute, Wenzhou, 325000, China
| | - Xiaofeng Huang
- Wuxi Taihu Lake Restoration Co., Ltd., Wuxi, 214062, China
| | - Jun Jiang
- Wuxi Taihu Lake Restoration Co., Ltd., Wuxi, 214062, China
| | - Li Zhou
- Wuxi Taihu Lake Restoration Co., Ltd., Wuxi, 214062, China
| | - Guijun Yang
- School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Wang B, Peng H, Liu W. The Nitrogen Removal Characteristics of a Novel Salt-Tolerant Bacterium, Enterobacter quasihormaechei DGFC5, Isolated from Municipal Sludge. Microorganisms 2024; 12:2652. [PMID: 39770854 PMCID: PMC11728697 DOI: 10.3390/microorganisms12122652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
A novel bacterial strain, Enterobacter quasihormaechei DGFC5, was isolated from a municipal sewage disposal system. It efficiently removed ammonium, nitrate, and nitrite under conditions of 5% salinity, without intermediate accumulation. Provided with a mixed nitrogen source, DGFC5 showed a higher utilization priority for NH4+-N. Whole-genome sequencing and nitrogen balance experiments revealed that DGFC5 can simultaneously consume NH4+-N in the liquid phase through assimilation and heterotrophic nitrification, and effectively remove nitrate via aerobic denitrification and dissimilatory reduction reactions. Single-factor experiments were conducted to determine the optimal nitrogen removal conditions, which were as follows: a carbon-to-nitrogen ratio of 15, a shaking speed of 200 rpm, a pH of 7, C4H4Na2O4 as the carbon source, and a temperature of 30 °C. DGFC5 showed efficient nitrogen purification capabilities under a wide range of environmental conditions, indicating its potential for disposing of nitrogenous wastewater with high salinity.
Collapse
Affiliation(s)
- Bingguo Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Huanlong Peng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wei Liu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Sun W, Hu C, Wu J, Wei M, Lin JG, Hong Y. Efficient nitrogen removal via simultaneous ammonium assimilation and heterotrophic denitrification of Paracoccus denitrificans R-1. iScience 2024; 27:110599. [PMID: 39220262 PMCID: PMC11365388 DOI: 10.1016/j.isci.2024.110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Although diverse microorganisms can remove ammonium and nitrate simultaneously, their metabolic mechanisms are not well understood. Paracoccus denitrificans R-1 showed the maximal NH4 + removal rate 9.94 mg L-1·h-1 and 2.91 mg L-1·h-1 under aerobic and anaerobic conditions, respectively. Analysis of the nitrogen balance calculation and isotope tracing experiment indicated that NH4 + was consumed through assimilation. The maximal NO3 - removal rate of strain R-1 was 18.05 and 19.76 mg L-1·h-1 under aerobic and anaerobic conditions, respectively. The stoichiometric consumption ratio of acetate to nitrate was 0.902 and NO3 - was reduced to N2 for strain R-1 through 15NO3 - isotopic tracing experiment, which indicated a respiratory process coupled with the oxidation of electron donors. Genomic analysis showed that strain R-1 contained genes for ammonium assimilation and denitrification, which effectively promoted each other. These findings provide insights into microbial nitrogen transformation and facilitate the simultaneous removal of NH4 + and NO3 - in a single reactor.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P.R. China
| | - Chunchen Hu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Mingken Wei
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P.R. China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu City 30010, Taiwan
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| |
Collapse
|
7
|
Wan H, Wang K, Luo X, Zhang C, Deng K, Lin S, Xie J, Luo Q, Lei X, Ding L. Algal-mediated nitrogen removal and sustainability of algal-derived dissolved organic matter supporting denitrification. BIORESOURCE TECHNOLOGY 2024; 407:131083. [PMID: 38972430 DOI: 10.1016/j.biortech.2024.131083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Algae-mediated nitrogen removal from low carbon vs. nitrogen (C/N) wastewater techniques has garnered significant attention due to its superior autotrophic assimilation properties. This study investigated the ammonium-N removal potential of four algae species from low C/N synthetic wastewater. Results showed that 95 % and 99 % of ammonium-N are eliminated at initial concentrations of 11.05 ± 0.98 mg/L and 42.51 ± 2.20 mg/L with little nitrate and nitrite accumulation. The compositions of secreted algal-derived dissolved organic matter varied as C/N decreased and showed better bioavailability for nitrate-N removal by Pseudomonas sp. SZF15 without pre-oxidation, achieving an efficiency of 99 %. High-throughput sequencing revealed that the aquatic microbial communities, dominated by Scenedesmus, Kalenjinia, and Micractinium, remain relatively stable across different C/N, aligning with the underlying metabolic pathways. These findings may provide valuable insights into the sustainable elimination of multiple nitrogen contaminants from low C/N wastewater.
Collapse
Affiliation(s)
- Huiqin Wan
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Kangpeng Wang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xianxin Luo
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Chao Zhang
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Kai Deng
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Shusen Lin
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jingming Xie
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Qi Luo
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xu Lei
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Lin Ding
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
8
|
Jiang S, Yang J, Wu C, Du H, Zheng H, Lin Q, Pan W, Zhong C, Tan K, Lin F, Luo Z, Pan Z, Ye J, Lin P. Purification of inorganic nitrogen from the mariculture tail water by anaerobic/anoxic/oxic (A 2O) process. MARINE POLLUTION BULLETIN 2024; 203:116404. [PMID: 38718546 DOI: 10.1016/j.marpolbul.2024.116404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024]
Abstract
This study aims to address the suboptimal performance of conventional denitrifying strains in treating mariculture tail water (MTW) containing inorganic nitrogen (IN). The concentration of inorganic nitrogen in the mariculture tail water is about 5-20 mg·L-1. A biofilm treatment process was developed and evaluated using an anoxic-anoxic-aerobic biofilter composite system inoculated with the denitrifying strain Meyerozyma guilliermondii Y8. The removal effect of total nitrogen (TN), IN, and Chemical Oxygen Demand (CODMn) from MTW was investigated. The results indicate that the A2O composite biological filter has excellent pollutant removal efficiency within 25 days of operation, after the acclimation of the denitrifying microorganisms. The initial concentrations of TN, IN, and CODMn ranged between 10.24 and 12.89 mg·L-1, 7.84-10.49 mg·L-1, and 9.44-11.52 mg·L-1, respectively, and the removal rates of these indexes reached 38-68 %, 45-70 %, and 55-70 %, respectively. The experiments with different hydraulic retention times (HRT = 6 h, 8 h, 10 h) demonstrated that longer HRT was more conducive to the removal of inorganic nitrogen. Moreover, scanning electron microscopy observations revealed that the target strain successfully grew and attached to the filler in large quantities. The findings of this study provide practical guidance for the development of efficient biofilm processes for the treatment of MTW.
Collapse
Affiliation(s)
- Shuangcheng Jiang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Fisheries Research Institution of Fujian, Xiamen 361013, China
| | - Jinkun Yang
- College of Environment and Resources, Fujian Normal University, Fuzhou 350000, China
| | - Chunshan Wu
- College of Environment and Resources, Fujian Normal University, Fuzhou 350000, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Huidong Zheng
- Fisheries Research Institution of Fujian, Xiamen 361013, China
| | - Qi Lin
- Fisheries Research Institution of Fujian, Xiamen 361013, China.
| | - Wentao Pan
- Fisheries Research Institution of Fujian, Xiamen 361013, China
| | - Chongming Zhong
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Fisheries Research Institution of Fujian, Xiamen 361013, China
| | - Kaiwen Tan
- Third institute of oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Feng Lin
- Third institute of oceanography, Ministry of Natural Resources, Xiamen 361005, PR China.
| | - Zhuhua Luo
- Third institute of oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Zhong Pan
- Third institute of oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Jingwen Ye
- Fisheries Research Institution of Fujian, Xiamen 361013, China
| | - Peng Lin
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States of America
| |
Collapse
|
9
|
Huang M, Shen J, Guan W, Cai L, Sha H. Performance and kinetics of rotating drum biofilter aerobic simultaneous purifying SO 2 and NO x. ENVIRONMENTAL TECHNOLOGY 2024; 45:2438-2448. [PMID: 36803184 DOI: 10.1080/09593330.2023.2174049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The rotating drum biofilter (RDB) was investigated as a biological process for purifying SO2 and NOx. After 25 days of film hanging, the inlet concentration was less than 2800 mg·m-3, and the NOx inlet concentration was less than 800 mg·m-3, with greater than 90% desulphurisation and denitration efficiency. Bacteroidetes and Chloroflexi were the dominant bacteria in desulphurisation, while Proteobacteria were the dominant bacteria in denitrification. The sulphur and nitrogen in RDB were balanced when the SO2 inlet concentration was 1200 mg·m-3 and the NOx inlet concentration was 1000 mg·m-3. The best results were obtained SO2-S removal load was 28.12 mg·L-1·h-1 and NOx-N removal load was 9.78 mg·L-1·h-1. when SO2 concentration was 1200 mg·m-3, NOx concentration was 800 mg·m-3, and empty bed retention time (EBRT) was 75.36 s. The liquid phase dominated the SO2 purification process, and the experimental data fit better with the liquid phase mass transfer model. NOx purification was governed by the biological and liquid phases, with the modified biological-liquid phase mass transfer model fitting the experimental data better.
Collapse
Affiliation(s)
- Mengxia Huang
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, People's Republic of China
| | - Jiachen Shen
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, People's Republic of China
| | - Wenyao Guan
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, People's Republic of China
| | - Luxiang Cai
- College of Arts and Design, Ningbo University of Finance & Economics, Ningbo, People's Republic of China
| | - Haolei Sha
- Zhejiang Provincial Top Discipline of Biological Engineering (Level A), Zhejiang Wanli University, Ningbo, People's Republic of China
| |
Collapse
|
10
|
Wang C, He T, Zhang M, Zheng C, Yang L, Yang L. Review of the mechanisms involved in dissimilatory nitrate reduction to ammonium and the efficacies of these mechanisms in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123480. [PMID: 38325507 DOI: 10.1016/j.envpol.2024.123480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is currently of great interest because it is an important method for recovering nitrogen from wastewater and offers many advantages, over other methods. A full understanding of DNRA requires the mechanisms, pathways, and functional microorganisms involved to be identified. The roles these pathways play and the effectiveness of DNRA in the environment are not well understood. The objectives of this review are to describe our current understanding of the molecular mechanisms and pathways involved in DNRA from the substrate transfer perspective and to summarize the effects of DNRA in the environment. First, the mechanisms and pathways involved in DNRA are described in detail. Second, our understanding of DNRA by actinomycetes is reviewed and gaps in our understanding are identified. Finally, the effects of DNRA in the environment are assessed. This review will help in the development of future research into DNRA to promote the use of DNRA to treat wastewater and recover nitrogen.
Collapse
Affiliation(s)
- Cerong Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Tengxia He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Manman Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Chunxia Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Li Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Lu Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
11
|
Yang J, Xie X, Miao Y, Dong Z, Zhu B. Isolation and characterization of a cold-tolerant heterotrophic nitrification-aerobic denitrification bacterium and evaluation of its nitrogen-removal efficiency. ENVIRONMENTAL RESEARCH 2024; 242:117674. [PMID: 38029814 DOI: 10.1016/j.envres.2023.117674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
With a view toward addressing the poor efficiency with which nitrogen is removed from wastewater below 10 °C, in this study, we isolated a novel cold-tolerant heterotrophic nitrification-aerobic denitrification (HN-AD) bacterium from a wetland and characterized its nitrogen removal performance and nitrogen metabolic pathway. On the basis of 16S rRNA gene sequencing, this strain was identified as a species of Janthinobacterium, designated J1-1. At 8 °C, strain J1-1 showed excellent removal efficiencies of 89.18% and 68.18% for single-source NH4+-N and NO3--N, respectively, and removal efficiencies of 96.23% and 79.64% for NH4+-N and NO3--N, respectively, when supplied with mixed-source nitrogen. Whole-genome sequence analysis and successful amplification of the amoA, napA, and nirK functional genes related to nitrogen metabolism provided further evidence in support of the HN-AD capacity of strain J1-1. The deduced HN-AD metabolic pathway of the strain was NH4+-N→NH2OH→NO2--N→NO3--N→NO2--N→NO→N2O. In addition, assessments of NH4+-N removal under different conditions revealed the following conditions to be optimal for efficient removal: a temperature of 20 °C, pH of 7, shaking speed of 150 rpm, sodium succinate as a carbon source, and a C/N mass ratio of 16. Given its efficient nitrogen removal capacity at 8 °C, the J1-1 strain characterized in this study has considerable application potential in the treatment of low-temperature wastewater.
Collapse
Affiliation(s)
- Jingyu Yang
- Sichuan Academy of Forestry Sciences, Chengdu, 610081, China
| | - Xiuhong Xie
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Yuanying Miao
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Zhixin Dong
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China.
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| |
Collapse
|
12
|
Zhang Y, Xu J, Dong X, Wang J, Liu C, Liu J. Optimization of nitrogen removal conditions based on response surface methodology and nitrogen removal pathway of Paracoccus sp. QD-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168348. [PMID: 37935269 DOI: 10.1016/j.scitotenv.2023.168348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
The strain Paracoccus sp. QD-19 was isolated from the sludge-water mixture of aerobic tanks at the southern wastewater treatment plant in Shenyang, China. The optimal nitrogen removal conditions for strain QD-19 were determined using the Plackett-Burman design, path of steepest ascent method, and response surface methodology (RSM). The optimum nitrogen removal conditions were C/N 12.93, temperature 37 °C, and shaking speed 175.50 r/min. Strain QD-19 achieved 83.82 ± 0.80 % nitrogen removal efficiency at 10 h under optimum conditions. Functional enzyme-encodinge genes amplified via 16S rRNA sequence analysis included amoA, hao, napA, nirS, nirK, norB, and nosZ. The results revealed that NH4+-N → NH2OH → NO2--N → NO3--N → NO2--N → NO → N2O → N2 was the pathway for heterotrophic nitrification - aerobic denitrification. The strain was used to treat wastewater from a sewage treatment plant under optimal response surface methodology conditions. As a result, the TN removal efficiency was 77.11 %. The findings demonstrated that strain QD-19 exhibits favorable potential for heterotrophic nitrification and aerobic denitrification (HN-AD) of actual wastewater, presenting a promising application for biological wastewater treatment.
Collapse
Affiliation(s)
- Yuhong Zhang
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Jiaqi Xu
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xianbo Dong
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jiabao Wang
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Changfeng Liu
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jiaju Liu
- College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
13
|
Xie Y, Tian X, He Y, Dong S, Zhao K. Nitrogen removal capability and mechanism of a novel heterotrophic nitrification-aerobic denitrification bacterium Halomonas sp. DN3. BIORESOURCE TECHNOLOGY 2023; 387:129569. [PMID: 37517711 DOI: 10.1016/j.biortech.2023.129569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Recently, the functional microorganisms capable of eliminating nitrogenous waste have been applied in mariculture systems. As a potential candidate for treating mariculture wastewater, strain DN3 eliminated 100% of ammonia and nitrate and 96.61%-100% of nitrite within 72 h, when single nitrogen sources at concentrations of 0-50 mg/L. Strain DN3 also exhibited the efficient removal performance of mixed-form nitrogen (ammonia, nitrate, and nitrite) at salinity 30 ‰, C/N ratio 20, and 180 rpm. The nitrogen assimilation pathway dominated inorganic nitrogen metabolism, with less nitrogen (14.23%-25.02% of TN) lost into the air via nitrification and denitrification, based on nitrogen balance analysis. Moreover, the bacterial nitrification pathway was explored by enzymatic assays and inhibition assays. These complex nitrogen assimilation and dissimilation processes were further revealed by bacterial genome analysis. These results provide important insight into nitrogen metabolism of Halomonas sp. and theoretical support for treating mariculture wastewater with strain DN3.
Collapse
Affiliation(s)
- Yumeng Xie
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China
| | - Xiangli Tian
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China.
| | - Yu He
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China
| | - Shuanglin Dong
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Kun Zhao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266000, PR China
| |
Collapse
|
14
|
Li G, Wei M, Wei G, Chen Z, Shao Z. Efficient heterotrophic nitrification by a novel bacterium Sneathiella aquimaris 216LB-ZA1-12 T isolated from aquaculture seawater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115588. [PMID: 37839193 DOI: 10.1016/j.ecoenv.2023.115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/10/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
High concentration of ammonia poses a common threat to the healthy breeding of marine aquaculture organisms. Since aquaculture water is rich in organic matter, heterotrophic nitrifying bacteria might play a crucial role in ammonia removal. However, their roles in ammonia oxidation remain unknown. Here, we report a novel strain isolated from shrimp aquaculture seawater, identified as Sneathiella aquimaris 216LB-ZA1-12T, capable of heterotrophic nitrification. It is the first characterized heterotrophic nitrifier of the order Sneathiellales in the class Alphaproteobacteria. It exhibits high activity in heterotrophic nitrification, removing nearly 94% of ammonium-N under carbon-constrained conditions in 8 days with no observed nitrite accumulation. The heterotrophic nitrification pathway, inferred based on detection and genomic data was as follows: NH4+→NH2OH→NO→NO2-→NO3-. While this pathway aligns with the classical nitrification pathway, while the significant difference lies in the absence of classical HAO and HOX encoding genes in the genome, which is common in heterotrophic nitrifying bacteria. In summary, this bacterium is not only valuable for studying the nitrifying mechanism, but also holds potential for practical applications in ammonia removal in marine aquaculture systems and saline wastewater.
Collapse
Affiliation(s)
- Guizhen Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Mengjiao Wei
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; College of Oceans and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Guangshan Wei
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai)/School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Zhen Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai)/School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| |
Collapse
|
15
|
Fu W, Zhao Y, Wang Q, Yu X, Song Z, Duan P, Xu M, Zhang X, Rao Z. Characterization of simultaneous removal of nitrogen and phosphorus by novel Raoultella ornithinolytica strain YX-4 and application in real farm wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 391:129922. [PMID: 39491113 DOI: 10.1016/j.biortech.2023.129922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
A novel strain having ability to simultaneously remove ammonium nitrogen, nitrate nitrogen, nitrite nitrogen and phosphorus was isolated from swine farm wastewater and was identified as Raoultella ornithinolytica YX-4 (NCBI accession number: OR646540). Nitrogen and phosphorus balance analysis combined with amplification of key enzyme genes of metabolic pathways revealed that the strain possess heterotrophic nitrification, aerobic denitrification, phosphorus accumulation and assimilation pathways. Significant removal of ammonium nitrogen, nitrate nitrogen and nitrite nitrogen were achieved (99%, 97% and 93% respectively) with optimal culture conditions. The transcript level of key enzyme genes was detected at different incubation period, and significant up-regulation of glnA, narI, narH, nirB, nirD, ppk1, and ppk2 was noted. This is the first report of the denitrification of phosphorus accumulating organisms R. ornithinolytica and reveals tangible results of key enzyme gene expression during real wastewater treatment.
Collapse
Affiliation(s)
- Weilai Fu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Aishengmu Feed Co. Ltd., Yancheng 224300, PR China; Beijing BEONY Technology Co. Ltd., Beijing 102200, PR China
| | - Youxi Zhao
- Biochemical Engineering College, Beijing Union University, Beijing 100023, PR China
| | - Qiang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xuan Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Ziyang Song
- Jiangsu Aishengmu Feed Co. Ltd., Yancheng 224300, PR China
| | - Peifeng Duan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
16
|
Yang M, Jiao Y, Sun L, Miao J, Song X, Yin M, Yan L, Sun N. The performance and mechanism of tetracycline and ammonium removal by Pseudomonas sp. DX-21. BIORESOURCE TECHNOLOGY 2023; 386:129484. [PMID: 37442397 DOI: 10.1016/j.biortech.2023.129484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
To remove ammonium and tetracycline (TC) from wastewater, a new strain, DX-21, was isolated and exhibited simultaneous removal ability. The performance of DX-21 in TC removal, its removal mechanism, and the potential toxicities of the degradation products were investigated with genomics, mass spectrometry, density functional theory calculations, quantitative structure-activity relationship analyses, and Escherichia coli exposure experiments. DX-21 exhibited removal of ammonium (9.64 mg·L-1·h-1) via assimilation, and TC removal (0.85 mg·L-1·h-1) primarily occurred through cell surface bio-adsorption and biodegradation. Among the 12 identified degradation products, the majority exhibited lower toxicities than TC. Moreover, potential degradation pathways were proposed, including hydroxylation and deamination. Furthermore, DX-21 possessed TC resistance genes, various oxygenases and peroxidases that could potentially contribute to TC degradation. DX-21 colonized activated sludge and significantly enhanced the biodegradation of TC. Therefore, DX-21 showed potential for treating wastewater containing both ammonium and TC.
Collapse
Affiliation(s)
- Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Jiao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Luoting Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Miao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xu Song
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Nan Sun
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
17
|
Yi M, Wang H, Ma X, Wang C, Wang M, Liu Z, Lu M, Cao J, Ke X. Efficient nitrogen removal of a novel Pseudomonas chengduensis strain BF6 mainly through assimilation in the recirculating aquaculture systems. BIORESOURCE TECHNOLOGY 2023; 379:129036. [PMID: 37037330 DOI: 10.1016/j.biortech.2023.129036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Biological nitrogen removal has received increasing attention in wastewater treatment. A bacterium with excellent nitrogen removal performance was isolated from biofilters of recirculating aquaculture systems (RAS) and identified as Pseudomonas chengduensis BF6. It was indicated that inorganic nitrogen is transformed into gaseous and biological nitrogen by the metabolic pathways of denitrification, anammox, and assimilation, which is the main nitrogen removal pathway of strain BF6. The strain BF6 could effectively remove nitrogen within 24 h under the conditions of ammonia, nitrate, nitrite, and mixed nitrogen sources with maximum total nitrogen removal efficiencies reaching 97.00 %, 61.40 %, 79.10 %, and 84.98 %, respectively. The strain BF6 exhibited total nitrogen removal efficiency of 91.14 %, altered the microbial diversity and enhanced the relative abundance of Pseudomonas in the RAS biofilter. These findings demonstrate that Pseudomonas sp. BF6 is a highly efficient nitrogen-removing bacterium with great potential for application in aquaculture wastewater remediation.
Collapse
Affiliation(s)
- Mengmeng Yi
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - He Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - Xiaona Ma
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China; College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Chun Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, PR China
| | - Miao Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - Zhigang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - Maixin Lu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, PR China
| | - Jianmeng Cao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, PR China
| | - Xiaoli Ke
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, PR China.
| |
Collapse
|
18
|
Zuo X, Xu W, Wei S, Jiang S, Luo Y, Ling M, Zhang K, Gao Y, Wang Z, Hu J, Grossart HP, Luo Z. Aerobic denitrifying bacterial-fungal consortium mediating nitrate removal: Dynamics, network patterns and interactions. iScience 2023; 26:106824. [PMID: 37250796 PMCID: PMC10212969 DOI: 10.1016/j.isci.2023.106824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
In recent years, nitrogen removal by mixed microbial cultures has received increasing attention owing to cooperative metabolism. A natural bacterial-fungal consortium was isolated from mariculture, which exhibited an excellent aerobic denitrification capacity. Under aerobic conditions, nitrate removal and denitrification efficiencies were up to 100% and 44.27%, respectively. High-throughput sequencing and network analysis suggested that aerobic denitrification was potentially driven by the co-occurrence of the following bacterial and fungal genera: Vibrio, Fusarium, Gibberella, Meyerozyma, Exophiala and Pseudoalteromonas, with the dominance of Vibrio and Fusarium in bacterial and fungal communities, respectively. In addition, the isolated consortium had a high steady aerobic denitrification performance in our sub-culturing experiments. Our results provide new insights on the dynamics, network patterns and interactions of aerobic denitrifying microbial consortia with a high potential for new biotechnology applications.
Collapse
Affiliation(s)
- Xiaotian Zuo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shiping Wei
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
| | - Shuangcheng Jiang
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China
| | - Yu Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Minghuang Ling
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Kai Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yuanhao Gao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhichao Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jiege Hu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany
- Institute of Biochemistry and Biology, Postdam University, Potsdam 14469, Germany
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Marine Biology College, Xiamen Ocean Vocational College, Xiamen 361012, China
- Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
19
|
Zheng L, Lin H, Dong Y, Li B, Lu Y. A promising approach for simultaneous removal of ammonia and multiple heavy metals from landfill leachate by carbonate precipitating bacterium. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131662. [PMID: 37247490 DOI: 10.1016/j.jhazmat.2023.131662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
The effective and cheap remediation of ammonia (NH+4) and multiple heavy metals from landfill leachate is currently a grand challenge. In this study, Paracoccus denitrificans AC-3, a bacterial strain capable of heterotrophic nitrification aerobic denitrification (HNAD) and carbonate precipitation, exhibited good tolerance to a variety of heavy metals and could remove 99.70% of NH+4, 99.89% of zinc (Zn2+), 97.42% of cadmium (Cd2+) and 46.19% of nickel (Ni2+) simultaneously after 24 h of incubation. The conversion pathway of NH+4 by strain AC-3 was dominated by assimilation (84.68%), followed by HNAD (14.93%), and the increase in environmental pH was mainly dependent on assimilation rather than HNAD. Calcium (Ca2+) primarily played four roles in heavy metal mineralization: (ⅰ) improving bacterial tolerance to heavy metals; (ⅱ) ensuring the HNAD capacity of strain AC-3; (ⅲ) co-precipitating with heavy metals; and (ⅳ) precipitating into calcite to adsorb heavy metals. The heavy metals removal mechanisms were mainly calcite adsorption and formation of carbonate and hydroxide precipitation for Zn2+, co-precipitation for Cd2+, and adsorption for Ni2+. The Zn2+, Cd2+, and Ni2+ precipitates displayed unique morphologies. This research provided a promising biological resource for the simultaneous remediation of NH+4 and heavy metals from landfill leachate.
Collapse
Affiliation(s)
- Lili Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yanrong Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| |
Collapse
|
20
|
Luo Y, Luo L, Huang X, Jiang D, Wu X, Li Z. Characterization and metabolic pathway of Pseudomonas fluorescens 2P24 for highly efficient ammonium and nitrate removal. BIORESOURCE TECHNOLOGY 2023; 382:129189. [PMID: 37196744 DOI: 10.1016/j.biortech.2023.129189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
The ammonium and nitrate removal performance and metabolic pathways of a biocontrol strain, Pseudomonas fluorescens 2P24, were investigated. Strain 2P24 could completely remove 100 mg/L ammonium and nitrate, with removal rates of 8.27 mg/L/h and 4.29 mg/L/h, respectively. During these processes, most of the ammonium and nitrate were converted to biological nitrogen via assimilation, and only small amounts of nitrous oxide escaped. The inhibitor allylthiourea had no impact on ammonium transformation, and diethyl dithiocarbamate and sodium tungstate did not inhibit nitrate removal. Intracellular nitrate and ammonium were detectable during the nitrate and ammonium transformation process, respectively. Moreover, the nitrogen metabolism functional genes (glnK, nasA, narG, nirBD, nxrAB, nirS, nirK, and norB) were identified in the strain. All results highlighted that P. fluorescens 2P24 is capable of assimilatory and dissimilatory nitrate reduction, ammonium assimilation and oxidation, and denitrification.
Collapse
Affiliation(s)
- Yuwen Luo
- Key Laboratory of (Guangxi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, 530004, China
| | - Luo Luo
- Key Laboratory of (Guangxi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, 530004, China
| | - Xuejiao Huang
- Key Laboratory of (Guangxi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, 530004, China.
| | - Daihua Jiang
- Key Laboratory of (Guangxi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, 530004, China
| | - Xiaogang Wu
- Key Laboratory of (Guangxi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, 530004, China
| | - Zhenlun Li
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, Southwest University, Chongqing 400716, China
| |
Collapse
|
21
|
Tang Q, Zeng M, Zou W, Jiang W, Kahaer A, Liu S, Hong C, Ye Y, Jiang W, Kang J, Ren Y, Liu D. A new strategy to simultaneous removal and recovery of nitrogen from wastewater without N 2O emission by heterotrophic nitrogen-assimilating bacterium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162211. [PMID: 36791849 DOI: 10.1016/j.scitotenv.2023.162211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Biological assimilation that recovery the nitrogen from wastewater in the form of biomass offers a more environmentally friendly solution for the limitations of the conventional wastewater treatments. This study reported the simultaneous removal and recovery of nitrogen from wastewater without N2O emission by a heterotrophic nitrogen-assimilating Acinetobacter sp. DN1 strain. Nitrogen balance, biomass qualitative analysis, genome and enzyme studies have been performed to illustrate the mechanism of nitrogen conversion by strain DN1. Results showed that the ammonium removal followed one direct pathway (GOGAT/GDH) and three indirect pathways (NH4+ → NH2OH → NO → NO2- → NH4+ → GOGAT/GDH; NH4+ → NH2OH → NO → NO2- → NO3- → NO2- → NH4+ → GOGAT/GDH; NH4+ → NH2OH → NO → NO3- → NO2- → NH4+ → GOGAT/GDH). Nitrogen balance and biomass qualitative analysis showed that over 70 % of the ammonium in the wastewater was converted into intracellular nitrogen-containing compounds and stored in the cells of strain DN1. Traditional denitrification pathway was not detected and the ammonium was removed through assimilation, which makes it more energy-saving for nitrogen recovery when compared with Haber-Bosch process. This study provides a new direction for simultaneous nitrogen removal and recovery without N2O emission by the heterotrophic nitrogen-assimilating bacterium.
Collapse
Affiliation(s)
- Qian Tang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Mengjie Zeng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China; Wuhan Municipal Engineering Design & Research Institute Co., Ltd, No. 52 Optics Valley Avenue, Wuhan 430074, PR China
| | - Wugui Zou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Wenyu Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Alimu Kahaer
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Shixi Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Chol Hong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China; Heat Engineering Faculty, Kim Chaek University of Technology, Pyongyang 999093, Democratic People's Republic of Korea
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Jianxiong Kang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Yongzheng Ren
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Dongqi Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China.
| |
Collapse
|
22
|
Zhou X, Wang Y, Tan X, Sheng Y, Li Y, Zhang Q, Xu J, Shi Z. Genomics and nitrogen metabolic characteristics of a novel heterotrophic nitrifying-aerobic denitrifying bacterium Acinetobacter oleivorans AHP123. BIORESOURCE TECHNOLOGY 2023; 375:128822. [PMID: 36871698 DOI: 10.1016/j.biortech.2023.128822] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
A novel aerobic strain of Acinetobacter oleivorans AHP123 was isolated from activated sludge, which could conduct heterotrophic nitrification and denitrification simultaneously. This strain has excellent NH4+-N removal ability, with 97.93% removal rate at 24-hour. To identify the metabolic pathways of this novel strain, genes of gam, glnA, gdhA, gltB, nirB, nasA, nar, nor, glnK and amt were detected by genome analysis. Through RT-qPCR, it was found that the expression of key genes confirmed two possible ways of nitrogen removal in strain AHP123: nitrogen assimilation and heterotrophic nitrification aerobic denitrification (HNAD). However, the absence of some common HNAD genes (amo, nap and nos) suggested that strain AHP123 might have a different HNAD pathway from other HNAD bacteria. Nitrogen balance analysis revealed that strain AHP123 assimilated most of the external nitrogen sources into intracellular nitrogen.
Collapse
Affiliation(s)
- Xiangqun Zhou
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yuanli Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xin Tan
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yequan Sheng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yanbin Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Qin Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jialu Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Zhengsheng Shi
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
23
|
Huang MQ, Cui YW, Yang HJ, Xu MJ, Cui Y, Chen Z. A halophilic aerobic-heterotrophic strain Halomonas venusta SND-01: Nitrogen removal by ammonium assimilation and heterotrophic nitrification-aerobic denitrification. BIORESOURCE TECHNOLOGY 2023; 374:128758. [PMID: 36801440 DOI: 10.1016/j.biortech.2023.128758] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) removal from high-salinity wastewater is a major challenge. The aerobic-heterotrophic nitrogen removal (AHNR) process has been demonstrated to be feasible for treating hypersaline wastewater. In this study, Halomonas venusta SND-01, a halophilic strain capable of performing AHNR, was isolated from saltern sediment. The strain achieved ammonium, nitrite, and nitrate removal efficiencies of 98%, 81%, and 100%, respectively. The N balance experiment suggests that this isolate removes N mainly via assimilation. Various functional genes related to N metabolism were found in the genome of the strain, establishing a complex AHNR pathway that includes ammonium assimilation, heterotrophic nitrification-aerobic denitrification, and assimilatory nitrate reduction. Four key enzymes in the N removal process were successfully expressed. The strain exhibited high-adaptability under C/N ratios of 5-15, salinities of 2%-10% (m/v), and pH of 6.5-9.5. Therefore, the strain shows high potential for treating saline wastewater with different inorganic N compositions.
Collapse
Affiliation(s)
- Mei-Qi Huang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Hou-Jian Yang
- Beijing Municipal Pollution Source Management Center, Beijing 100089, China
| | - Meng-Jiao Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Zhaobo Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
24
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
25
|
Tang L, Su C, Wang Q, Cao L, Xian Y, Wen S, Zhou Y, Gao S. Use of iron-loaded biochar to alleviate anammox performance inhibition under PFOA stress conditions: Integrated analysis of sludge characteristics and metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161178. [PMID: 36581267 DOI: 10.1016/j.scitotenv.2022.161178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The negative effects of perfluorooctanoic acid (PFOA) on biological nitrogen removal performance in wastewater treatment plants, are receiving increasing attention due to the widespread reporting of this issue. In this study, pomelo peel iron-loaded biochar (Fe-PBC) was added to an anammox bioreactor to alleviate the negative effects of PFOA. Results showed that the addition of Fe-PBC increased the ammonia and nitrite removal efficiencies from 77.7 ± 9.6 % and 79.5 ± 5.6 % to 94.45 ± 5.1 % and 95.9 ± 5.0 %, respectively. In addition, Fe-PBC promoted the removal of PFOA from wastewater, increasing the PFOA removal efficiency from 5.2 % to 29.2 ± 4.3 % from 100 to 200 days. The introduction of iron-loaded biochar into the anammox bioreactor increased the CO ratio by 13.64 % by 150 days. In addition, a CO fitting peak was detected in the Fe-PBC, indicating that the Fe-PBC was loaded with microorganisms. Microbial community analysis showed a decrease in the relative abundances of Proteobacteria and Nitrospirae from 31 % and 3.4 % to 16.8 % and 0.9 %, respectively, while the relative abundance of Planctomycetes increased from 26.8 % to 44.1 %. Metagenomic analysis found that the functional genes hzsB and hdh increased from 98,666 ± 11,400 and 3190 ± 460 to 119,333 ± 15,534 and 138,650 ± 11,233 copy numbers/MLSS. The increase in anammox biomass may be attributed to the presence of iron, an essential element for the synthesis of key anammox enzyme. Furthermore, iron was also associated with the enhanced extracellular electron transfer in the anammox system induced by Fe-PBC.
Collapse
Affiliation(s)
- Linqin Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Qing Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Linlin Cao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yunchuan Xian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shitong Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yijie Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shu Gao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
26
|
Tang L, Su C, Fan C, Cao L, Liang Z, Xu Y, Chen Z, Wang Q, Chen M. Metagenomic and extracellular polymeric substances analysis reveals the mechanism of exogenous N-hexanoyl-L-homoserine lactone in alleviating the inhibition of perfluorooctanoic acid on anammox process. BIORESOURCE TECHNOLOGY 2023; 369:128482. [PMID: 36513308 DOI: 10.1016/j.biortech.2022.128482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
To alleviate the negative effects of perfluorooctanoic acid (PFOA) on nitrogen removal via anaerobic ammonia oxidation (anammox), an exogenous signaling factor (N-hexanoyl-L-homoserine lactone, C6-HSL) was introduced into an anammox reactor. Results showed that 2 μmol/L C6-HSL promoted the nitrogen removal efficiency of the anammox reactor under PFOA stress, with the removal efficiencies of ammonia and nitrite increasing from 79.7 ± 4.8 % and 80.8 ± 3.8 %, to 94.4 ± 4.3 % and 97.1 ± 3.8 %. Exogenous C6-HSL enhanced the compactness of the extracellular proteins, and improved the sludge hydrophobicity. Meanwhile, C6-HSL resulted in a microbial shift, with the relative abundance of Planctomycetes increasing from 30.2 % to 49.5 %. Candidatus Kuenenia stuttgartiensis replaced Candidatus Brocadia sp. BL1 as the dominant species, while the available space for other nitrogen-removing bacteria was reduced. Exogenous C6-HSL promoted the expression of anammox-related genes, such as hzsB and hdh, while denitrifying genes were down-regulated. In addition, the relative abundance of HdtS, which synthesizes AHLs, increased by 0.02446%.
Collapse
Affiliation(s)
- Linqin Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China.
| | - Cuiping Fan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Linlin Cao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, PR China
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Qing Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
27
|
Yan L, Jiang J, Liu S, Yin M, Yang M, Zhang X. Performance and mechanism of nitrate removal by the aerobic denitrifying bacterium JI-2 with a strong autoaggregation capacity. BIORESOURCE TECHNOLOGY 2022; 365:128111. [PMID: 36252753 DOI: 10.1016/j.biortech.2022.128111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Here, a new strain JI-2 of the strongly autoaggregating aerobic denitrifying bacteria was screened. The nitrate removal ability and autoaggregation mechanism of JI-2 were analyzed using the nitrogen balance and genomics technology. The nitrate removal rate was 27.05 mg N/(L·h) at pH 9.0 and C/N 8.0. The strain JI-2 removes nitrate via the aerobic denitrification and dissimilation pathways and removes ammonium via the assimilation pathway. 66.81 % nitrate was converted to cellular components under aerobic conditions. Complex nitrogen metabolism genes were detected in strain JI-2. C-di-GMP mediates the motility behavior of JI-2 by binding the FleQ and PilZ proteins, and regulating the expression of PslA. Furthermore, the mechanism of autoaggregation was verified by extracellular polymeric substance analysis. Meanwhile, the nitrate removal rates of strain JI-2 was 11.13-12.50 mg N/(L·h) in wastewater. Thus, strain JI-2 has good prospects for application in the treatment of nitrate wastewater.
Collapse
Affiliation(s)
- Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China.
| | - Jishuang Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Xiaoqi Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| |
Collapse
|
28
|
Synthesis, Adsorption Isotherm and Kinetic Study of Alkaline- Treated Zeolite/Chitosan/Fe 3+ Composites for Nitrate Removal from Aqueous Solution-Anion and Dye Effects. Gels 2022; 8:gels8120782. [PMID: 36547306 PMCID: PMC9777915 DOI: 10.3390/gels8120782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
In the present study, alkaline-treated zeolite/chitosan/Fe3+ (ZLCH-Fe) composites were prepared and analyzed using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and pH of zero point of charge (pHzpc) to remove nitrates from water. The process was carried out using an adsorption method with a varied initial pH, adsorbent dosage, initial nitrate concentration and contact time. The pHzpc demonstrated that the ZLCH-Fe surface had a positive charge between 2 and 10, making it easier to capture the negative charge of nitrate. However, the optimal pH value is 7. After 270 min, the maximum adsorption capacity and percent removal reached 498 mg/g and 99.64%, respectively. Freundlich and pseudo-second-order were fitted to the adsorption isotherm and kinetic models, respectively. An evaluation was conducted on the effects of anions-SO42- and PO43--and dyes-methylene blue (MB) and acid red 88 (AR88)-upon nitrate removal. The results indicated that the effect of the anion could be inhibited, in contrast to dye effects. However, the optimal pH values were changed to 10 for MB and 2 for AR88, resulting in a hydrogel formation. This might be indicated by the protonation of hydroxyl and amino groups resulting from a chitosan nitrate reaction in the AR88 solution.
Collapse
|
29
|
Han F, Li Z, Li Q, Liu Z, Han Y, Li Q, Zhou W. Cooperation of heterotrophic bacteria enables stronger resilience of halophilic assimilation biosystem than nitrification system under long-term stagnation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157806. [PMID: 35932852 DOI: 10.1016/j.scitotenv.2022.157806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Long-term stagnation of biosystems (with no or very little wastewater) owing to seasonal downtime or failure maintenance brings great challenges to the performance recovery after system restart. In particular, the reduction of microbial activity and change of dissolved organic matter (DOM) affect the effluent quality and subsequent treatment procedures. Monitoring the dynamics and resilience of biosystems after long-term stagnation is important to formulate targeted countermeasures for system stability. However, the influence of long-term stagnation on autotrophic nitrification (AN) and heterotrophic assimilation (HA) biosystems has not been systematically explored. Here, we used halophilic AN and HA systems to study the stability and resilience of two nitrogen removal consortia after long-term stagnation. The results showed that 97.5 % and 93 % of ammonium and 47.0 % and 90.1 % of total nitrogen were removed using the halophilic AN and HA systems, respectively, in the stable period. After four weeks of stagnation, the HA system showed stronger resilience than AN system, in terms of faster recovery of treatment performance, and less fluctuations in sludge settleability and extracellular polymeric substances. In addition, after the stagnation period, the DOM of AN system was rich in low-molecular refractory humic acid, whereas that of HA system was rich in high-molecular proteins. The stagnation period led to the replacement of the dominant heterotrophic functional microorganisms, Paracoccus and Halomonas, with Muricauda and Marinobacterium in the HA system. The microbial network results revealed that the cooperation of heterotrophic bacteria enables stronger resilience of the HA system from prolonged stagnation than the AN system. In addition, the nitrogen removal efficiency, protein to polysaccharide ratio of EPS and fluorescence intensity of DOM were significantly correlated with the microbial community composition. These results suggest that AN system has greater risks in terms of treatment performance and sludge stability than the system after long-term stagnation.
Collapse
Affiliation(s)
- Fei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Zhe Li
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China
| | - Qinyang Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Zhe Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Yufei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Qian Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China.
| |
Collapse
|
30
|
Han F, Zhou W. Nitrogen recovery from wastewater by microbial assimilation - A review. BIORESOURCE TECHNOLOGY 2022; 363:127933. [PMID: 36100188 DOI: 10.1016/j.biortech.2022.127933] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The increased nitrogen (N) input with low utilization rate in artificial N management has led to massive reactive N (Nr) flows, putting the Earth in a high-risk state. It is essential to recover and recycle Nr during or after Nr removal from wastewater to reduce N input while simultaneously mitigate Nr pollution in addressing the N stress. However, mechanisms for efficient Nr recovery during or after Nr removal remain unclear. Here, the occurrence of N risk and progress in wastewater treatment in recent years as well as challenges of the current technologies for N recovery from wastewater were reviewed. Through analyzing N conversion fluxes in biogeochemical N-cycling networks, microbial N assimilation through photosynthetic and heterotrophic microorganisms was highlighted as promising alternative for synergistic N removal and recovery in wastewater treatment. In addition, the prospects and gaps of Nr recovery from wastewater through microbial assimilation are discussed.
Collapse
Affiliation(s)
- Fei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China.
| |
Collapse
|
31
|
Huang X, Luo Y, Luo L, Xie D, Li Z. The nitrite reductase encoded by nirBDs in Pseudomonas putida Y-9 influences ammonium transformation. Front Microbiol 2022; 13:982674. [PMID: 36312953 PMCID: PMC9597696 DOI: 10.3389/fmicb.2022.982674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/21/2022] [Indexed: 09/13/2023] Open
Abstract
It is unknown whether nirBDs, which conventionally encode an NADH nitrite reductase, play other novel roles in nitrogen cycling. In this study, we explored the role of nirBDs in the nitrogen cycling of Pseudomonas putida Y-9. nirBDs had no effect on organic nitrogen transformation by strain Y-9. The △nirBD strain exhibited higher ammonium removal efficiency (90.7%) than the wild-type strain (76.1%; P < 0.05) and lower end gaseous nitrogen (N2O) production. Moreover, the expression of glnA (control of the ammonium assimilation) in the △nirBD strain was higher than that in the wild-type strain (P < 0.05) after being cultured in ammonium-containing medium. Furthermore, nitrite noticeably inhibited the ammonium elimination of the wild-type strain, with a corresponding removal rate decreasing to 44.8%. However, no similar impact on ammonium transformation was observed for the △nirBD strain, with removal efficiency reaching 97.5%. In conclusion, nirBDs in strain Y-9 decreased the ammonium assimilation and increased the ammonium oxidation to nitrous oxide.
Collapse
Affiliation(s)
- Xuejiao Huang
- Key Laboratory of (Guangxi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, China
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, Southwest University, Chongqing, China
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, China
| | - Yuwen Luo
- Key Laboratory of (Guangxi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, China
| | - Luo Luo
- Key Laboratory of (Guangxi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, China
| | - Deti Xie
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, Southwest University, Chongqing, China
| | - Zhenlun Li
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, Southwest University, Chongqing, China
| |
Collapse
|
32
|
Wei B, Luo X, Ma W, Lv P. Biological nitrogen removal and metabolic characteristics of a novel cold-resistant heterotrophic nitrification and aerobic denitrification Rhizobium sp. WS7. BIORESOURCE TECHNOLOGY 2022; 362:127756. [PMID: 35952861 DOI: 10.1016/j.biortech.2022.127756] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
For improving the poor de-nitrogen efficiency and effluent quality faced by wastewater treatment plants in winter, a novel cold-resistant strain, Rhizobium sp. WS7 was isolated. Strain WS7 presented dramatic de-nitrogen efficiencies including 98.73 % of NH4+-N, 99.98 % of NO3--N, 100 % of NO2--N and approximately 100 % of mixed nitrogen (NH4+-N and NO3--N) at 15 °C. Optimum parameters of WS7 for aerobic denitrification were determined. Additionally, functional genes (amoA, napA, nirK, norB, and nosZ) and key enzymes (nitrate reductase and nitrite reductase) activities were determined. Nitrogen balance analysis suggested that assimilation played a dominant role in de-nitrogen by WS7, the NH4+-N metabolic pathway was deduced as NH4+-N → NH2OH → NO → N2O → N2, and the NO3--N/NO2--N metabolic pathway was deduced as NO3--N → NO2--N → NO → N2O → N2. The cold-resistant Rhizobium sp. WS7 has great application feasibility in cold sewage treatment.
Collapse
Affiliation(s)
- Bohui Wei
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiao Luo
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Wenkai Ma
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Pengyi Lv
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
33
|
Chen PF, Zhang RJ, Du ZL, Wang GH, Dong HT, Cui B, Fan RP, Li LX, Wang QB, Liu YS, Sun ZM. Microbial composition and nitrogen removal pathways in a novel sequencing batch reactor integrated with semi-fixed biofilm carrier: evidence from a pilot study for low- and high-strength sewage treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49105-49115. [PMID: 35212897 DOI: 10.1007/s11356-022-19382-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
The sequencing batch reactor (SBR) activated sludge process is a well-established technology for sewage treatment. One of the drawbacks of SBRs, however, total nitrogen (TN) removals is insufficient. By means of introducing four improvements, including semi-fixed biofilm carrier, sludge elevation mixing and change for the mode of influent and effluent, compliant standard for TN discharge was obtained in this novel SBR configuration during low- and high-strength sewage load. To illustrate the microbial compositions and functions of the attached biofilm on semi-fixed carrier and the suspended aggregates, as well as the nitrogen removal pathway, high throughput 16S rRNA gene amplicon sequencing, PICRUSt2 algorithm, and KEGG database were applied. The results revealed that (i) the microbial communities from suspended aggregates and biofilm samples were significantly different from each other; (ii) during low-strength sewage loads, TN removal was mainly by nitrification-denitrification. The suspended aggregates was responsible for denitrification, while the biofilm was focused on ammonium oxidation; (iii) during high-strength sewage loads, function of nitrate reductase from suspended aggregates was faded, and anammox and N assimilation by biofilm became dominant. Meanwhile, TN removal referring to the formation of L-glutamine via assimilation was the main pathway.
Collapse
Affiliation(s)
- Peng-Fei Chen
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Rui-Jian Zhang
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China.
| | - Zhi-Li Du
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Guang-Hua Wang
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Hao-Tao Dong
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Bin Cui
- Graduate School, Guangzhou University, Guangzhou, 510060, China
| | - Ru-Pei Fan
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Lu-Xin Li
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Qian-Bin Wang
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Ying-Shi Liu
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Zhi-Min Sun
- Research center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| |
Collapse
|
34
|
Wu L, Ding X, Lin Y, Lu X, Lv H, Zhao M, Yu R. Nitrogen removal by a novel heterotrophic nitrification and aerobic denitrification bacterium Acinetobacter calcoaceticus TY1 under low temperatures. BIORESOURCE TECHNOLOGY 2022; 353:127148. [PMID: 35421563 DOI: 10.1016/j.biortech.2022.127148] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
A new bacterial strain, Acinetobacter calcoaceticus TY1, was identified in activated sludge. This strain efficiently metabolized nitrogen from ammonium at low temperatures, utilizing NH4+-N, NO3--N, and NO2--N as nitrogen sources. Of these, NH4+-N was superior in terms of both assimilation and heterotrophic nitrification at 8 °C. The nitrogen metabolism-associated genes amoA, nirK, and nosZ were identified in TY1. Optimal requirements for growth and nitrogen removal were pH 7, shaking speed of 90 rpm, a C/N ratio of 10, and sodium citrate for the carbon supply. The ability to denitrify at low temperature suggests TY1's potential for wastewater management.
Collapse
Affiliation(s)
- Linhui Wu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Xiaoyu Ding
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yan Lin
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xingshun Lu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hang Lv
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Manping Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ruihong Yu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
35
|
Simultaneous Nitrification and Denitrification under Aerobic Atmosphere by Newly Isolated Pseudomona aeruginosa LS82. WATER 2022. [DOI: 10.3390/w14091452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Discharge of wastewater contained high amount of nitrogen would cause eutrophication to water bodies. Simultaneous nitrification and denitrification (SND) has been confirmed as an effective process, the isolation of SND bacteria is crucial for its successful operation. In this study, an SND strain was isolated and identified as Pseudomona aeruginosa LS82, which exhibited a rapid growth rate (0.385 h−1) and good nitrogen removal performance (4.96 mg N·L−1·h−1). Response surface methodology was applied to optimize the TN removal conditions, at which nearly complete nitrogen (99.8 ± 0.9%) removal were obtained within 18 h at the condition: pH 8.47, 100 rpm and the C/N ratio of 19.7. The saddle-shaped contours confirmed that the interaction of pH and inoculum size would influence the removal of total nitrogen significantly. Kinetic analyses indicated that the reduction of nitrite was the rate-limiting step in the SND process. Our research suggested strain LS82 can serve as a promising candidate for the treatment of ammonium rich wastewater, and expended our understanding the nitrogen removal mechanism in the SND process.
Collapse
|
36
|
El-Lateef HMA, Khalaf MM, Al-Fengary AED, Elrouby M. Removal of the Harmful Nitrate Anions from Potable Water Using Different Methods and Materials, including Zero-Valent Iron. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082552. [PMID: 35458747 PMCID: PMC9031846 DOI: 10.3390/molecules27082552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Drinking water containing nitrate ions at a higher concentration level of more than 10 mg/L, according to the World Health Organization (WHO), poses a considerable peril to humans. This danger lies in its reduction of nitrite ions. These ions cause methemoglobinemia during the oxidation of hemoglobin into methemoglobin. Many protocols can be applied to the remediation of nitrate ions from hydra solutions such as Zn metal and amino sulfonic acid. Furthermore, the electrochemical process is a potent protocol that is useful for this purpose. Designing varying parameters, such as the type of cathodic electrode (Sn, Al, Fe, Cu), the type of electrolyte, and its concentration, temperature, pH, and current density, can give the best conditions to eliminate the nitrate as a pollutant. Moreover, the use of accessible, functional, and inexpensive adsorbents such as granular ferric hydroxide, modified zeolite, rice chaff, chitosan, perlite, red mud, and activated carbon are considered a possible approach for nitrate removal. Additionally, biological denitrification is considered one of the most promising methodologies attributable to its outstanding performance. Among these powerful methods and materials exist zero-valent iron (ZVI), which is used effectively in the deletion process of nitrate ions. Non-precious synthesis pathways are utilized to reduce the Fe2+ or Fe3+ ions by borohydride to obtain ZVI. The structural and morphological characteristics of ZVI are elucidated using UV–Vis spectroscopy, zeta potential, XRD, FE-SEM, and TEM. The adsorptive properties are estimated through batch experiments, which are achieved to control the feasibility of ZVI as an adsorbent under the effects of Fe0 dose, concentration of NO3− ions, and pH. The obtained literature findings recommend that ZVI is an appropriate applicant adsorbent for the remediation of nitrate ions.
Collapse
Affiliation(s)
- Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82425, Egypt;
- Correspondence: or (H.M.A.E.-L.); or (M.E.)
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82425, Egypt;
| | | | - Mahmoud Elrouby
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82425, Egypt;
- Faculty of Science, King Salman International University, Sinai 46612, Egypt
- Correspondence: or (H.M.A.E.-L.); or (M.E.)
| |
Collapse
|
37
|
Nitrogen Removal Characteristics of a Cold-Tolerant Aerobic Denitrification Bacterium, Pseudomonas sp. 41. Catalysts 2022. [DOI: 10.3390/catal12040412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nitrogen pollution of surface water is the main cause of water eutrophication, and is considered a worldwide challenge in surface water treatment. Currently, the total nitrogen (TN) content in the effluent of wastewater treatment plants (WWTPs) is still high at low winter temperatures, mainly as a result of the incomplete removal of nitrate (NO3−-N). In this research, a novel aerobic denitrifier identified as Pseudomonas sp. 41 was isolated from municipal activated sludge; this strain could rapidly degrade a high concentration of NO3−-N at low temperature. Strain 41 completely converted 100 mg/L NO3−-N in 48 h at 15 °C, and the maximum removal rate reached 4.0 mg/L/h. The functional genes napA, nirS, norB and nosZ were successfully amplified, which provided a theoretical support for the aerobic denitrification capacity of strain 41. In particular, the results of denitrification experiments showed that strain 41 could perform aerobic denitrification under the catalysis of NAP. Nitrogen balance analysis revealed that strain 41 degraded NO3−-N mainly through assimilation (52.35%) and aerobic denitrification (44.02%), and combined with the gene amplification results, the nitrate metabolism pathway of strain 41 was proposed. Single-factor experiments confirmed that strain 41 possessed the best nitrogen removal performance under the conditions of sodium citrate as carbon source, C/N ratio 10, pH 8, temperature 15–30 °C and rotation speed 120 rpm. Meanwhile, the bioaugmentation test manifested that the immobilized strain 41 remarkably improved the denitrification efficiency and shortened the reaction time in the treatment of synthetic wastewater.
Collapse
|
38
|
Dinga L, Hana B, Zhoua J. Characterization of the facultative anaerobic Pseudomonas stutzeri strain HK13 to achieve efficient nitrate and nitrite removal. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Chen X, Zhang Q, Zhu Y, Zhao T. Response of rotating biological contactor started up by heterotrophic nitrification-aerobic denitrification bacteria to various C/N ratios. CHEMOSPHERE 2022; 291:133048. [PMID: 34822871 DOI: 10.1016/j.chemosphere.2021.133048] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
To improve the low pollutant removal efficiency of traditional biological methods for treating livestock and poultry breeding wastewater under a relatively low temperature, a rotating biological contactor (RBC) inoculated with heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria was designed. A quick start-up process and a well removal performance had been achieved in the novel RBC. To elucidate the anti-load shock ability of the novel RBC, the effects of C/N ratio on nitrogen removal and microbial assemblage were focused under a low temperature (12 ± 2 °C). Results showed that the highest NH4+-N and TN removal efficiency were 99.57 ± 0.31% and 68.41 ± 0.52%. Microbial diversity analysis based on high throughput sequencing technique showed that Arcobacter and Flavobacterium with an increasing relative abundance were the key to ensure high nitrogen removal efficiently at a low C/N ratio and temperature. Moreover, nitrogen transferring pathways of the novel RBC was revealed and dissimilatory nitrate reduction and denitrification were the main pathways. The excellent pollutant removal performance demonstrates that the novel RBC is a promising process to effectively treat wastewater with low C/N ratio and low temperature.
Collapse
Affiliation(s)
- Xue Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 40054, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 40054, China.
| | - Yunan Zhu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 40054, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 40054, China
| |
Collapse
|
40
|
He T, Zhang M, Ding C, Wu Q, Chen M, Mou S, Cheng D, Duan S, Wang Y. New insight into the nitrogen removal capacity and mechanism of Streptomyces mediolani EM-B2. BIORESOURCE TECHNOLOGY 2022; 348:126819. [PMID: 35134523 DOI: 10.1016/j.biortech.2022.126819] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The utilization of actinomycetes as the bioresources for heterotrophic nitrification and aerobic denitrification is rarely reported due to the lack of work to explore their nitrogen biodegradation capabilities. Streptomyces mediolani EM-B2 belonging to actinomycetes could effectively remove high concentration of multiple nitrogen forms, and the maximum removal rates of ammonium, nitrate and nitrite reached 3.46 mg/(L·h), 1.71 mg/(L·h) and 1.73 mg/(L·h), respectively. Nitrite was preferentially consumed from the simultaneous nitrification and denitrification reaction system. Nitrogen balance analysis uncovered that more than 37% of the initial total nitrogen was converted to nitrogenous gas by aerobic denitrification. Experiments with specific inhibitors of nitrification and denitrification revealed that strain EM-B2 contained ammonia monooxygenase, hydroxylamine oxidoreductase, nitrate reductase and nitrite oxidoreductase, which were successfully expressed and detected as 0.43, 0.59, 0.12 and 0.005 U/mg proteins, respectively. These findings may provide new insights into the actinomycetes for bioremediation of nitrogen pollution wastewater.
Collapse
Affiliation(s)
- Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Chenyu Ding
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Shuanglong Mou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Dujuan Cheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Sijun Duan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Yu Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
41
|
Elmansour TE, Mandi L, Hejjaj A, Ouazzani N. Nutrients' behavior and removal in an activated sludge system receiving Olive Mill Wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114254. [PMID: 34972048 DOI: 10.1016/j.jenvman.2021.114254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
This work aims to monitor inorganic nutrients (phosphorus and ammonium) behavior during the injection of Olive Mill Wastewater (OMWW) in an activated sludge process. The system was fed firstly with urban wastewater (UWW) and was alimented after its stabilization with OMWW (at 0.1% (v/v) and 1%) for 100 days. Total polyphenols, chemical oxygen demand (CODT), nutrients, and biomass behavior against OMWW injection were investigated. The results showed a satisfactory biomass growth of 7.12 gMLVSS.L-1 and a high microbial activity of 21.88 mg O2.gMLVSS-1.h-1. An overall removal reached 90%, 92%, 59% and 93% respectively for, CODT, total polyphenols, PO43- and NH4+. Adding OMWW at 1% seems to improve the nutrients elimination, especially phosphorus by the biological process probably though bringing more biodegradable organics. The chemical processes (precipitation/complexation) could also be involved in phosphorus removal, due to the OMWW wealth on salts elements such as calcium.
Collapse
Affiliation(s)
- T E Elmansour
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, P. O. Box 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P. O. Box 2390, 40000, Marrakech, Morocco
| | - L Mandi
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, P. O. Box 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P. O. Box 2390, 40000, Marrakech, Morocco
| | - A Hejjaj
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, P. O. Box 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P. O. Box 2390, 40000, Marrakech, Morocco
| | - N Ouazzani
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, P. O. Box 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P. O. Box 2390, 40000, Marrakech, Morocco.
| |
Collapse
|
42
|
Yang B, Qin Y, He X, Li H, Ma J. The removal of ammonia nitrogen via heterotrophic assimilation by a novel Paracoccus sp. FDN-02 under anoxic condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152236. [PMID: 34896137 DOI: 10.1016/j.scitotenv.2021.152236] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
A novel strain FDN-02 was isolated from a sequencing batch biofilm reactor. FDN-02 was identified as Paracoccus sp., and the Genbank Sequence_ID was MW652628. Comparing with the removal efficiency of ammonia nitrogen (NH4+-N) by bacterium FDN-02 under different growth conditions, the optimal initial pH, carbon source, and C/N ratio were 7.0, sucrose, and 16, respectively. The maximum removal efficiency and rate of NH4+-N were respectively 96.2% and 10.06 mg-N/L/h within 8 h under anoxic condition when the concentration of NH4+-N was 44.87 mg/L. Specifically, 71.9% of NH4+-N was utilized by strain FDN-02 through heterotrophic assimilation to synthetize organic nitrogen, and approximately 24.1% of NH4+-N was lost in the form of gaseous nitrogen without the emission of nitrous oxide. Bacterium FDN-02 was also found to be a denitrifying organism, and nitrate nitrogen and nitrite nitrogen of lower concentrations were removed by denitrification after the enlargement of biomass. Further investigation showed that the biomass after the removal of NH4+-N by strain FDN-02 had resource utilization potential, and the contents of proteins and amino acids were 635 and 192.97 mg/g, respectively, especially for the usage as an alternative nutrient source for livestock and organic fertilizers. This study provided a promising environmentally friendly biological treatment method for the removal of NH4+-N in the wastewater.
Collapse
Affiliation(s)
- Biqi Yang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yuyang Qin
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xianglong He
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Hongjing Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
43
|
Bishayee B, Chatterjee RP, Ruj B, Chakrabortty S, Nayak J. Strategic management of nitrate pollution from contaminated water using viable adsorbents: An economic assessment-based review with possible policy suggestions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114081. [PMID: 34823908 DOI: 10.1016/j.jenvman.2021.114081] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/22/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Groundwater contaminated with nitrate has prompted a flurry of research studies around the world in the recent years to address this burning environmental issue. The common presence of nitrates in groundwater, wastewater, and surface waters has thrown an enormously critical challenge to the global research communities to provide safe and clean drinking water to municipalities. As per WHO, the maximum permissible limit of nitrate in drinking water is 10 mg/L and in groundwater is 50 mg/L; exceeding the limits, several human health problems are observed. Adsorption, ion-exchange processes, membrane-based approaches, electrochemical and chemical procedures, biological methods, filtration, nanoparticles, etc. have been well investigated and reviewed to reduce nitrate levels in water samples in the recent years. Process conditions, as well as the efficacy of various approaches, were discovered to influence different techniques for nitrate mitigation. But, because of low cost, simple operation, easy handling, and high removal effectiveness, adsorption has been found to be the most suitable and efficient approach. The main objectives of this review primarily focuses on the creation of a naturally abundant, cost-effective innovative abundant material, such as activated clay particles combined with iron oxide. Oxide-clay nanocomposite materials, effectively remove nitrate with higher removal efficiency along with recovery of nitrate concentrated sludge. Such methods stand out as flexible and economic ways for capturing stabilized nitrate in solid matrices to satisfy long-term operations. A techno-economic assessment along with suitable policy suggestions have been reported to justify the viability of the brighter processes. Indeed, this kind of analytical review appears ideal for municipal community recommendations on abatement of excess nitrate to supply of clean water.
Collapse
Affiliation(s)
- Bhaskar Bishayee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Rishya Prava Chatterjee
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Biswajit Ruj
- Environmental Engineering Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209, India.
| | - Sankha Chakrabortty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India.
| | - Jayato Nayak
- Department of Chemical Engineering, Kalasalingam Academy of Research and Education, Tamilnadu, 626126, India.
| |
Collapse
|
44
|
Yan L, Wang C, Jiang J, Liu S, Zheng Y, Yang M, Zhang Y. Nitrate removal by alkali-resistant Pseudomonas sp. XS-18 under aerobic conditions: Performance and mechanism. BIORESOURCE TECHNOLOGY 2022; 344:126175. [PMID: 34678448 DOI: 10.1016/j.biortech.2021.126175] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
To improve poor nitrate removal by microorganisms under strong alkaline conditions, a new type of aerobic nitrification-reducing bacteria was isolated in this study. Using nitrogen balance and genome information, the capacity of Pseudomonas XS-18 to remove nitrate and the mechanism of alkali tolerance were analyzed. At pH 11.0, XS-18 could remove 12.17 mg N/(L·h) nitrate. At C/N ratios of 13.0 and 25 °C, nitrite and ammonia nitrogen were barely enriched. XS-18 could reduce nitrate through dissimilation and assimilation, and 21.74% and 77.39% of nitrate was converted into cellular components and organic nitrogen, respectively. Meanwhile, functional genes (nirBD, nasAB, gdhA, glnA, and gltBD) associated with nitrogen metabolism were determined. In addition, Na+/H+ antiporters (MnhACDEFG, PhaACDEFG, NhaCD and TrkAH) and a cell surface protein (SlpA) from the XS-18 genome, as well as compatible solutes that help stabilize intracellular pH, were also characterized. XS-18 possessed significant potential in alkaline wastewater treatment.
Collapse
Affiliation(s)
- Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 PR China.
| | - Caixu Wang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 PR China
| | - Jishuang Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 PR China
| | - Shuang Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 PR China
| | - Yaoqi Zheng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 PR China
| | - Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 PR China
| | - Ying Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 PR China.
| |
Collapse
|
45
|
Chen YZ, Zhang LJ, Ding LY, Zhang YY, Wang XS, Qiao XJ, Pan BZ, Wang ZW, Xu N, Tao HC. Sustainable treatment of nitrate-containing wastewater by an autotrophic hydrogen-oxidizing bacterium. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 9:100146. [PMID: 36157854 PMCID: PMC9487994 DOI: 10.1016/j.ese.2022.100146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 05/15/2023]
Abstract
Bacteria are key denitrifiers in the reduction of nitrate (NO3 --N), which is a contaminant in wastewater treatment plants (WWTPs). They can also produce carbon dioxide (CO2) and nitrous oxide (N2O). In this study, the autotrophic hydrogen-oxidizing bacterium Rhodoblastus sp. TH20 was isolated for sustainable treatment of NO3 --N in wastewater. Efficient removal of NO3 --N and recovery of biomass nitrogen were achieved. Up to 99% of NO3 --N was removed without accumulation of nitrite and N2O, consuming CO2 of 3.25 mol for each mole of NO3 --N removed. The overall removal rate of NO3 --N reached 1.1 mg L-1 h-1 with a biomass content of approximately 0.71 g L-1 within 72 h. TH20 participated in NO3 --N assimilation and aerobic denitrification. Results from 15N-labeled-nitrate test indicated that removed NO3 --N was assimilated into organic nitrogen, showing an assimilation efficiency of 58%. Seventeen amino acids were detected, accounting for 43% of the biomass. Nitrogen loss through aerobic denitrification was only approximately 42% of total nitrogen. This study suggests that TH20 can be applied in WWTP facilities for water purification and production of valuable biomass to mitigate CO2 and N2O emissions.
Collapse
Affiliation(s)
- Yi-Zhen Chen
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Li-Juan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
- Corresponding author.
| | - Ling-Yun Ding
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, Guangdong, China
| | - Yao-Yu Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Xi-Song Wang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Xue-Jiao Qiao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Bao-Zhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Zhi-Wu Wang
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Manassas, 20147, Virginia, USA
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Hu-Chun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
- Corresponding author.
| |
Collapse
|
46
|
Huang X, Tie W, Xie D, Jiang D, Li Z. Certain Environmental Conditions Maximize Ammonium Accumulation and Minimize Nitrogen Loss During Nitrate Reduction Process by Pseudomonas putida Y-9. Front Microbiol 2021; 12:764241. [PMID: 34966364 PMCID: PMC8710668 DOI: 10.3389/fmicb.2021.764241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Realizing the smallest nitrogen loss is a challenge in the nitrate reduction process. Dissimilatory nitrate reduction to ammonium (DNRA) and nitrate assimilation play crucial roles in nitrogen retention. In this study, the effects of the carbon source, C/N ratio, pH, and dissolved oxygen on the multiple nitrate reduction pathways conducted by Pseudomonas putida Y-9 are explored. Strain Y-9 efficiently removed nitrate (up to 89.79%) with glucose as the sole carbon source, and the nitrogen loss in this system was 15.43%. The total nitrogen decrease and ammonium accumulation at a C/N ratio of 9 were lower than that at 12 and higher than that at 15, respectively (P < 0.05). Besides, neutral and alkaline conditions (pH 7–9) favored nitrate reduction. Largest nitrate removal (81.78%) and minimum nitrogen loss (10.63%) were observed at pH 7. The nitrate removal and ammonium production efficiencies of strain Y-9 increased due to an increased shaking speed. The expression patterns of nirBD (the gene that controls nitrate assimilation and DNRA) in strain Y-9 were similar to ammonium patterns of the tested incubation conditions. In summary, the following conditions facilitated nitrate assimilation and DNRA by strain Y-9, while reducing the denitrification: glucose as the carbon source, a C/N ratio of 9, a pH of 7, and a shaking speed of 150 rpm. Under these conditions, nitrate removal was substantial, and nitrogen loss from the system was minimal.
Collapse
Affiliation(s)
- Xuejiao Huang
- Key Laboratory of (Guang Xi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, China.,Chongqing Key Laboratory of Soil Multiscale Interfacial Process, Southwest University, Chongqing, China
| | - Wenzhou Tie
- Key Laboratory of (Guang Xi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, China
| | - Deti Xie
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, Southwest University, Chongqing, China
| | - Daihua Jiang
- Key Laboratory of (Guang Xi) Agricultural Environment and Products Safety, College of Agronomy, Guangxi University, Nanning, China
| | - Zhenlun Li
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, Southwest University, Chongqing, China
| |
Collapse
|
47
|
Ren J, Bai X, Liu Y, Huang X. Simultaneous nitrification and aerobic denitrification by a novel isolated Ochrobactrum anthropi HND19. BIORESOURCE TECHNOLOGY 2021; 340:125582. [PMID: 34332445 DOI: 10.1016/j.biortech.2021.125582] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The study aimed to isolate a novel strain with heterotrophic nitrification and aerobic denitrification ability and evaluate the nitrogen removal characteristics. Results showed that Ochrobactrum anthropi HND19 could remove approximately 98.6% of NH4+-N (104.3 mg·L-1) and 97.6% of NO3--N (98.6 mg·L-1), and the removal rates achieved 4.28 and 4.01 mg-N/(L·h) by heterotrophic nitrification and aerobic denitrification. The optimal incubate conditions of strain HND19 were 120 rpm (shaking speed), 5 ‰ (salinity), 30 °C (temperature), 7.5 (C/N ratio) with sodium acetate as carbon resource. And the removal efficiency of the total nitrogen (TN) realized 73.4% under the optimal conditions. Functional genes (hao, napA, nirK, norB, and nosZ) involved in the nitrogen removal processes were successfully amplified from strain HND19. These findings indicate that the strain HND19 possesses great application feasibility in treating wastewater with high-intensity nitrogen.
Collapse
Affiliation(s)
- Jilong Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xianyu Bai
- Beijing Enterprise of Technology Service (Guangdong) Co.LTD., Guangzhou 510360, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
48
|
Fe 2+ Alleviated the Toxicity of ZnO Nanoparticles to Pseudomonas tolaasii Y-11 by Changing Nanoparticles Behavior in Solution. Microorganisms 2021; 9:microorganisms9112189. [PMID: 34835316 PMCID: PMC8620691 DOI: 10.3390/microorganisms9112189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/26/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
The negative effect of ZnO nanoparticles (ZnO-NPs) on the biological removal of nitrate (NO3-) has received extensive attention, but the underlying mechanism is controversial. Additionally, there is no research on Fe2+ used to alleviate the cytotoxicity of NPs. In this paper, the effects of different doses of ZnO-NPs on the growth and NO3- removal of Pseudomonas tolaasii Y-11 were studied with or without Fe2+. The results showed that ZnO-NPs had a dose-dependent inhibition on the growth and NO3- removal of Pseudomonas tolaasii Y-11 and achieved cytotoxic effects through both the NPs themselves and the released Zn2+. The addition of Fe2+ changed the behavior of ZnO-NPs in an aqueous solution (inhibiting the release of toxic Zn2+ and promoting the aggregation of ZnO-NPs), thereby alleviating the poisonous effect of ZnO-NPs on the growth and nitrogen removal of P. tolaasii Y-11. This study provides a theoretical method for exploring the mitigation of the acute toxicity of ZnO-NPs to denitrifying microorganisms.
Collapse
|
49
|
Liao H, Qu M, Hou X, Lin X, Li H, Duan CS, Tian Y. Nitrogeniibacter mangrovi gen. nov., sp. nov., a novel anaerobic and aerobic denitrifying betaproteobacterium and reclassification of Azoarcus pumilus as Aromatoleum pumilum comb. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34369861 DOI: 10.1099/ijsem.0.004946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Denitrification is a vital link in the global bio-nitrogen cycle. Here, we isolated a strain (M9-3-2T) that is a novel benzo[a]pyrene (BaP)-tolerant, anaerobic and aerobic denitrifying bacterium from a continuous BaP-enrichment cultured mangrove sediment. In silico comparative genomics and taxonomic analysis clearly revealed that strain M9-3-2T (=MCCC 1K03313T=JCM 32045T) represents a novel species of a novel genus named as Nitrogeniibacter mangrovi gen. nov., sp. nov., belonging to family Zoogloeaceae, order Rhodocyclales. In addition, the species Azoarcus pumilus is transferred into genus Aromatoleum and named Aromatoleum pumilum comb. nov. The predominant respiratory quinone of strain M9-3-2T was ubiquinone-8 and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unidentified phospholipids and three unidentified aminophospholipids. In this study, the capacity of strain M9-3-2T to eliminate nitrate was detected under anaerobic and aerobic conditions, and the removal rates of nitrate were 6.1×10-6 µg N/l/h/cell and 3×10-7 µg N/l/h/cell, respectively. Our results suggested that strain M9-3-2T could play an important role in the nitrogen removal regardless of the presence of oxygen in natural or/and man-made ecosystems.
Collapse
Affiliation(s)
- Hu Liao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China.,Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Mingming Qu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Xinyue Hou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Xiaolan Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR China
| | - Chen-Song Duan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
50
|
Brumfield KD, Usmani M, Chen KM, Gangwar M, Jutla AS, Huq A, Colwell RR. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ Microbiol 2021; 23:7314-7340. [PMID: 34390611 DOI: 10.1111/1462-2920.15716] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Vibrio spp. thrive in warm water and moderate salinity, and they are associated with aquatic invertebrates, notably crustaceans and zooplankton. At least 12 Vibrio spp. are known to cause infection in humans, and Vibrio cholerae is well documented as the etiological agent of pandemic cholera. Pathogenic non-cholera Vibrio spp., e.g., Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Incidence of vibriosis is rising globally, with evidence that anthropogenic factors, primarily emissions of carbon dioxide associated with atmospheric warming and more frequent and intense heatwaves, significantly influence environmental parameters, e.g., temperature, salinity, and nutrients, all of which can enhance growth of Vibrio spp. in aquatic ecosystems. It is not possible to eliminate Vibrio spp., as they are autochthonous to the aquatic environment and many play a critical role in carbon and nitrogen cycling. Risk prediction models provide an early warning that is essential for safeguarding public health. This is especially important for regions of the world vulnerable to infrastructure instability, including lack of 'water, sanitation, and hygiene' (WASH), and a less resilient infrastructure that is vulnerable to natural calamity, e.g., hurricanes, floods, and earthquakes, and/or social disruption and civil unrest, arising from war, coups, political crisis, and economic recession. Incorporating environmental, social, and behavioural parameters into such models allows improved prediction, particularly of cholera epidemics. We have reported that damage to WASH infrastructure, coupled with elevated air temperatures and followed by above average rainfall, promotes exposure of a population to contaminated water and increases the risk of an outbreak of cholera. Interestingly, global predictive risk models successful for cholera have the potential, with modification, to predict diseases caused by other clinically relevant Vibrio spp. In the research reported here, the focus was on environmental parameters associated with incidence and distribution of clinically relevant Vibrio spp. and their role in disease transmission. In addition, molecular methods designed for detection and enumeration proved useful for predictive modelling and are described, namely in the context of prediction of environmental conditions favourable to Vibrio spp., hence human health risk.
Collapse
Affiliation(s)
- Kyle D Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Moiz Usmani
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Kristine M Chen
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Mayank Gangwar
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Antarpreet S Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| |
Collapse
|