1
|
Palai SP, Sahoo BP, Senapati S, Panda AK, Bastia TK, Rath P, Parhi PK. A review on exploring pyrolysis potential of invasive aquatic plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123017. [PMID: 39476678 DOI: 10.1016/j.jenvman.2024.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
The rapid spread of invasive aquatic plants poses significant ecological and economic challenges, necessitating effective management strategies. Pyrolysis, a thermochemical decomposition process in an oxygen-free environment, offers a promising solution for converting these plant-based biomass sources into biochar. Biochar, produced through the pyrolysis of organic materials in low-oxygen environments, has high carbon content, excellent resistance to degradation, and high aromaticity, making it a valuable resource for various industries, including agriculture, environment, and energy sectors and supports the circular economy. Invasive aquatic plants are widely distributed and are ideal resources for biochar production. Pyrolysis of invasive aquatic plants offers multiple benefits, including protecting ecosystems from aggressive species, promoting human health, mitigating aquatic weed proliferation, and generating other renewable energy resources. Invasive plant-derived biochar has emerged as a novel material, distinguished from traditional biochar by its unique structure and composition. This study explores the pyrolysis potential of various invasive aquatic plants by examining biochar's origins, analysing how pyrolysis conditions affect the conversion of these invasive aquatic plants, and exploring characterization methods, applications, and future potential of biochar derived from these plants. An economic analysis of biochar pyrolyzed from invasive aquatic plants is also reviewed and reported.
Collapse
Affiliation(s)
- S P Palai
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - B P Sahoo
- KIIT-TBI, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - S Senapati
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - A K Panda
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - T K Bastia
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| | - P Rath
- Environmental Science Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| | - P K Parhi
- Department of Chemistry, Fakir Mohan University, Vyasa Vihar, Balasore, 756089, Odisha, India.
| |
Collapse
|
2
|
Lee JI, Jang SH, Kim C, Kang JK, Lee CG, Park SJ. Evaluation of large-scale poultry manure-derived biochar for efficient cadmium removal in zinc smelter wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122763. [PMID: 39369526 DOI: 10.1016/j.jenvman.2024.122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Cadmium (Cd), a carcinogen, is released from industrial activities like metal refineries and battery runoff, with significant contamination reported near zinc smelters in Korea. This study addresses the issue using an efficient, economical adsorption process with waste-derived biochar-based adsorbents known for high Cd removal. Poultry manure (PM), typically used as fertilizer, can lead to environmental pollution if mismanaged; therefore, it was pyrolyzed to produce biochar. The resulting poultry manure biochar (PMBC) was produced on a large scale (15 ton/day), demonstrating feasibility for large-scale implementation. The effectiveness of PMBC as an adsorbent for Cd was evaluated using wastewater discharged from a zinc smelter. The Cd adsorption capacity of PMBC (60.39 mg/g) was lower than that (302.0 mg/g) of hen manure biochar produced at a laboratory scale in our previous study but was comparable to other biochars reported in the literature. Response surface methodology analysis indicated that reaction time, dose, and agitation significantly influenced Cd removal by PMBC, whereas pH had a negligible impact. Notable contributions to Cd adsorption include the release of K+ from PMBC and the presence of O-containing functional groups. Under continuous flow conditions with real wastewater, Cd was not detected in the effluent for the initial 8 h, and PMBC sustained a removal efficiency of 40.77% until saturation was reached. The results from wastewater treatment and large-scale biochar production offer valuable insights into the potential of biochar as a medium for addressing environmental issues in real-world applications.
Collapse
Affiliation(s)
- Jae-In Lee
- Institute of Agricultural Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Su-Heon Jang
- Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Changsup Kim
- Bio C&C Corporation, Anyang, 14042, Republic of Korea
| | - Jin-Kyu Kang
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do, 53064, Republic of Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Seong-Jik Park
- Institute of Agricultural Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea; Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| |
Collapse
|
3
|
Zhao F, Tang L, Song W, Jiang H, Liu Y, Chen H. Predicting and refining acid modifications of biochar based on machine learning and bibliometric analysis: Specific surface area, average pore size, and total pore volume. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174584. [PMID: 38977098 DOI: 10.1016/j.scitotenv.2024.174584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Acid-modified biochar is a modified biochar material with convenient preparation, high specific surface area, and rich pore structure. It has great potential for application in the heavy metal remediation, soil amendments, and carrying catalysts. Specific surface area (SSA), average pore size (APS), and total pore volume (TPV) are the key properties that determine its adsorption capacity, reactivity, and water holding capacity, and an intensive study of these properties is essential to optimize the performance of biochar. But the complex interactions among the preparation conditions obstruct finding the optimal modification strategy. This study collected dataset through bibliometric analysis and used four typical machine learning models to predict the SSA, APS, and TPV of acid-modified biochar. The results showed that the extreme gradient boosting (XGB) was optimal for the test results (SSA R2 = 0.92, APS R2 = 0.87, TPV R2 = 0.96). The model interpretation revealed that the modification conditions were the major factors affecting SSA and TPV, and the pyrolysis conditions were the major factors affecting APS. Based on the XGB model, the modification conditions of biochar were optimized, which revealed the ideal preparation conditions for producing the optimal biochar (SSA = 727.02 m2/g, APS = 5.34 nm, TPV = 0.68 cm3/g). Moreover, the biochar produced under specific conditions verified the generalization ability of the XGB model (R2 = 0.99, RMSE = 12.355). This study provides guidance for optimizing the preparation strategy of acid-modified biochar and promotes its potentiality for industrial application.
Collapse
Affiliation(s)
- Fangzhou Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Lingyi Tang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China; Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Wenjing Song
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hanfeng Jiang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yiping Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.
| |
Collapse
|
4
|
Ma H, Zhang B, Wang S, Liu C, Zhu L, Zhao Z, Li W, Shao Z, Liu X, Dai Y. Enhanced removal of tetracycline by vitamin C-modified cow manure biochar in water. Sci Rep 2024; 14:22362. [PMID: 39333265 PMCID: PMC11436880 DOI: 10.1038/s41598-024-73210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Vitamin C (VC), due to its chemical properties, can provide more oxygen-containing functional groups such as hydroxyl groups for biochar (BC), which promotes the adsorption of tetracycline on biochar. Therefore, in this study, cow dung biochar (CDBC) was modified with VC and VC-modified CDBC (CDBC-VC) was synthesized. The modified biochar was characterized and related factors, adsorption kinetics, isotherms and adsorption mechanisms were investigated. Adsorption kinetics indicate a fast rate of adsorption. The adsorption isotherms showed that the maximum adsorption capacity was 31.72 mg/g (CDBC) and 50.90 mg/g (CDBC-VC), respectively, and the adsorption process was inhomogeneous with multiple molecular layers and the adsorbent has a higher affinity. Mechanistic studies showed that hydrogen bonding interactions, π-π electron donor-acceptor interactions, hydrophobic interactions, and electrostatic interactions were the key to the adsorption process. The analysis of adsorbent regeneration showed that CDBC-VC had good adsorption performance. CDBC and CDBC-VC showed the best performance in simulated industrial wastewater with removal rates of 78.81% and 93.69%. The adsorption mechanism was comprehensively analyzed using six machine learning models. The extreme gradient boosting model gave the best fit. Analysis of the weights of the input variables for predicting adsorption efficiency showed that the ratio of initial TC concentration to BC dosage (29.8%), specific surface area (23%), isoelectric point (8.8%), and ash content (7.7%) had a significant effect on the predicted results.
Collapse
Affiliation(s)
- Haoran Ma
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Baiting Zhang
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Shiyao Wang
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Chunrui Liu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Liya Zhu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Zitong Zhao
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Wei Li
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China.
| | - Ziyi Shao
- Research Center for Eco-Environmental SciencesChinese Academy of Sciences, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiao Liu
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China.
| |
Collapse
|
5
|
Ullah MH, Rahman MJ. Adsorptive removal of toxic heavy metals from wastewater using water hyacinth and its biochar: A review. Heliyon 2024; 10:e36869. [PMID: 39281482 PMCID: PMC11400981 DOI: 10.1016/j.heliyon.2024.e36869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Heavy metal contamination in aquatic ecosystems worsens due to rapid industrial expansion. Biochar, an efficient and economical adsorbent, has attracted much interest in environmental science, particularly in removing heavy metals (HMs). The paper covers basic details on biochar, its preparation, and potential chemical and inorganic modifications. Possible adsorption mechanisms of HMs on biochar, which include electrostatic attraction, ion exchange, surface complexation, chemical precipitation, and hydrogen bonding, are also discussed. These mechanisms are affected by the type of biochar used and the species of HMs present. Research findings suggest that while biochar effectively removes HMs, modifications to the carbon-rich hybrid can enhance surface properties such as surface area, pore size, functional groups, etc., and magnetic properties in a few cases, making them more efficient in HM removal. The choice of feedstock materials is one of the key parameters influencing the sorption capacity of biochars. This review aims to investigate the use of various forms of water hyacinth (WH), including aquatic plants, biomass, biochar, and modified biochar, as effective adsorbents for removing HMs from aqueous solutions and industrial effluents through a comparative analysis of their adsorption processes. However, further studies on the diverse effects of functional groups of modified biochar on HMs adsorption are necessary for future research.
Collapse
Affiliation(s)
- M Hedayet Ullah
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
- Department of Physics, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh
| | - Mohammad Jellur Rahman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| |
Collapse
|
6
|
Şenol ZM, El Messaoudi N, Ciğeroglu Z, Miyah Y, Arslanoğlu H, Bağlam N, Kazan-Kaya ES, Kaur P, Georgin J. Removal of food dyes using biological materials via adsorption: A review. Food Chem 2024; 450:139398. [PMID: 38677180 DOI: 10.1016/j.foodchem.2024.139398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
It is alarming that synthetic food dyes (FD) are widely used in various industries and that these facilities discharge their wastewater into the environment without treating it. FDs mixed into industrial wastewater pose a threat to the environment and human health. Therefore, removing FDs from wastewater is very important. This review explores the burgeoning field of FD removal from wastewater through adsorption using biological materials (BMs). By synthesizing a wealth of research findings, this comprehensive review elucidates the diverse array of BMs employed, ranging from algae and fungi to agricultural residues and microbial biomass. Furthermore, this review investigates challenges in practical applications, such as process optimization and scalability, offering insights into bridging the gap between laboratory successes and real-world implementations. Harnessing the remarkable adsorptive potential of BMs, this review presents a roadmap toward transformative solutions for FD removal, promising cleaner and safer production practices in the food and beverage industry.
Collapse
Affiliation(s)
- Zeynep Mine Şenol
- Department of Nutrition and Diet, Faculty of Health Sciences, Cumhuriyet University, Sivas 58140, Turkey.
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Zeynep Ciğeroglu
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Usak University, Usak 64300, Turkey
| | - Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez/Meknes, Morocco
| | - Hasan Arslanoğlu
- Çanakkale Onsekiz Mart University, Engineering Faculty, Chemical Engineering, Çanakkale, Turkey
| | - Nurcan Bağlam
- Department of Nutrition and Diet, Faculty of Health Sciences, Cumhuriyet University, Sivas 58140, Turkey
| | - Emine Sena Kazan-Kaya
- Chemical Engineering Department, Faculty of Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Parminder Kaur
- Circular Economy Solutions (KTR), Geological Survey of Finland, 70210 Kuopio, Finland
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 #55-66, Barranquilla, Atlántico, Colombia
| |
Collapse
|
7
|
Zhang R, Lin Z, Chen J, Zhang Y, Zhang Y, Ma Y, Zhang Z, Sun Y. Mechanistic insights into δ-MnO 2/biochar-activated persulfate-treated wastewater containing antibiotics and heavy metals: Nonradical pathway and pivotal role of Cu(Ⅱ) at low temperature. CHEMOSPHERE 2024; 362:142715. [PMID: 38945221 DOI: 10.1016/j.chemosphere.2024.142715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Herein, we present a high efficiency system based on biochar loaded with layered manganese dioxide to remove tetracycline and heavy metals from livestock wastewater. Under the optimal conditions, the degradation efficiencies of TC in the δ-MnO2/BC/PS system were 85.5% at 25 °C and 38.5% at 5 °C. Radical quenching experiments revealed that radical reactions in the δ-MnO2/BC/PS system were weak under 15 °C. Adsorption degradation experiments showed that the system maintained good adsorption performance at 5 °C. Galvanic cell experiments and cyclic voltammetry showed that the δ-MnO2/BC material had good electrochemical activity and high stability in response to temperature, indicating that TC was degraded by a nonradical pathway that was not limited by temperature, such as electron transfer. Copper ion was important coadsorbent and coactivator of the reaction system. Furthermore, FTIR, XPS, and X-ray diffraction (XRD) analyses showed that Cu(II) in the system was involved in changing the manganese valence state in the δ-MnO2/BC material and increasing the -OH content of BC. Comparison of the different products generated during metabolic testing revealed that the reaction pathway of the system at low temperature (5 °C) differed from that at normal temperature (25 °C). The δ-MnO2/BC material demonstrated good removal ability for antibiotics and heavy metals at normal and low temperatures in actual biogas slurry. The study provides insight for improving the efficiency of environmentally friendly treatments of aquaculture wastewater in cold regions, which is of great significance for resource utilization.
Collapse
Affiliation(s)
- Ruijie Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhaoye Lin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Junhao Chen
- PowerChina Huadong Engineering Co.Ltd, Hangzhou, 310000, China
| | - Yixin Zhang
- PowerChina Huadong Engineering Co.Ltd, Hangzhou, 310000, China
| | - Yue Zhang
- Central & Southern China Municipal Engineering Design and Research Institute Co.Ltd, Wuhan, 430000, China
| | - Yanwen Ma
- Central & Southern China Municipal Engineering Design and Research Institute Co.Ltd, Wuhan, 430000, China
| | - Zishuai Zhang
- Central & Southern China Municipal Engineering Design and Research Institute Co.Ltd, Wuhan, 430000, China
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Tunali Akar S, Agin D, Sayin F, Akar T. Strength and functionalized borage biochar for effective elimination of nickel contamination: Insight into batch and dynamic flow mode treatment applications. ENVIRONMENTAL RESEARCH 2024; 258:119430. [PMID: 38885826 DOI: 10.1016/j.envres.2024.119430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
A silica gel-modified borage biochar (BB@Si) was first produced and used as a binding agent for potentially hazardous Ni2+ ions in aqueous systems. The recommended biochar was more effective in eliminating Ni2+ than pristine biochar (BB). Its maximum qm could reach up to 1.39 × 10-3 mol/g at 30 °C, and sorption isotherms showed that the Langmuir model could more accurately define its sorption behavior. The Dubinin-Radushkevich isotherm also revealed that the average sorption energy ranged from 11.00 to 11.14 kJ/mol. Zeta potential tests, SEM images, and FT-IR scans confirmed the interactions between BB@Si and Ni2+ ions. Dynamic flow treatment studies showed high uptake effectiveness when the flow rate and amount of BB@Si were suitable. Nickel desorption yield of around 80% from BB@Si was noted with 0.01 M HCl. The BB@Si column's breakthrough and exhausted points were identified to be 45 and 352 min, respectively. Its maximum exhaustion capacity value was determined to be 52.73 mg/g. Ni2+ removal from the actual wastewater sample exceeded 75%. The resulting outcomes imply the immense potential of employing BB@Si in the treatment of Ni2+- contaminated aqueous systems.
Collapse
Affiliation(s)
- Sibel Tunali Akar
- Department of Chemistry, Faculty of Science, Eskişehir Osmangazi University, 26040, Eskişehir, Turkey.
| | - Duygun Agin
- Department of Chemistry, Graduate School of Natural and Applied Sciences, Eskişehir Osmangazi University, 26040, Eskişehir, Turkey
| | - Fatih Sayin
- Department of Chemistry, Faculty of Science, Eskişehir Osmangazi University, 26040, Eskişehir, Turkey
| | - Tamer Akar
- Department of Chemistry, Faculty of Science, Eskişehir Osmangazi University, 26040, Eskişehir, Turkey
| |
Collapse
|
9
|
Kapoor RT, Zdarta J. Fabrication of engineered biochar for remediation of toxic contaminants in soil matrices and soil valorization. CHEMOSPHERE 2024; 358:142101. [PMID: 38653395 DOI: 10.1016/j.chemosphere.2024.142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Biochar has emerged as an efficacious green material for remediation of a wide spectrum of environmental pollutants. Biochar has excellent characteristics and can be used to reduce the bioavailability and leachability of emerging pollutants in soil through adsorption and other physico-chemical reactions. This paper systematically reviewed previous researches on application of biochar/engineered biochar for removal of soil contaminants, and underlying adsorption mechanism. Engineered biochar are derivatives of pristine biochar that are modified by various physico-chemical and biological procedures to improve their adsorption capacities for contaminants. This review will promote the possibility to expand the application of biochar for restoration of degraded lands in the industrial area or saline soil, and further increase the useable area. This review shows that application of biochar is a win-win strategy for recycling and utilization of waste biomass and environmental remediation. Application of biochar for remediation of contaminated soils may provide a new solution to the problem of soil pollution. However, these studies were performed mainly in a laboratory or a small scale, hence, further investigations are required to fill the research gaps and to check real-time applicability of engineered biochar on the industrial contaminated sites for its large-scale application.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965, Poznan, Poland.
| |
Collapse
|
10
|
Mehdi M, Baig MH, Ahmad M, Ali K, Mohib M, Farooqi A, Affan M, Mazin M. Synthesis and characterizations of conocarpus- and azadirachta-derived activated carbons as wastewater recycling material. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:262. [PMID: 38351411 DOI: 10.1007/s10661-024-12423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
Water being the most important fluid supporting the life as well as industry is getting sparse and polluted day by day. Activated carbon (AC) can be utilized in various applications of significant environmental impact and sustainable living such as carbon dioxide sensing and capturing, air purification, and water recycling. However, in the wake of the recent corona pandemic which resulted in global lockdown and took the entire world by shock, a cost-effective and simple synthesis of such a useful material remains dire need of time. Therefore, this paper describes a simple and cost-effective synthesis of activated carbon (AC) of high porosity and surface area derived from the pruning of conocarpus and azadirachta trees. In reference to the study under consideration, alongside numerous others, a furnace was employed to synthesize activated carbon. However, our approach utilized a more conventional methodology wherein the environmental parameters were not optimized. In furnace-based procedures, factors such as temperature, pressure, and humidity are meticulously regulated, contrasting with the conventional methodologies where such parameters lack optimal control. Consequently, employing a furnace does not constitute a cost-effective approach for the physical activation of organic samples thus proving a furnace is not imperative for physical activation. The synthesis was carried out by physical activation in the form of carbonization followed by chemical activation with potassium hydroxide (KOH). The influence of activated carbon from each pruning over filtration of water containing industrial dye was investigated. Activation temperature and impregnation ratio of 600-800 °C and 1:5 were selected respectively. X-ray diffraction patterns (XRD) for all AC samples indicted the appearance of broad peaks at 2θ value of 20-30° which confirms the presence of carbon in the sample. The physical morphology arrangement by SEM analysis showed uneven arrangement of pores of conocarpus which indicated higher iodine number and hence higher adsorption capacity of 442.13 mg/g.
Collapse
Affiliation(s)
- Murtuza Mehdi
- Department of Mechanical Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan
| | - Mirza Hammad Baig
- Department of Mechanical Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan.
| | - Masood Ahmad
- Department of Mechanical Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan
| | - Kamran Ali
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jln Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Muhammad Mohib
- Department of Mechanical Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan
| | - Ali Farooqi
- Department of Mechanical Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan
| | - Mohammad Affan
- Department of Mechanical Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan
| | - Muhammad Mazin
- Department of Mechanical Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan
| |
Collapse
|
11
|
Rabiee Abyaneh M, Nabi Bidhendi G, Daryabeigi Zand A. Pb(ΙΙ), Cd(ΙΙ), and Mn(ΙΙ) adsorption onto pruning-derived biochar: physicochemical characterization, modeling and application in real landfill leachate. Sci Rep 2024; 14:3426. [PMID: 38341513 PMCID: PMC11306770 DOI: 10.1038/s41598-024-54028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of this study was to systemically evaluate how different pyrolysis temperatures (400, 550, and 700 °C) and particle sizes (1-2 mm and 63-75 µm) were influenced biochar evolution, made from urban pruning waste, during pyrolysis process and to establish their relationships with biochar potential for removal of lead (Pb), cadmium (Cd), and manganese (Mn) from real municipal solid waste landfill leachate. The effects of pH (2-7), contact time (30-300 min) and adsorbent dosage (0.1-5 g L-1) on heavy metals removal were also examined. The results showed that physicochemical properties of biochar were greatly influenced by pyrolysis temperature. Particle size, however, showed little influence on biochar characteristics (p > 0.05). The yield, volatile matter, hydrogen and oxygen contents, and surface functional groups decreased consistently with increasing pyrolysis temperature. An increase in the pH, electrical conductivity, ash, fixed carbon, and specific surface area values was also found. In biochar samples formed at high temperatures (i.e., 550 and 700 °C), Fourier transform infrared spectroscopy-FTIR studies confirmed the increase in aromaticity. Field emission scanning electron microscopy-FESEM images showed differences in the microporous structure and lower size pores at higher temperatures. Biochar pyrolyzed at 700 °C with a particle size of 63-75 µm (i.e., Lv700-63) showed the highest removal efficiency performance. Pb and Cd ions were completely removed (100%) by 0.2 g L-1 Lv700-63 at 7.0 pH and contact times of 120 and 90 min, respectively. The maximum percentage removal of Mn was 86.20% at optimum conditions of 0.2 g L-1 Lv700-63 dosage, 7.0 pH, and 180 min contact time. The findings suggests that the surface complexation, π-electron coordination, and cation exchange were the dominant mechanisms for the Pb, Cd, and Mn removal onto Lv700-63.
Collapse
Affiliation(s)
- Maryam Rabiee Abyaneh
- Department of Environmental Engineering, University of Tehran, Kish International Campus, Kish, Iran.
| | | | | |
Collapse
|
12
|
Jiang F, Wei C, Yu Z, Ji L, Liu M, Cao Q, Wu L, Li F. Fabrication of Iron-Containing Biochar by One-Step Ball Milling for Cr(VI) and Tetracycline Removal from Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18958-18970. [PMID: 38095154 DOI: 10.1021/acs.langmuir.3c02885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Simple ball milling technology can simultaneously improve the adsorption performance of adsorbents for heavy metals and organic pollutants and has attracted increasing attention. Iron-modified biochar (Fe@MBC) was prepared by one-step ball milling, and the characterization results proved that FeCl3 was successfully loaded on biochar. The removal rates of Cr(VI) and tetracycline hydrochloride (TC) by Fe@MBC were increased by 88.27% and 82.64% compared with BC. The average pore size, oxygen-containing functional groups and graphitization degree of Fe@MBC are higher than those of BC, which is more conducive to promoting adsorption. The adsorption isotherms show that the adsorption of Cr(VI) and TC on the Fe@MBC surface conforms to the Langmuir type of single-layer adsorption and the Freundlich model of multilayer adsorption, respectively. The maximum adsorption capacities of Cr(VI) and TC are 25.46 and 66.91 mg·g-1, respectively. Kinetic experiments show that the adsorption process is more consistent with the pseudo-second-order model of chemical adsorption. The adsorption process of Cr(VI) and TC on the Fe@MBC surface is a spontaneous endothermic process that becomes more obvious as the temperature increases. The increase in solution pH has a significant impact on the removal rate of Fe@MBC. When the pH value increased from 3 to 11, the adsorption rates decreased by 53.74% and 17.16%, respectively. The presence of PO43-, CO32-, K+, and Cu2+ significantly affects the adsorption of TC by Fe@MBC, and PO43- and CO32- also affect the adsorption of Cr(VI). Mechanistic studies show that ion exchange, electrostatic interaction, pore filling, and hydrogen bonding contribute to the removal of Cr(VI) and TC by Fe@MBC. The removal mechanism of Cr(VI) also involves complexation and redox reactions, and the removal mechanism of TC involves π-π bonds and van der Waals forces. The results show that Fe@MBC is a green and efficient adsorbent.
Collapse
Affiliation(s)
- Fei Jiang
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Chengcheng Wei
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Zhongpu Yu
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Licheng Ji
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Min Liu
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Qi Cao
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Lei Wu
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Feiyue Li
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang 233100, China
- Institute of Soil Remediation and Solid Waste Recycling, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
13
|
Zhou Y, Zhang X, Deng J, Li C, Sun K, Luo X, Yuan S. Adsorption and mechanism study for phenol removal by 10% CO 2 activated bio-char after acid or alkali pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119317. [PMID: 37857218 DOI: 10.1016/j.jenvman.2023.119317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
The development of an efficient bio-char used to remove phenol from wastewater holds great importance for environmental protection. In this work, wheat straw bio-char (BC) was acid-washed by HF and activated at 900 °C with 10% CO2 to obtain bio-char (B-Ⅲ-0.1D900). Adsorption experiments revealed that B-Ⅲ-0.1D900 achieved a remarkable phenol removal efficiency of 90% within 40 min. Despite its relatively low specific surface area of 492.60 m2/g, it exhibited a high maximum adsorption capacity of 471.16 mg/g. Furthermore, B-Ⅲ-0.1D900 demonstrated a good regeneration capacity for at least three cycles (90.71%, 87.54%, 84.36%). It has been discovered that HF washing, which removes AAEM and exposes unsaturated functional groups, constitutes one of the essential prerequisites for enhancing CO2 activation efficiency at high temperatures. After 10% CO2 activation, the mesoporous structure exhibited substantial development, facilitating enhanced phenol infiltration into the pores when compared to untreated BC. The increased branching of the bio-char culminated in a more complete aromatic system, which enhances the π-π forces between the bio-char and the phenol. The presence of tertiary alcohol structure enhances the hydrogen bonding forces, thereby promoting intermolecular multilayer adsorption of phenol. With the combination of various forces, B-Ⅲ-0.1D900 has a good removal capacity for phenol. This work provides valuable insights into the adsorption of organic pollutants using activated bio-char.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Xiaoguo Zhang
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Jin Deng
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Chun Li
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Keyuan Sun
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Xiaodong Luo
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China
| | - Shenfu Yuan
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, National Center for Experimental Chemistry and Chemical Engineering Education Demonstration, Yunnan Provincial Key Laboratory of Carbon Neutral and Green Low-Carbon Technology, Yunnan University, No. 2, Cuihu North Road, 650091 Kunming, Yunnan, China.
| |
Collapse
|
14
|
Solmaz A, Karta M, Depci T, Turna T, Sari ZA. Preparation and characterization of activated carbons from Lemon Pulp for oxytetracycline removal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:797. [PMID: 37264196 DOI: 10.1007/s10661-023-11421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
This study aims to remove oxytetracycline (OTC) that harms the ecosystem, with activated carbon (LPAC) obtained from Lemon Pulp (LP). Characterization and properties of LPAC were analyzed by Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD) and point of zero charge (pHPZC) analyses. BET surface area, pore volume and pHPZC of LPAC produced by carbonization at 400 °C and activation with KOH at 800 °C were obtained as 1333.01 m2/g, 0.391 cm3/g, and 6.81, respectively. pH, reaction time, initial OTC concentration, and adsorbent amounts were optimized in the adsorption study performed with LPAC with high porosity and micropores. Kinetic evaluation was made with pseudo-first-order, pseudo-second-order, and intra-particle diffusion models and Freundlich, Langmuir, and Temkin equations are used to investigate their isotherms under reaction equilibrium conditions, and also the results were analyzed by statistical method (ANOVA). In pseudo-second-order kinetic and Freundlich isotherm models, where the best results were obtained, R2 values were calculated as 0.999 and 0.995, respectively. Maximum OTC removal efficiency was found as 104.22 mg/g. Overall, this research indicates that LPAC for the treatment of water contaminated with antibiotics is environmentally friendly green material.
Collapse
Affiliation(s)
- Alper Solmaz
- Department of Environmental Protection and Control-Iskenderun Vocational School of Higher Education, Iskenderun Technical University, Hatay, Turkey.
| | - Mesut Karta
- Department of Metallurgy-Iskenderun Vocational School of Higher Education, Iskenderun Technical University, Hatay, Turkey
| | - Tolga Depci
- Department of Petroleum and Natural Gas Engineering, Iskenderun Technical University, Hatay, Turkey
| | - Talip Turna
- Department of Parks and Garden Plants-Diyarbakır Vocational School of Higher Education, Dicle University, Diyarbakır, Turkey
| | - Zeynel Abidin Sari
- Department of Metallurgy-Iskenderun Vocational School of Higher Education, Iskenderun Technical University, Hatay, Turkey
| |
Collapse
|
15
|
Xia Y, Xia L, Lin X. Laccase-Based Self-Amplifying Catalytic System Enables Efficient Antibiotic Degradation for Sustainable Environmental Remediation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300210. [PMID: 37211691 PMCID: PMC10375088 DOI: 10.1002/advs.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/09/2023] [Indexed: 05/23/2023]
Abstract
Antibiotic contamination poses potential risks to ecosystems and human health. Laccase (LAC) has emerged as a promising biocatalyst for the oxidation of environmentally toxic contaminants with high catalytic efficiency; however, its large-scale application is hindered by enzyme costs and dependency on redox mediators. Herein, a novel self-amplifying catalytic system (SACS) for antibiotic remediation that does not require external mediators is developed. In SACS, a natural mediator-regenerating koji with high-activity LAC, derived from lignocellulosic waste, initiates the chlortetracycline (CTC) degradation. Subsequently, an intermediate product, CTC327, identified as an active mediator for LAC via molecular docking, is formed and then starts a renewable reaction cycle, including CTC327-LAC interaction, stimulated CTC bioconversion, and self-amplifying CTC327 release, thus enabling highly efficient antibiotic bioremediation. In addition, SACS exhibits excellent performance in producing lignocellulose-degrading enzymes, highlighting its potential for lignocellulosic biomass deconstruction. To demonstrate its effectiveness and accessibility in the natural environment, SACS is used to catalyze in situ soil bioremediation and straw degradation. The resulting CTC degradation rate is 93.43%, with a straw mass loss of up to 58.35% in a coupled process. This mediator regeneration and waste-to-resource conversion in SACS provides a promising route for environmental remediation and sustainable agricultural practices.
Collapse
Affiliation(s)
- Ying Xia
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liming Xia
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinda Lin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
16
|
Li S, Zhang Z, Zhang C, He Y, Yi X, Chen Z, Hassaan MA, Nemr AE, Huang M. Novel hydrophilic straw biochar for the adsorption of neonicotinoids: kinetics, thermodynamics, influencing factors, and reuse performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29143-29153. [PMID: 36414889 DOI: 10.1007/s11356-022-24131-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Nitenpyram (NIT) is the most water-soluble neonicotinoid (NEO). It has been shown to pose a serious threat to human health and the environment but was always ignored due to its limited market share. There were few experts who studied NIT's transport behavior on biochar. In this study, two types of biochar were co-activated separately using zinc chloride combined with phosphoric acid and potassium hydroxide combined with acetic acid, marked as ZBC and KBC. Characterizations suggested that hydrophilic ZBC and KBC had more surface functional groups than unmodified biochar (BC), and specific surface areas of ZBC (456.406 m2·g-1) and KBC (750.588 m2·g-1) were significantly higher than of BC (67.181 m2·g-1). The pore structures of KBC and ZBC were hierarchical porous structures with different pore sizes and typical microporous structure, respectively. The adsorption performance of either NIT or IMI on KBC was better than that on ZBC. Only 0.4 g·L-1 of KBC can absorb 89.62% of NIT in just 5 min. The equilibrium adsorption amounts of NIT on ZBC and KBC were 17.995 mg·g-1 and 82.910 mg·g-1. Elovich and Langmuir models were used to evaluate the whole adsorption process, which was attributed to the chemisorption mechanism. In addition, removal rates of NIT were negatively correlated to NIT's initial concentration and positively correlated to the dose of biochar. pH had almost no effect on adsorption, but the presence of salt ions can inhibit the removal of NIT. Long-term stabilities of biochars were also acceptable. These findings will promote the development in the preparation of biochar fields and provide a positive reference value for NEO removal.
Collapse
Affiliation(s)
- Shangzhen Li
- School of Civil & Architecture Engineering, Xi'an Technological University, Xi'an, Shaanxi, 710021, People's Republic of China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Zhihong Zhang
- School of Civil & Architecture Engineering, Xi'an Technological University, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Chao Zhang
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Yutian He
- BASIS International School, Guangzhou, 510663, People's Republic of China
| | - Xiaohui Yi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Zhenguo Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Mohamed A Hassaan
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, P.O. 21556, Alexandria, Egypt
| | - Ahmed El Nemr
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, P.O. 21556, Alexandria, Egypt
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China.
- SCNU Qingyuan Institute of Science and Technology Innovation Co, Ltd, Qingyuan, 511517, People's Republic of China.
| |
Collapse
|
17
|
Chen C, Yang F, Beesley L, Trakal L, Ma Y, Sun Y, Zhang Z, Ding Y. Removal of cadmium in aqueous solutions using a ball milling-assisted one-pot pyrolyzed iron-biochar composite derived from cotton husk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12571-12583. [PMID: 36112289 DOI: 10.1007/s11356-022-22828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
A novel iron-biochar composite adsorbent was produced via ball milling-assisted one-pot pyrolyzed BM-nZVI-BC 800. Characterization proved that nano zero valent iron was successfully embedded in the newly produced biochar, and the nZVI payload was higher than that of traditional one-pot pyrolyzed methods. BM-nZVI-BC 800 provided a high adsorption performance of cadmium reaching 96.40 mg·g-1 during batch testing. Alkaline conditions were beneficial for cadmium removal of BM-nZVI-BC 800. The pseudo-second-order kinetic model and Langmuir isotherm fitted better, demonstrating that the Cd adsorption on the BM-nZVI-BC 800 was a chemical and surface process. The intraparticle diffusion controlled the adsorption of BM-nZVI-BC 800. The physisorption dominated by high specific surface area and mesoporous structure was the primary mechanism in the removal of cadmium, though electrostatic attraction and complexation also played a secondary role in cadmium adsorption. Compared to adsorbents prepared by more traditional methods, the efficiencies of the ball milling-assisted one-pot pyrolyzed method appears superior.
Collapse
Affiliation(s)
- Chen Chen
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Fengxia Yang
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Luke Beesley
- The James Hutton Institute, Aberdeen, AB15 8QH, UK
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 129, Prague, Suchdol, 165 00, Czech Republic
| | - Lukas Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 129, Prague, Suchdol, 165 00, Czech Republic
| | - Yongfei Ma
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuebing Sun
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zulin Zhang
- The James Hutton Institute, Aberdeen, AB15 8QH, UK
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongzhen Ding
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
18
|
Xiang Y, Zhou Y, Yao B, Sun Y, Khan E, Li W, Zeng G, Yang J, Zhou Y. Vinasse-based biochar magnetic composites: adsorptive removal of tetracycline in aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8916-8927. [PMID: 35146603 DOI: 10.1007/s11356-022-19012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Highly efficient and cost-effective adsorbents for antibiotic removal are the key to mitigate pollution by industrial wastewaters. Pyrolyzing low-cost winemaking waste into biochar is a promising means for waste biomass utilization. This study assembled vinasse-derived biochar with manganese ferrite into vinasse-manganese ferrite biochar-magnetic composites (V-MFB-MCs) through simultaneous pyrolysis of waste biomass and metal (Mn and Fe) hydroxide precipitates. Batch experiments were conducted to evaluate the kinetics and isotherms of tetracycline (TC) adsorption as well as the influence of pH value, humic acid, and ionic strength. Morphological characterization showed that crystalline MnFe2O4 nanoparticles were impregnated within the framework of fabricated V-MFB-MCs. Superior TC adsorption capacity and fast pseudo-second-order kinetics could be achieved by the V-MFB-MCs-800 at pH 3.0. The TC adsorption onto V-MFB-MCs-800 was highly pH-dependent and controlled by the positive influence of ionic strength and humic acid. V-MFB-MCs-800 showed excellent adsorption performance in different natural water. Multiple interaction mechanisms including pore filling effect, π-π stacking interaction, and hydrogen bonding contribute to TC removal by V-MFB-MCs-800, which can be an innovative biowaste-derived material for industrial wastewater treatment.
Collapse
Affiliation(s)
- Yujia Xiang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yuzhou Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, USA
| | - Wei Li
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi, 562400, China
| | - Guihua Zeng
- Hunan Research Academy of Environmental Sciences, Changsha, 410002, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
19
|
Joshi P, Prolta A, Mehta S, Khan TS, Srivastava M, Khatri OP. Adsorptive removal of multiple organic dyes from wastewater using regenerative microporous carbon: Decisive role of surface-active sites, charge and size of dye molecules. CHEMOSPHERE 2022; 308:136433. [PMID: 36126740 DOI: 10.1016/j.chemosphere.2022.136433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Present work addresses the synthesis of microporous activated carbon (SDAC) by a facile thermochemical conversion of teak sawdust powder. The high surface area (1999 m2 g-1), excellent microporosity (average pore size: 2.62 nm), and turbostratic carbon structure with intertwined graphitic domains make SDAC a highly efficient adsorptive material for the removal of organic pollutants. The spectroscopic analyses (FTIR, Raman, and XPS) and adsorption locator calculations revealed multiple interactions between organic dyes and SDAC adsorbent, i.e., electrostatic, π-π, n-π interactions, and hydrogen linkages. The size, chemical functionalities, aromatic rings, electronegative and heteroatoms in dye molecules, along with the surface-active sites, microstructured and textural features of SDAC adsorbent collectively governed the interaction pathways and adsorption efficiency. The calculated adsorption energy using Monte Carlo-based simulation annealing method signified faster and higher adsorption of malachite green than methylene blue dye at surface-active sites (-COOH, CO, C-OH, and π-electron-rich domains) of SDAC adsorbent, corroborating the experimental results. The batch-mode adsorptive separation results showed remarkably high adsorption efficiency (>99%) for industrial wastewater to remove cationic and anionic dyes together. The SDAC displayed significantly high adsorption of methylene blue dye (625 mg.g-1) with excellent recyclability without measurable loss of adsorption efficiency even after ten cycles. The SDAC fixed-bed column showed a dye removal capacity of 594 mg.g-1 at 90% breakthrough in a continuous-mode process signifying its applicability for a real-time industrial run. The excellent conformity between batch mode and fixed bed continuous column adsorption data, along with higher removal capacity and remarkable recyclability, promise the use of SDAC adsorbent for industrial wastewater treatment to remove multiple organic pollutants.
Collapse
Affiliation(s)
- Pratiksha Joshi
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Abeena Prolta
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
| | - Sweta Mehta
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Tuhin Suvra Khan
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Manoj Srivastava
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Om P Khatri
- CSIR-Indian Institute of Petroleum, Dehradun, 248005, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
20
|
Cheng S, Xie P, Yu Z, Gu R, Wu W. Hydroxyl-modified zirconia/porous carbon nanocomposite used as a highly efficient and renewable adsorbent for removal of carbamazepine from water. ENVIRONMENTAL RESEARCH 2022; 214:114030. [PMID: 35926575 DOI: 10.1016/j.envres.2022.114030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) derived metal oxides/porous carbon nanocomposites were used as adsorbents to remove pollutants from wastewater. The adsorption performance of the metal oxides/porous carbon nanocomposites could be improved by introducing functional groups. In this study, hydroxyl-modified zirconia/porous carbon nanocomposite (C-UiO-66-OH) was prepared and tested, choosing carbamazepine as a typical pollutant. The results showed that the adsorption capacity (186.21 mg g-1) of C-UiO-66-OH was 6.96 times to that of normal UiO-66. The Langmuir isotherm model and pseudo-first-order kinetic model was well fit the adsorption process. The thermodynamic parameters indicated that the adsorption process was spontaneous and endothermic. The adsorbent regeneration could be accomplished by washing C-UiO-66-OH with ethanol and DI water. The good adsorption/desorption performance comes from the synergistic effect of (EDA) interaction and hydrogen bond between C-UiO-66-OH and CBZ molecule. A membrane prepared by immobilizing C-UiO-66-OH into melamine foam (MF) with sodium alginate (SA) was also investigated for CBZ adsorption. The results indicated the excellent removal efficiency (86.0%) and good regeneration of the prepared membrane. Therefore, this paper provides an efficient and applicable way to remove CBZ from water.
Collapse
Affiliation(s)
- Shaoan Cheng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Pengfei Xie
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhen Yu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ruonan Gu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Wu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
21
|
Shu X, Bi H, Wang J, Yang J, Wang J, Liu G, Su B. Highly stable and efficient calcined γ-Al 2O 3 catalysts loaded with MnO x-CeO x for the ozonation of oxytetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80399-80410. [PMID: 35715680 DOI: 10.1007/s11356-022-21355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Catalytic ozonation with supported metal oxides is a promising strategy for addressing refractory pollutants in wastewater. In this study, γ-Al2O3 supported MnOx-CeOx catalysts (MC1, MC2, and MC3) obtained at different calcination temperatures (400 °C, 550 °C, and 700 °C) were applied as effective catalysts for ozonation and explored the feasibility of the treatment of oxytetracycline (OTC) wastewater. Comparatively, the MC2 possessed the highest molar ratios of Mn3+/Mn4+ (1.60) and Ce3+/Ce4+ (0.96), the largest surface area (273.8 m2 g-1) with a petal-shaped structure, and most abundant surface hydroxyls (3.78 mmol g-1). These physicochemical characteristics benefited the surface reaction and resulted in the acceleration of ozone decomposition, electron transfer, and •OH generation, thereby improving the catalyst's adsorption ability and catalytic activity. The combination with MC2 increased the OTC and COD removal of the ozonation process from 59.1% and 29.0% to 94.7% and 83.3% in 25 min, respectively. By employing electron paramagnetic resonance (EPR) and radical quenching experiments, it was verified that •OH species generation promoted the mineralization of OTC. The possible degradation pathways of OTC were investigated through mass spectrometry, and the route consisted of dehydration, deamination, and demethylation. Moreover, during a 12-day continuous experiment, MC2 catalyst exhibited excellent reusability and catalytic stability, with COD removal efficiencies above 80%.
Collapse
Affiliation(s)
- Xinpeng Shu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huaqi Bi
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiaxin Yang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jue Wang
- Third Highway Engineering CO., LTD, China Communications Construction CO., LTD, Beijing, 100000, China
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bensheng Su
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
22
|
Aghababaei A, Borugadda VB, Dalai A, Niu CH. An investigation on adsorption of carbamazepine with adsorbents developed from flax shives: kinetics, mechanisms, and desorption. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Ferchichi K, Amdouni N, Chevalier Y, Hbaieb S. Low-cost Posidonia oceanica bio-adsorbent for efficient removal of antibiotic oxytetracycline from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83112-83125. [PMID: 35761137 DOI: 10.1007/s11356-022-21647-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The presence of antibiotics as micro-contaminants in the water and aqueous environments is a health concern to humans and the ecosystem. Therefore, their elimination by adsorption to available and cheap materials in water treatment plants is a research topic of high relevance. The present paper reports on the adsorption behavior of oxytetracycline on a bio-adsorbent prepared from Posidonia oceanica; an abundant Mediterranean biomass. Characterization of the pretreated Posidonia biomaterial was achieved using several analyses such as Boehm acid-base titration method, pHPZC determination, and analysis techniques (FTIR, 13C CP-MAS NMR, optical microscopy, and TGA). The pHPZC occurred around pH 2.11. Posidonia biomaterial showed a fast and high uptake rate throughout the adsorption process, which is a definite advantage for analytical applications such as water decontamination. The experimental kinetic data fitted very rightly the pseudo-second-order kinetic model and the equilibrium uptake can adopt the bi-Langmuir isotherm model for all studied pH values which assumes adsorptions at the two localized sites. Maximum adsorption capacities of 11.8 mg∙g-1 and 4.4 mg∙g-1 for the two adsorption sites are reached at pH 6. The oxytetracycline adsorption process onto Posidonia bio-adsorbent is spontaneous (ΔadsG0 < 0), exothermic (ΔadsH0 < 0), and entropically favorable (ΔadsS0 > 0). The effect of pH on adsorption behavior and the thermodynamic parameters of adsorption are consistent with a possible origin of adsorption of oxytetracycline by means of hydrogen bonding interactions between surface hydroxyl and phenolic groups of the biomaterial and oxytetracycline. The proposed green and environmentally friendly biomaterial offers potential benefits as a bio-adsorbent in the remediation of aquatic environments contaminated by various organic materials.
Collapse
Affiliation(s)
- Karima Ferchichi
- Laboratoire de Recherche: Caractérisations, Applications Et Modélisation de Matériaux, Faculté Des Sciences de Tunis, Université de Tunis El Manar, Campus universitaire El Manar, Tunis, Tunisia
| | - Noureddine Amdouni
- Laboratoire de Recherche: Caractérisations, Applications Et Modélisation de Matériaux, Faculté Des Sciences de Tunis, Université de Tunis El Manar, Campus universitaire El Manar, Tunis, Tunisia
| | - Yves Chevalier
- Laboratoire d'Automatique, de Génie Des Procédés Et de Génie Pharmaceutique, Université de Lyon 1, UMR 5007 CNRS, 43 bd 11 Novembre, 69622, Villeurbanne, France
| | - Souhaira Hbaieb
- Laboratoire de Recherche: Caractérisations, Applications Et Modélisation de Matériaux, Faculté Des Sciences de Tunis, Université de Tunis El Manar, Campus universitaire El Manar, Tunis, Tunisia.
| |
Collapse
|
24
|
Hou J, Pugazhendhi A, Phuong TN, Thanh NC, Brindhadevi K, Velu G, Lan Chi NT, Yuan D. Plant resistance to disease: Using biochar to inhibit harmful microbes and absorb nutrients. ENVIRONMENTAL RESEARCH 2022; 214:113883. [PMID: 35835163 DOI: 10.1016/j.envres.2022.113883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Phytosanitary concerns are part of today's agricultural environment. The use of chemicals to treat plant diseases is both a source of pollution and allows pathogens to become resistant. Additionally, it can improve the chemical, physical, and biological properties of soil. Therefore, the soil environment is more conducive to healthy plant growth. By improving the chemical, physical, and biological attributes of soil, biochar can enhance plant resistance. Agricultural success has been attributed to biochar's acidic pH, which promotes beneficial soil microorganisms and increases soil nutrients; it is also porous, which provides a home and protects soil microorganisms. By improving soil properties, biochar becomes even more effective at controlling pathogens. The article also discusses the benefits of biochar for managing pathogens in agricultural soils. In addition, we examine several research papers that discuss the use of biochar as a method of combating soil-related pathogens and plant diseases. Biochar can be used to combat soil-borne diseases and other conditions.
Collapse
Affiliation(s)
- Jinbo Hou
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Tran Nhat Phuong
- Faculty of Medicine, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Nguyen Chi Thanh
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, 70000, Viet Nam
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gomathi Velu
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Deyi Yuan
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
25
|
Li X, Gan T, Zhang J, Shi Z, Liu Z, Xiao Z. High-capacity removal of oxytetracycline hydrochloride from wastewater via Mikania micrantha Kunth-derived biochar modified by Zn/Fe-layered double hydroxide. BIORESOURCE TECHNOLOGY 2022; 361:127646. [PMID: 35868467 DOI: 10.1016/j.biortech.2022.127646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic contamination in water has been an increasing global concern, and how to effectively remove antibiotics (e.g., oxytetracycline [OTC] hydrochloride) from wastewater becomes imperative. In this study, the biochar derived from an invasive plant (Mikania micrantha Kunth) was synthesized with Zn/Fe- layered double hydroxide (LDH) by co-precipitation method (ZnFe-LDH/MBC) to remove OTC from water. ZnFe-LDH/MBC posed the highest OTC removal performance of 426.61 mg/g. ZnFe-LDH/MBC exhibited stability and efficiency in OTC adsorption at different pH levels and under interfering conditions with co-existing ions, as well as outstanding regeneration capabilities during adsorption-desorption cycles. Furthermore, the removal of OTC by ZnFe-LDH/MBC was mediated by several processes including pore filling, hydrogen bonding force, electrostatic interaction, π-π interaction, as well as complexation. Consequently, ZnFe-LDH/MBC has excellent potential for the purification of OTC pollutants that is low-cost, efficient, and environmentally friendly.
Collapse
Affiliation(s)
- Xiaoying Li
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Tian Gan
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Zhang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoji Shi
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ziqiang Liu
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zeheng Xiao
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
26
|
Insights into synergistic utilization of residual of ternary layered double hydroxide after oxytetracycline as a potential catalyst for methanol electrooxidation. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Han R, Zhao M, Li X, Cui S, Yang J. N-doped regular octahedron MOF-199 derived porous carbon for ultra-efficient adsorption of oxytetracycline. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Medeiros DCCDS, Nzediegwu C, Benally C, Messele SA, Kwak JH, Naeth MA, Ok YS, Chang SX, Gamal El-Din M. Pristine and engineered biochar for the removal of contaminants co-existing in several types of industrial wastewaters: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151120. [PMID: 34756904 DOI: 10.1016/j.scitotenv.2021.151120] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 05/22/2023]
Abstract
Biochar has been widely studied as an adsorbent for the removal of contaminants from wastewater due to its unique characteristics, such as having a large surface area, well-distributed pores and high abundance of surface functional groups. Critical review of the literature was performed to understand the state of research in utilizing biochars for industrial wastewater remediation with emphasis on pollutants that co-exist in wastewater from several industrial activities, such as textile, pharmaceutical and mining industries. Such pollutants include organic (such as synthetic dyes, phenolic compounds) and inorganic contaminants (such as cadmium, lead). Multiple correspondence analyses suggest that through batch equilibrium, columns or constructed wetlands, researchers have used mechanistic modelling of isotherms, kinetics, and thermodynamics to evaluate contaminant removal in either synthetic or real industrial wastewaters. The removal of organic and inorganic contaminants in wastewater by biochar follows several mechanisms: precipitation, surface complexation, ion exchange, cation-π interaction, and electrostatic attraction. Biochar production and modifications promote good adsorption capacity for those pollutants because biochar properties stemming from production were linked to specific adsorption mechanisms, such as hydrophobic and electrostatic interactions. For instance, adsorption capacity of malachite green ranged from 30.2 to 4066.9 mg g-1 depending on feedstock type, pyrolysis temperature, and chemical modifications. Pyrolyzing biomass at above 500 °C might improve biochar quality to target co-existing pollutants. Treating biochars with acids can also improve pollutant removal, except that the contribution of precipitation is reduced for potentially toxic elements. Studies on artificial intelligence and machine learning are still in their infancy in wastewater remediation with biochars. Meanwhile, a framework for integrating artificial intelligence and machine learning into biochar wastewater remediation systems is proposed. The reutilization and disposal of spent biochar and the contaminant release from spent biochar are important areas that need to be further studied.
Collapse
Affiliation(s)
| | - Christopher Nzediegwu
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Chelsea Benally
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Selamawit Ashagre Messele
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jin-Hyeob Kwak
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada; Department of Rural Construction Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - M Anne Naeth
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
29
|
Zhou L, Zhu X, Chi T, Liu B, Du C, Yu G, Wu H, Chen H. Reutilization of manganese enriched biochar derived from Phytolacca acinosa Roxb. residue after phytoremediation for lead and tetracycline removal. BIORESOURCE TECHNOLOGY 2022; 345:126546. [PMID: 34906706 DOI: 10.1016/j.biortech.2021.126546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to evaluate the chemical form variation of Mn in Phytolacca acinosa Roxb. residue under different pyrolysis temperatures and its contribution to decontamination efficacy of lead (Pb(II)) and tetracycline (TC). The results illuminated that pyrolysis temperature is a crucial factor of fraction and bioavailability of Mn and other heavy metals in the resultant biochar and pyrolysis temperature under 450 °C may be most suitable for reutilization without potential risk. The Mn-enriched phytolaccaceae biochar (PSB450) exhibited more preferential sorption toward Pb(II) (279.33 mg/g) and TC (47.51 mg/g) than pristine phytolaccaceae biochar in the single system, mainly due to the formation of MnOx and Mn minerals via pyrolysis. Binary adsorption showed that Pb(II) would serve as a bridge between PSB450 and TC by complexation within a limited concentration range, thus facilitating their joint decontamination. This study provided an efficient alternative approach for reutilization of Mn-contaminated biomass.
Collapse
Affiliation(s)
- Lu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China
| | - Xiaofang Zhu
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Tianying Chi
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Bei Liu
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Chunyan Du
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China
| | - Haipeng Wu
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China
| | - Hong Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China.
| |
Collapse
|
30
|
Shen R, Lu J, Yao Z, Zhao L, Wu Y. The hydrochar activation and biocrude upgrading from hydrothermal treatment of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2021; 342:125914. [PMID: 34530252 DOI: 10.1016/j.biortech.2021.125914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
The production of hydrochar and biocrude from hydrothermal treatment of lignocellulosic biomass is getting increasing attention, but the quality of hydrochar and biocrude need further improvement before utilization. Many attempts have been carried out on the hydrochar activation and biocrude upgrading. However, different methods play different roles on the property of hydrochar and biocrude, this topic received scant attention in recent review papers. Therefore, the influence of different activation methods on hydrochar property, and the potential application of hydrochar were summarized in this study. Meanwhile, the research progress on biocrude upgrading is reported. Besides, the techno-economic analysis of hydrochar and biocrude from hydrothermal treatment of lignocellulosic biomass are also discussed. Finally, the research needs and future directions on hydrochar activation and biocrude upgrading were proposed. This paper could provide insights for further studies on the utilization of hydrochar and biocrude.
Collapse
Affiliation(s)
- Ruixia Shen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianwen Lu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Zonglu Yao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
31
|
Mu Y, He W, Ma H. Enhanced adsorption of tetracycline by the modified tea-based biochar with the developed mesoporous and surface alkalinity. BIORESOURCE TECHNOLOGY 2021; 342:126001. [PMID: 34592612 DOI: 10.1016/j.biortech.2021.126001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
A tea residue-based biochar, Fe-BCK0.5-VB6, was obtained by pyrolysis with KOH activation and alkalization with vitamin B6, to develop the mesopore structure and functionalized surface to improve the adsorption performance on tetracycline (TC). An increased specific surface area of 455 m2·g-1 and expanded mesopore volume of 0.138 cm3·g-1 for Fe-BCK0.5-VB6, were observed. The Avrami-fractional order kinetics and Langmuir isotherm models best fitted the experimental data, indicating the characteristics of multiple kinetic stages and monolayer of TC adsorption process. Several possible interactions, including acid-base reaction, pore filling, electrostatic interactions, π-π interactions, and hydrogen bonding forces, were participated in the attachment of TC. This novel mesoporous biochar with enhanced surface alkalinity is expected with a viable future role as an efficient adsorbent in the remedies of acidic antibiotics wastewater pollution.
Collapse
Affiliation(s)
- Yongkang Mu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, PR China
| | - Wenyan He
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Hongzhu Ma
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, PR China.
| |
Collapse
|
32
|
Minale M, Guadie A, Li Y, Meng Y, Wang X, Zhao J. Enhanced removal of oxytetracycline antibiotics from water using manganese dioxide impregnated hydrogel composite: Adsorption behavior and oxidative degradation pathways. CHEMOSPHERE 2021; 280:130926. [PMID: 34162108 DOI: 10.1016/j.chemosphere.2021.130926] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/23/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
The present work provides the first attempt of using manganese dioxide loaded poly(sodium acrylate) hydrogel (MnO2@PSA) to address potential threats posed by oxytetracycline (OTC) antibiotics in aqueous environment. The MnO2@PSA was prepared via a facile approach and demonstrated enhanced removal performance even under extremely high concentrations of OTC. The outstanding performance exhibited by MnO2@PSA was attributed to synergetic effects of adsorption oxidative degradation. The synthesized composite was characterized evaluated under varying conditions. The adsorption pH was optimized at pH 5, at which the removal efficiency OTC was reached 91.46%. According to the kinetics study, the pseudo-second-order kinetic model was the best to explain the adsorption data, implying the interaction mechanisms were dominated by chemisorption. The Langmuir isotherm model was the best to explain the isotherm data, and the corresponding maximum adsorbed amount of OTC was 1150.4 mg g-1. The MnO2@PSA was highly selective for OTC adsorption and degradation under the presence of natural organic matter and common environmental metal ions. The oxidative degradation study indicated that OTC molecules were structurally degraded into 15 intermediate products via six reaction pathways. Both the theoretical models and spectroscopic methods demonstrated the removal mechanism of OTC onto MnO2@PSA was governed by ion exchange, cation-π bonding, hydrogen-bonding, and π-π electron donor-acceptor. Overall, MnO2@PSA is an excellent and environmentally sustainable material to remove OTC from water and wastewater via the combined effects of adsorption and oxidative degradation.
Collapse
Affiliation(s)
- Mengist Minale
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Awoke Guadie
- Key Laboratory of Environmental Biotechnology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch 21, Ethiopia
| | - Yuan Li
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yuan Meng
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xuejiang Wang
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Jianfu Zhao
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
33
|
Gu Y, Xue Y, Zhang D. Preparation of magnetic biochar with different magnetization sequences for efficient removal of oxytetracycline from aqueous solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Karoui S, Ben Arfi R, Fernández-Sanjurjo MJ, Nuñez-Delgado A, Ghorbal A, Álvarez-Rodríguez E. Optimization of synergistic biosorption of oxytetracycline and cadmium from binary mixtures on reed-based beads: modeling study using Brouers-Sotolongo models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46431-46447. [PMID: 32535823 DOI: 10.1007/s11356-020-09493-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The first aim of this study was to synthesize and characterize reed-based-beads (BBR), an enhanced adsorbent from Tunisian reed. The second purpose was to evaluate and optimize the BBR efficiency for the simultaneous removal of oxytetracycline (OTC) and cadmium (Cd(II)), using central composite design under response surface methodology. The third goal was to elucidate the biosorption mechanisms taking place. It was shown that under optimum conditions (4.19 g L-1 of BBR, 165.54 μmol L-1 of OTC, 362.16 μmol L-1 of Cd(II), pH of 6, and 25.14-h contact time) the highest adsorption percentages (63.66% for OTC and 99.99% for Cd(II)) were obtained. It was revealed that OTC adsorption mechanism was better described by Brouers-Sotolongo fractal equation, with regression coefficient (R2) of 0.99876, and a Person's chi-square (χ2) of 0.01132. The Weibull kinetic equation better explained Cd(II) biosorption (R2 = 0.99959 and χ2 = 0.00194). FTIR and isotherm studies confirmed that the BBR surface was heterogeneous, and that adsorption mechanisms were better described by the Freundlich/Jovanovich equation (R2 = 0.99276 and χ2 = 0.04864) for OTC adsorption, and by the Brouers-Sotolongo model (R2 = 0.9851 and χ2 = 0.77547) for Cd(II) biosorption. Overall results indicate that, at last, the BBR lignocellulosic biocomposite beads could be considered as cost-effective and efficient adsorbent, which could be of socioeconomic and environmental relevance. Graphical abstract.
Collapse
Affiliation(s)
- Sarra Karoui
- Research Laboratory LR18ES33, National Engineering School of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia.
- National Engineering School of Sfax, University of Sfax, 3029, Sfax, Tunisia.
| | - Rim Ben Arfi
- Research Laboratory LR18ES33, National Engineering School of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia
| | - María J Fernández-Sanjurjo
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. Lugo, University of Santiago de Compostela, Galicia, Spain
| | - Avelino Nuñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. Lugo, University of Santiago de Compostela, Galicia, Spain
| | - Achraf Ghorbal
- Research Laboratory LR18ES33, National Engineering School of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, 6029, Gabes, Tunisia
- Higher Institute of Applied Sciences and Technology of Gabes, University of Gabes, 6029, Gabes, Tunisia
| | - Esperanza Álvarez-Rodríguez
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. Lugo, University of Santiago de Compostela, Galicia, Spain
| |
Collapse
|
35
|
Feng L, Yuan G, Xiao L, Wei J, Bi D. Biochar Modified by Nano-manganese Dioxide as Adsorbent and Oxidant for Oxytetracycline. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:269-275. [PMID: 32100060 DOI: 10.1007/s00128-020-02813-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Biochar has limited capacity to adsorb oxytetracycline (OTC). Here we have used bamboo willow biochar (BC) as a carrier to produce nMnO2-loaded biochars (MBC) by a co-precipitation method. Their chemical compositions, morphological features, specific surface area, and surface functional groups were observed or determined. Batch experiments were conducted to assess the effects of reaction time, initial OTC concentrations, pH, salt concentrations, and natural organic matter (NOM) on OTC removal. Kinetics and isotherms indicated that OTC was mainly adsorbed via chemical interactions, and mono- and multi-layer adsorption occurred on the surface. MBC removed 19-25 times more OTC than BC, and the removal was highest at near-neutral pH, not influenced by NaCl (2, 10 mM), slighted reduced by NOM (0-20 mg L-1), and enhanced by NaHCO3 (2, 10 mM). Besides being an adsorbent, MBC acted as an oxidant and degraded 58.5% of OTC at 24 h.
Collapse
Affiliation(s)
- Lirong Feng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodong Yuan
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, Guangdong, China.
| | - Liang Xiao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| | - Jing Wei
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| | - Dongxue Bi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| |
Collapse
|
36
|
Gautam RK, Goswami M, Mishra RK, Chaturvedi P, Awashthi MK, Singh RS, Giri BS, Pandey A. Biochar for remediation of agrochemicals and synthetic organic dyes from environmental samples: A review. CHEMOSPHERE 2021; 272:129917. [PMID: 35534974 DOI: 10.1016/j.chemosphere.2021.129917] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/25/2020] [Accepted: 02/06/2021] [Indexed: 06/14/2023]
Abstract
Application of agrochemicals in farming sector to control insects and pests; and use of synthetic organic dyes to color the products are increasing continuously due to the rapid growth of industries. During the application process many industries releases toxic agrochemicals and dyes in to the aquatic environment and on land without the proper treatment. Due to their toxicity the disposal of such chemicals is of utmost importance. Biochar offers the ability to remediate these substances from environmental matrices because of their high sorption ability of pollutants from water and soil. This review highlights the development and advancement of biochar-based treatment for abatement of agrochemicals and synthetic organic dyes, involving its technical aspects and the variables connected with removing these kinds of pollutants. Several optimization parameters like temperature, pH, chemical concentration, biochar properties, time, and co-existing ions have been elaborated. Literature survey shows that most of the researches on biochar application have been conducted in the batch mode. Hence there is an urgent need to apply this beneficial technique for the remediation of pollutants at the larger scale in the real water and soil samples. A comprehensive summary on sorption kinetics and adsorption isotherms with regards to pollutant removal is also presented. This review also covers the cost analysis of various techniques where biochar has been used as an adsorbent. Thus this review makes an easy roadmap for the further development in biochar and biochar based composites and expansion of these demanding areas of research in biochar and their applications.
Collapse
Affiliation(s)
- Ravindra Kumar Gautam
- Department of Chemistry (Centre of Advanced Study), Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mandavi Goswami
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India; Centre for Energy and Environmental Sustainability (CEES), Lucknow, 226 029, UP, India.
| | - Rakesh K Mishra
- Department of Chemistry, National Institute of Technology, Uttarakhand (NITUK), Srinagar (Garhwal), 246174, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mukesh Kumar Awashthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Ram Sharan Singh
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Balendu Shekhar Giri
- Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India; Centre for Energy and Environmental Sustainability (CEES), Lucknow, 226 029, UP, India.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India.
| |
Collapse
|
37
|
Aghababaei A, Azargohar R, Dalai AK, Soltan J, Niu CH. Adsorption of carbamazepine from water by hydrothermally and steam activated agricultural by-products: equilibrium, site energy, and thermodynamic studies. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1922893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Aylin Aghababaei
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, SK, S7N 5A9, Canada
| | - Ramin Azargohar
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, SK, S7N 5A9, Canada
| | - Ajay K. Dalai
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, SK, S7N 5A9, Canada
| | - Jafar Soltan
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, SK, S7N 5A9, Canada
| | - Catherine Hui Niu
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, SK, S7N 5A9, Canada
| |
Collapse
|
38
|
A simple cation exchange model to assess the competitive adsorption between the herbicide paraquat and the biocide benzalkonium chloride on montmorillonite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
39
|
Current and Emerging Adsorbent Technologies for Wastewater Treatment: Trends, Limitations, and Environmental Implications. WATER 2021. [DOI: 10.3390/w13020215] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Wastewater generation and treatment is an ever-increasing concern in the current century due to increased urbanization and industrialization. To tackle the situation of increasing environmental hazards, numerous wastewater treatment approaches are used—i.e., physical, chemical, and biological (primary to tertiary treatment) methods. Various treatment techniques being used have the risks of producing secondary pollutants. The most promising technique is the use of different materials as adsorbents that have a higher efficacy in treating wastewater, with a minimal production of secondary pollutants. Biosorption is a key process that is highly efficient and cost-effective. This method majorly uses the adsorption process/mechanism for toxicant removal from wastewater. This review elaborates the major agricultural and non-agricultural materials-based sorbents that have been used with their possible mechanisms of pollutant removal. Moreover, this creates a better understanding of how the efficacy of these sorbents can be enhanced by modification or treatments with other substances. This review also explains the re-usability and mechanisms of the used adsorbents and/or their disposal in a safe and environmentally friendly way, along with highlighting the major research gaps and potential future research directions. Additionally, the cost benefit ratio of adsorbents is elucidated.
Collapse
|
40
|
Tayibi S, Monlau F, Fayoud NE, Abdeljaoued E, Hannache H, Zeroual Y, Oukarroum A, Barakat A. Production and Dry Mechanochemical Activation of Biochars Derived from Moroccan Red Macroalgae Residue and Olive Pomace Biomass for Treating Wastewater: Thermodynamic, Isotherm, and Kinetic Studies. ACS OMEGA 2021; 6:159-171. [PMID: 33458468 PMCID: PMC7807483 DOI: 10.1021/acsomega.0c04020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/03/2020] [Indexed: 05/27/2023]
Abstract
This study aimed to produce activated biochars (BCs) from Moroccan algae residue (AG) and olive pomace (OP) using mechanochemical activation with NaOH and ball milling (BM) for treating artificial textile wastewater containing methylene blue (MeB). The produced OP-activated BC by BM showed the highest absolute value of ζ-potential (-59.7 mV) and high removal efficiency of MeB compared to other activated BCs. The nonlinear pseudo-first-order kinetic model was the most suitable model to describe the kinetics of adsorption of MeB onto biochars produced from AG and the NaOH-activated BC from OP, whereas the nonlinear pseudo-second-order kinetic model suits the OP raw biochar and BM-activated BC. The nonlinear Langmuir isotherm model was the most suitable model for describing MeB adsorption onto BCs, compared to the nonlinear Freundlich isotherm model. The maximum adsorption capacities of AG-activated BCs with NaOH and BM were 13.1 and 9.1 mg/g, respectively, while those of OP-activated BCs were 2.6 and 31.8 mg/g, respectively. The thermodynamic study indicates the spontaneous and endothermic nature of the adsorption process of most activated BCs. In addition, ΔS° values indicate the increase of randomness at the solid-liquid interface during MeB sorption onto BC.
Collapse
Affiliation(s)
- Saida Tayibi
- IATE,
Montpellier University, INRAE, Agro Institut, 34060 Montpelier, France
- Mohammed
VI Polytechnic University (UM6P), 43150 Ben Guerir, Morocco
- APESA,
Pôle Valorisation, Cap Ecologia, 64053 Lescar, France
- LIMAT,
Faculté des Sciences Ben M’Sik, Université Hassan II de, 20670 Casablanca, Morocco
| | - Florian Monlau
- APESA,
Pôle Valorisation, Cap Ecologia, 64053 Lescar, France
| | - Nour-Elhouda Fayoud
- IATE,
Montpellier University, INRAE, Agro Institut, 34060 Montpelier, France
- Mohammed
VI Polytechnic University (UM6P), 43150 Ben Guerir, Morocco
| | - Emna Abdeljaoued
- IATE,
Montpellier University, INRAE, Agro Institut, 34060 Montpelier, France
- Mohammed
VI Polytechnic University (UM6P), 43150 Ben Guerir, Morocco
| | - Hassane Hannache
- Mohammed
VI Polytechnic University (UM6P), 43150 Ben Guerir, Morocco
- LIMAT,
Faculté des Sciences Ben M’Sik, Université Hassan II de, 20670 Casablanca, Morocco
| | - Youssef Zeroual
- Situation
Innovation, OCP Group, Complexe industriel Jorf Lasfar, BP 118 El Jadida, Morocco
| | | | - Abdellatif Barakat
- IATE,
Montpellier University, INRAE, Agro Institut, 34060 Montpelier, France
| |
Collapse
|
41
|
Abd Razak N, Ainirazali N, Abdullah N. Removal of 2-chlorophenol using pomelo (Citrus Maxima) albedo as a new low cost adsorbent. MATERIALS TODAY: PROCEEDINGS 2021; 41:43-46. [DOI: 10.1016/j.matpr.2020.10.1000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
42
|
Huang D, Xu Y, Yu X, Ouyang Z, Guo X. Effect of cadmium on the sorption of tylosin by polystyrene microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111255. [PMID: 32905936 DOI: 10.1016/j.ecoenv.2020.111255] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Microplastics are widespread in the environment and might transport readily by ocean currents, wind and atmospheric deposition. Simultaneously, antibiotics and heavy metals could often be detected in the environment. They are both positively charged, it is necessary to clarify the interactions of these pollutants with microplastics when they were coexist. In this study, the most commonly used polystyrene (PS) was selected as a representative microplastic. This study investigated the effect of Cd(II) on the sorption of TYL by PS in different coexistence systems. The results showed that: in the composite system, when TYL and Cd(II) coexist, the presence of Cd(II) could inhibit the sorption of TYL by PS, and the inhibitory effect increases with the increase of the concentration of Cd(II), indicating that competitive sorption dominates the sorption. When PS adsorbed Cd(II) first and then adsorbed TYL, the presence of Cd(II) was conducive to the sorption of TYL, and the sorption strengthened with the increase of Cd(II) concentration, indicating that the complexation between TYL and Cd(II) enhanced the sorption of TYL. In addition, initial pH values and ionic strength were essential in the sorption process. Therefore, this study could provide an important basis for evaluating the environmental behavior and ecological risk of microplastics in the process of compound pollution.
Collapse
Affiliation(s)
- Daofen Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yibo Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoqin Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
43
|
Ramanayaka S, Kumar M, Etampawala T, Vithanage M. Macro, colloidal and nanobiochar for oxytetracycline removal in synthetic hydrolyzed human urine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115683. [PMID: 33254678 DOI: 10.1016/j.envpol.2020.115683] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/08/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Macro (BC), colloidal (CBC) and nanobiochar (NBC) were examined for the particle size effect for adsorptive removal of oxytetracycline (OTC) and co-occurring nutrients, which are present in synthetic hydrolyzed human urine. The surface morphologies and functionality of biochars were characterized using Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area and Fourier Transform Infra-Red (FTIR) Spectroscopy. Experiments for the removal of OTC were performed at the natural pH (pH 9.0) of hydrolyzed human urine using solid-solutions of 3 types of chars (1 g/L) with a contact time of 5 h, at initial OTC concentration of 50 mg/L where isotherm experiments were investigated with OTC concentrations from 25 to 1000 mg/L. The highest maximum adsorption capacity of 136.7 mg/g was reported for CBC, while BC reported slightly low value (129.34 mg/g). Interestingly, NBC demonstrated a two-step adsorption process with two adsorption capacities (16.9 and 113.2 mg/g). Colloidal biochar depicted the highest adsorption for NH4+, PO43-, and SO42- nutrients. All 3 types of chars showed strong retention with a poor desorption (6% in average) of OTC in synthetic hydrolyzed urine medium. CBC and NBC demonstrated both physisorption and chemisorption, whereas the OTC removal by BC was solely via physisorption. Nevertheless, CBC biochar demonstrated the best performance in adsorptive removal of OTC and nutrients in hydrolyzed human urine and its capability towards wastewater treatment. As the removal of nutrients were low, the treated urine can possibly be used as a safe fertilizer.
Collapse
Affiliation(s)
- Sammani Ramanayaka
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, 382 355, India
| | - Thusitha Etampawala
- Department of Polymer Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
44
|
Li Y, Xing B, Ding Y, Han X, Wang S. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2020; 312:123614. [PMID: 32517889 DOI: 10.1016/j.biortech.2020.123614] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 05/10/2023]
Abstract
Biochar is a carbon-rich product obtained from the thermo-chemical conversion of biomass. Studying the evolution properties of biochar by in-situ modification or post-modification is of great significance for improving the utilisation value of lignocellulosic biomass. In this paper, the production methods of biochar are reviewed. The effects of the biomass feedstock characteristics, production processes, reaction conditions (temperature, heating rate, etc.) as well as in-situ activation, heteroatomic doping, and functional group modification on the physical and chemical properties of biochar are compared. Based on its unique physicochemical properties, recent research advances with respect to the use of biochar in pollutant adsorbents, catalysts, and energy storage are reviewed. The relationship between biochar structure and its application are also revealed. It is suggested that a more effective control of biochar structure and its corresponding properties should be further investigated to develop a variety of biochar for targeted applications.
Collapse
Affiliation(s)
- Yunchao Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Bo Xing
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yan Ding
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xinhong Han
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shurong Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
45
|
Yang Z, Liu X, Zhang M, Liu L, Xu X, Xian J, Cheng Z. Effect of temperature and duration of pyrolysis on spent tea leaves biochar: physiochemical properties and Cd(II) adsorption capacity. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:2533-2544. [PMID: 32857741 DOI: 10.2166/wst.2020.309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We analyzed the effects of pyrolysis temperature and duration on the physiochemical properties and Cd(II) adsorption capacity of spent tea leaves (STL) biochar. The STL biochar was produced by pyrolysis at 300, 400, 500 and 600 °C for 1 and 2 h. The pyrolysis temperature was positively correlated to the ash content, pH, electrical conductivity, specific surface area (SBET), pore volume (PV) and C content, and negatively with the total yield, O, H and N content, and the O/C and H/C atomic ratios. Furthermore, the surface porosity of STL biochar increased, the density of oxygen-containing functional groups decreased, and the formation of aromatic structures was enhanced at higher pyrolysis temperatures. The adsorption of Cd(II) onto STL biochar fitted with the pseudo-second-order kinetics and Langmuir isotherms model. The STL biochar produced at 600 °C for 2 h showed the maximum Cd(II) adsorption capacity of 97.415 mg/g. In addition, Cd(II) adsorption was mainly physical and occurred in monolayers. Thus, STL biochar is a suitable low-cost adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Zhanbiao Yang
- College of Environment, Sichuan Agricultural University, Chengdu 61130, China E-mail: ; † Zhanbiao Yang, Xincong Liu and Mengdi Zhang contributed equally to this work
| | - Xincong Liu
- College of Environment, Sichuan Agricultural University, Chengdu 61130, China E-mail: ; † Zhanbiao Yang, Xincong Liu and Mengdi Zhang contributed equally to this work
| | - Mengdi Zhang
- College of Environment, Sichuan Agricultural University, Chengdu 61130, China E-mail: ; † Zhanbiao Yang, Xincong Liu and Mengdi Zhang contributed equally to this work
| | - Lixia Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Xiaoxun Xu
- College of Environment, Sichuan Agricultural University, Chengdu 61130, China E-mail:
| | - Junren Xian
- College of Environment, Sichuan Agricultural University, Chengdu 61130, China E-mail:
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu 61130, China E-mail:
| |
Collapse
|
46
|
Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.02.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Xiang Y, Yang X, Xu Z, Hu W, Zhou Y, Wan Z, Yang Y, Wei Y, Yang J, Tsang DCW. Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: Effects and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136079. [PMID: 31884293 DOI: 10.1016/j.scitotenv.2019.136079] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/15/2019] [Accepted: 12/10/2019] [Indexed: 05/22/2023]
Abstract
An effective adsorbent towards fluoroquinolone antibiotics was synthesized via a facile two-step approach, the co-precipitation of Fe, Mn with vinasse wastes and then pyrolysis under controlled conditions which denoted as FMB. Its adsorption behavior was examined based on a batch adsorption experiment of fluoroquinolone antibiotics pefloxacin (PEF) and ciprofloxacin (CIP). Experimental factors, such as pH, adsorbent dose, ionic strength, contact time and temperature have done a great deal to influence the adsorption of PEF and CIP. The FMB demonstrated excellent performance in reusability tests towards to both PEF and CIP, which showed that the recycling efficiency of PEF and CIP could remain ~55% and ~80% after five recycle cycles, respectively. The dominated adsorption mechanisms included pore filling effect, π-π stacking interaction, π-π EDA, hydrogen bonding and hydrophobicity. Overall, this work presented FMB was recognized as an effective, environmental-friendly and magnetically separable adsorbent for alleviating fluoroquinolone antibiotics contamination from water.
Collapse
Affiliation(s)
- Yujia Xiang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiao Yang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zhangyi Xu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wenyong Hu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Zhonghao Wan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuhui Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yuyi Wei
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
48
|
Ramanayaka S, Tsang DCW, Hou D, Ok YS, Vithanage M. Green synthesis of graphitic nanobiochar for the removal of emerging contaminants in aqueous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135725. [PMID: 31940729 DOI: 10.1016/j.scitotenv.2019.135725] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
This study reports the preparation of nanobiochar (NBC) via top-down approach of bioenergy waste-derived dendro biochar through mechanised grinding in order to assess its capacity to remove emerging contaminants, such as antibiotics, agrochemicals, and potentially toxic elements from aqueous media. Preconditioned biochar was disc milled in ethanol media, and the resulting colloidal biochar was dispersed in water to obtain the NBC fraction by centrifugation. Adsorption edge and isotherm experiments were carried out at pH 3 to 8 and NBC dosages of 0.5 g/L for oxytetracycline (OTC), glyphosate (GL), hexavalent chromium (CrVI), and cadmium (CdII). NBC was characterised by scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area, and Fourier transform infrared spectroscopy, which demonstrated the flakey and graphitic nature of the NBC particles with a surface area of 28 m2/g and the presence of different functional groups, such as OH, CO, NH, and CH3. The best pH for OTC and Cd(II) was 9, whereas the best pH levels for GL and Cr(VI) were 7 and 4, respectively. Isotherms depicted a positive cooperative adsorption mechanism by providing the best fit to the Hills equation, with high removal capacities for four contaminants. Dendro NBC showed the best performance, demonstrated by the high partition coefficient for the removal of OTC, GL, Cr(VI), and Cd(II) over various types of adsorbents. The overall results indicated that graphitic NBC produced by mechanical grinding of dendro biochar is a promising material for the removal of OTC, GL, Cr(VI), and Cd(II) from aqueous media.
Collapse
Affiliation(s)
- Sammani Ramanayaka
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
49
|
Yan L, Liu Y, Zhang Y, Liu S, Wang C, Chen W, Liu C, Chen Z, Zhang Y. ZnCl 2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. BIORESOURCE TECHNOLOGY 2020; 297:122381. [PMID: 31740243 DOI: 10.1016/j.biortech.2019.122381] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 05/03/2023]
Abstract
In this study, biochar derived from aerobic granular sludge was modified by ZnCl2 (Zn-BC) to improve the adsorption performance of tetracycline (TC). The surface area, pores, and functional groups of Zn-BC were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) and the effects of initial pH, TC concentration, and temperature on TC adsorption performance were analyzed. At the same time, the adsorption kinetics, isotherms, thermodynamics and diffusion models were studied. The results showed that the BET surface area and micropore volume of Zn-BC were 852.41 m2·g-1 and 0.086 cm3·g-1, respectively. The maximum adsorption performance of TC was 93.44 mg·g-1, and it was less influenced by pH. The adsorption of TC on Zn-BC agreed well with the pseudo-second-order model and the Langmuir isotherm. The thermodynamic parameters indicated that the adsorption process was a spontaneously endothermic reaction.
Collapse
Affiliation(s)
- Lilong Yan
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Yue Liu
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Yudan Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Shuang Liu
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Caixu Wang
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Wanting Chen
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Cong Liu
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ying Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| |
Collapse
|
50
|
Yang K, Xing J, Xu P, Chang J, Zhang Q, Usman KM. Activated Carbon Microsphere from Sodium Lignosulfonate for Cr(VI) Adsorption Evaluation in Wastewater Treatment. Polymers (Basel) 2020; 12:polym12010236. [PMID: 31963778 PMCID: PMC7023583 DOI: 10.3390/polym12010236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 01/23/2023] Open
Abstract
In this study, activated carbon microsphere (SLACM) was prepared from powdered sodium lignosulfonate (SL) and polystyrene by the Mannich reaction and ZnCl2 activation, which can be used to remove Cr(VI) from the aqueous solution without adding any binder. The SLACM was characterized and the batch experiments were conducted under different initial pH values, initial concentrations, contact time durations and temperatures to investigate the adsorption performance of Cr(VI) onto SLACM. The results indicated that the SLACM surface area and average pore size were 769.37 m2/g and 2.46 nm (the mesoporous material), respectively. It was found that the reduced initial pH value, the increased temperature and initial Cr(VI) concentration were beneficial to Cr(VI) adsorption. The maximum adsorption capacity of Cr(VI) on SLACM was 227.7 mg/g at an initial pH value of 2 and the temperature of 40 °C. The adsorption of SLACM for Cr(VI) mainly occurred during the initial stages of the adsorption process. The adsorption kinetic and isotherm experimental data were thoroughly described by Elovich and Langmuir models, respectively. SL could be considered as a potential raw material for the production of activated carbon, which had a considerable potential for the Cr(VI) removal from wastewater.
Collapse
Affiliation(s)
- Keyan Yang
- College of Material Science and Technology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; (K.Y.); (J.X.); (P.X.)
| | - Jingchen Xing
- College of Material Science and Technology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; (K.Y.); (J.X.); (P.X.)
| | - Pingping Xu
- College of Material Science and Technology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; (K.Y.); (J.X.); (P.X.)
| | - Jianmin Chang
- College of Material Science and Technology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China; (K.Y.); (J.X.); (P.X.)
- Correspondence: ; Tel.: +86-010-6233-7733
| | - Qingfa Zhang
- School of Agricultural and Food Engineering, Shandong University of Technology, 266 Xincun West Road, Zibo 255000, China;
| | - Khan Muhammad Usman
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA;
| |
Collapse
|