1
|
Nizzy AM, Kannan S, Kanmani S. Utilization of plant-derived wastes as the potential biohydrogen source: a sustainable strategy for waste management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34839-34858. [PMID: 38744759 DOI: 10.1007/s11356-024-33610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
The sustainable economy has shown a renewed interest in acquiring access to the resources required to promote innovative practices that favor recycling and the reuse of existing, unconsidered things over newly produced ones. The production of biohydrogen through dark anaerobic fermentation of organic wastes is one of the intriguing possibilities for replacing fossil-based fuels through the circular economy. At present, plant-derived waste from the agro-based industry is the main global concern. When these wastes are improperly disposed of in landfills, they become the habitat for several pathogens. Additionally, it contaminates surface water as a result of runoff, and the leachate that is created from the waste enters groundwater and degrades its quality. However, cellulose and hemicellulose-rich plant wastes from agriculture fields and agro-based industries have been employed as the most efficient feedstock since carbohydrates are the primary substrate for the synthesis of biohydrogen. To produce biohydrogen from plant-derived wastes on a large scale, it is necessary to explore comprehensive knowledge of lab-scale parameters and pretreatment strategies. This paper summarizes the problems associated with the improper management of plant-derived wastes and discusses the recent developments in dark fermentation and substrate pretreatment techniques with the goal of gaining significant insight into the biohydrogen production process. It also highlights the utilization of anaerobic digestate, which is left over after biohydrogen gas as feedstock for the development of value-added products such as volatile fatty acids (VFA), biochar, and biofertilizer.
Collapse
Affiliation(s)
| | - Suruli Kannan
- Department of Environmental Studies, School of Energy Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Sellappa Kanmani
- Centre for Environmental Studies, Anna University, Chennai, Tamil Nadu, 625021, India
| |
Collapse
|
2
|
Pravin R, Baskar G, Rokhum SL, Pugazhendhi A. Comprehensive assessment of biorefinery potential for biofuels production from macroalgal biomass: Towards a sustainable circular bioeconomy and greener future. CHEMOSPHERE 2023; 339:139724. [PMID: 37541444 DOI: 10.1016/j.chemosphere.2023.139724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Marine macroalgae have attracted significant interest as a viable resource for biofuel and value-added chemical production due to their abundant availability, low production costs, and high carbohydrate and lipid content. The growing awareness of socio-economic factors worldwide has led to a greater consideration of marine macroalgae as a sustainable source for biofuel production and the generation of valuable products. The integration of biorefinery techniques into biofuel production processes holds immense potential for fostering the development of a circular bioeconomy on a broad scale. Extensive research was focused on the technoeconomic and environmental impact analysis of biofuel production from macroalgal biomass. The integrated biorefinery processes offers valuable pathways for the practical implementation of macroalgae in diverse conversion technologies. These studies provided crucial insights into the large-scale industrial production of biofuels and associated by-products. This review explores the utilization of marine macroalgal biomass for the production of biofuels and biochemicals. It examines the application of assessment tools for evaluating the sustainability of biorefinery processes, including process integration and optimization, life cycle assessment, techno-economic analysis, socio-economic analysis, and multi-criteria decision analysis. The review also discusses the limitations, bottlenecks, challenges, and future perspectives associated with utilizing macroalgal biomass for the production of biofuels and value-added chemicals.
Collapse
Affiliation(s)
- Ravichandran Pravin
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India.
| | | | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico.
| |
Collapse
|
3
|
Yang E, Chon K, Kim KY, Le GTH, Nguyen HY, Le TTQ, Nguyen HTT, Jae MR, Ahmad I, Oh SE, Chae KJ. Pretreatments of lignocellulosic and algal biomasses for sustainable biohydrogen production: Recent progress, carbon neutrality, and circular economy. BIORESOURCE TECHNOLOGY 2023; 369:128380. [PMID: 36427768 DOI: 10.1016/j.biortech.2022.128380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulosic and algal biomasses are known to be vital feedstocks to establish a green hydrogen supply chain toward achieving a carbon-neutral society. However, one of the most pressing issues to be addressed is the low digestibility of these biomasses in biorefinery processes, such as dark fermentation, to produce green hydrogen. To date, various pretreatment approaches, such as physical, chemical, and biological methods, have been examined to enhance feedstock digestibility. However, neither systematic reviews of pretreatment to promote biohydrogen production in dark fermentation nor economic feasibility analyses have been conducted. Thus, this study offers a comprehensive review of current biomass pretreatment methods to promote biohydrogen production in dark fermentation. In addition, this review has provided comparative analyses of the technological and economic feasibility of existing pretreatment techniques and discussed the prospects of the pretreatments from the standpoint of carbon neutrality and circular economy.
Collapse
Affiliation(s)
- Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Republic of Korea
| | - Kangmin Chon
- Department of Integrated Energy and Infrasystem, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Kyoung-Yeol Kim
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, United States
| | - Giang T H Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Hai Yen Nguyen
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Trang T Q Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Ha T T Nguyen
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Mi-Ri Jae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Ishaq Ahmad
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
4
|
Pathy A, Nageshwari K, Ramaraj R, Pragas Maniam G, Govindan N, Balasubramanian P. Biohydrogen production using algae: Potentiality, economics and challenges. BIORESOURCE TECHNOLOGY 2022; 360:127514. [PMID: 35760248 DOI: 10.1016/j.biortech.2022.127514] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The biohydrogen production from algal biomass could ensure hydrogen's sustainability as a fuel option at the industrial level. However, some bottlenecks still need to be overcome to achieve the process's economic feasibility. This review article highlights the potential of algal biomasses for producing hydrogen with a detailed explanation of various mechanisms and enzymes involved in the production processes. Further, it discusses the impact of various experimental parameters on biohydrogen production. This article also analyses the significant challenges confronted during the overall biohydrogen production process and comprehends the recent strategies adopted to enhance hydrogen productivity. Furthermore, it gives a perception of the economic sustenance of the process. Moreover, this review elucidates the future scope of this technology and delineates the approaches to ensure the viability of hydrogen production.
Collapse
Affiliation(s)
- Abhijeet Pathy
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Krishnamoorthy Nageshwari
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | | | - Gaanty Pragas Maniam
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300, Malaysia
| | | | - Paramasivan Balasubramanian
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
5
|
Tong KTX, Tan IS, Foo HCY, Lam MK, Lim S, Lee KT. Advancement of biorefinery-derived platform chemicals from macroalgae: a perspective for bioethanol and lactic acid. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-37. [PMID: 35316983 PMCID: PMC8929714 DOI: 10.1007/s13399-022-02561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The extensive growth of energy and plastic demand has raised concerns over the depletion of fossil fuels. Moreover, the environmental conundrums worldwide integrated with global warming and improper plastic waste management have led to the development of sustainable and environmentally friendly biofuel (bioethanol) and biopolymer (lactic acid, LA) derived from biomass for fossil fuels replacement and biodegradable plastic production, respectively. However, the high production cost of bioethanol and LA had limited its industrial-scale production. This paper has comprehensively reviewed the potential and development of third-generation feedstock for bioethanol and LA production, including significant technological barriers to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation technologies using macroalgae as feedstock is also deliberated in detail. Lastly, the sustainability aspect and perspective of macroalgae biomass are evaluated economically and environmentally using a developed cascading system associated with techno-economic analysis and life cycle assessment, which represent the highlights of this review paper. Furthermore, this review provides a conceivable picture of macroalgae-based bioethanol and lactic acid biorefinery and future research directions that can be served as an important guideline for scientists, policymakers, and industrial players. Graphical abstract
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
6
|
Guellout Z, Francois-Lopez E, Benguerba Y, Dumas C, Yadav KK, Fallatah AM, Pugazhendhi A, Ernst B. Dark fermentative biohydrogen production from vinicultural biomass without exogenous inoculum in a semi-batch reactor: A kinetic study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114393. [PMID: 34979359 DOI: 10.1016/j.jenvman.2021.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
This work employed a unique kind of vinicultural biomass (grape residues) to generate fermentative hydrogen. This form of biomass serves two purposes (contains substrate and inoculum). Four mathematical model methods were established; these models were used to represent the fluctuation of hydrogen generation and other fermentation products (organic acids, alcohols), the consumption of substrates included in biomass, and bacterial growth. One of these models was verified using experimental data and used to represent all of the metabolic pathways of bacteria contained in the medium and the interaction between products and substrates. The optimal biomass load, 60 g COD (Chemical Oxygen Demand)/L with a concentration of 0.22 mol of hexose and 0.0444 mol of tartrate offers the best hydrogen yield.
Collapse
Affiliation(s)
- Zineb Guellout
- Département de Génie des Procédés, Faculté de Technologie, Université Chahid Mostafa BENBOULAID Batna 2, Algeria; Université de Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), ECPM 25 rue Becquerel, F-67000, Strasbourg, France
| | - Emilie Francois-Lopez
- Université de Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), ECPM 25 rue Becquerel, F-67000, Strasbourg, France; French Environment and Energy Management Agency, Angers, France
| | - Yacine Benguerba
- Department of Process Engineering, Faculty of Technology, Ferhat Abbas Setif1 University, Setif, Algeria.
| | - Christine Dumas
- Université de Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), ECPM 25 rue Becquerel, F-67000, Strasbourg, France
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
| | - Ahmed M Fallatah
- Department of Chemistry College of Science, Taif University, PO Box 11099, Taif, 21944, Saudi Arabia
| | | | - Barbara Ernst
- Université de Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), ECPM 25 rue Becquerel, F-67000, Strasbourg, France
| |
Collapse
|
7
|
Schultze-Jena A, Vroon R, Macleod A, Hreggviðsson G, Adalsteinsson B, Engelen-Smit N, de Vrije T, Budde M, van der Wal H, López-Contreras A, Boon M. Production of acetone, butanol, and ethanol by fermentation of Saccharina latissima: Cultivation, enzymatic hydrolysis, inhibitor removal, and fermentation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Abstract
Ethanol produced from various biobased sources (bioethanol) has been gaining high attention lately due to its potential to cut down net emissions of carbon dioxide while reducing burgeoning world dependence on fossil fuels. Global ethanol production has increased more than six-fold from 18 billion liters at the turn of the century to 110 billion liters in 2019, only to fall to 98.6 billion liters in 2020 due to the pandemic. Sugar cane and corn have been used as the major feedstocks for ethanol production. Lignocellulosic biomass has recently been considered as another potential feedstock due to its non-food competing status and its availability in very large quantities. This paper reviews recent developments and current status of commercial production of ethanol across the world with a focus on the technological aspects. The review includes the ethanol production processes used for each type of feedstock, both currently practiced at commercial scale and still under developments, and current production trends in various regions and countries in the world.
Collapse
|
9
|
Microalgal Hydrogen Production in Relation to Other Biomass-Based Technologies—A Review. ENERGIES 2021. [DOI: 10.3390/en14196025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen is an environmentally friendly biofuel which, if widely used, could reduce atmospheric carbon dioxide emissions. The main barrier to the widespread use of hydrogen for power generation is the lack of technologically feasible and—more importantly—cost-effective methods of production and storage. So far, hydrogen has been produced using thermochemical methods (such as gasification, pyrolysis or water electrolysis) and biological methods (most of which involve anaerobic digestion and photofermentation), with conventional fuels, waste or dedicated crop biomass used as a feedstock. Microalgae possess very high photosynthetic efficiency, can rapidly build biomass, and possess other beneficial properties, which is why they are considered to be one of the strongest contenders among biohydrogen production technologies. This review gives an account of present knowledge on microalgal hydrogen production and compares it with the other available biofuel production technologies.
Collapse
|
10
|
Bachir Bouiadjra B, Ghellai M, Daoudi M, Behmene IE, Bachir Bouiadjra MEA. Impacts of the invasive species Caulerpa cylindracea Sonder, 1845 on the algae flora of the west coast of Algeria. Biodivers Data J 2021; 9:e64535. [PMID: 34093055 PMCID: PMC8175330 DOI: 10.3897/bdj.9.e64535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/10/2021] [Indexed: 12/05/2022] Open
Abstract
The assessment of the impacts of the expansion of the invasive species on taxonomic diversity, the abundance and dominance of groups of algae, the presence and/or absence of species of ecological interest that may or may not be indicative of water quality well mentioned, through the installation of a 20 × 20 cm quadrat representing the minimum area. The observation stations were visited monthly, during a repetitive three-year cycle, during the spring, summer and autumn seasons, periods of maximum growth and development of the algal flora and the results suggest the following facts. The invasive alga Caulerpacylindracea Sonder, 1845 tends to colonise disturbed ecosystems reflecting a reduction in native algal diversity; in fact, we note a drastic impoverishment of the invaded algal community, represented by a limited number of Macrophyte algae accompanying the invasive taxon in phytosociological surveys and a Shannon-Weaver Diversity Index (H’) and Equitability reduced by 4.49 and 0.77 n the heavily affected station. The number of macroalgal species accompanying the invasive species has dropped by 52% in Salamandre. In addition, the multidimensional analysis, represented by the Hierarchical Ascendant Clustering applied to this case, confirms our results.
Collapse
Affiliation(s)
- Benabdallah Bachir Bouiadjra
- Laboratory of Animal Production Sciences and Techniques (LSTPA), University of Mostaganem, Mostaganem, Algeria Laboratory of Animal Production Sciences and Techniques (LSTPA), University of Mostaganem Mostaganem Algeria
| | - Malika Ghellai
- University of Relizane, Relizane, Algeria University of Relizane Relizane Algeria
| | - Mohamed Daoudi
- Laboratory of Animal Production Sciences and Techniques (LSTPA), University of Mostaganem, Mostaganem, Algeria Laboratory of Animal Production Sciences and Techniques (LSTPA), University of Mostaganem Mostaganem Algeria
| | - Ibrahim Elkhalil Behmene
- Laboratory of Animal Production Sciences and Techniques (LSTPA), University of Mostaganem, Mostaganem, Algeria Laboratory of Animal Production Sciences and Techniques (LSTPA), University of Mostaganem Mostaganem Algeria
| | | |
Collapse
|
11
|
Saravanan A, Karishma S, Kumar PS, Varjani S, Yaashikaa PR, Jeevanantham S, Ramamurthy R, Reshma B. Simultaneous removal of Cu(II) and reactive green 6 dye from wastewater using immobilized mixed fungal biomass and its recovery. CHEMOSPHERE 2021; 271:129519. [PMID: 33460887 DOI: 10.1016/j.chemosphere.2020.129519] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Immobilized fungal biomass (Aspergillus niger and Aspergillus flavus) was prepared and analysed for the simultaneous removal of Cu(II) ion and Reactive Green 6 dye from aqueous phase. Different characterization analysis was utilized to exploit the adsorption characteristics of fungal biomass. Batch biosorption tests, performed to investigate the factors influencing biosorption process inferred optimal values of 25 mg/L of adsorbate with equilibrium time of 60 min, 2.5 g of immobilized fungal biomass, temperature of 303 K and pH of 5.0 for the maximal removal of pollutants. The obtained experimental data was utilized to evaluate the kinetic, thermodynamic and equilibrium models. Langmuir isotherm model has higher correlation coefficient [Cu(II) ion = 0.8625 and RG 6 dye = 0.8575] with small values of errors (RMSE = 3.746 and SSE = 56.12 for Cu(II) ion; RMSE = 4.872 and SSE = 11.87 for RG 6 dye). Kinetic studies performed to evaluate the adsorption rate mechanism of this present study indicated that pseudo-first order and pseudo-second order kinetics to be most fitting model for removal of Cu(II) ions and Reactive green dye respectively. Thermodynamic analysis inferred the spontaneous, random, and exothermic nature of the biosorption process based on ΔGo, ΔHo, and ΔSo values respectively. The prepared biomass can be an alternative for the elimination of toxic pollutants from wastewater.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India.
| | - P R Yaashikaa
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - Racchana Ramamurthy
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India; Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, PO Box 3015, 2061, DA Delft, the Netherlands
| | - B Reshma
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| |
Collapse
|
12
|
Trigueros E, Sanz M, Filipigh A, Beltrán S, Riaño P. Enzymatic hydrolysis of the industrial solid residue of red seaweed after agar extraction: Extracts characterization and modelling. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Digestate as Sustainable Nutrient Source for Microalgae—Challenges and Prospects. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031056] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The interest in microalgae products has been increasing, and therefore the cultivation industry is growing steadily. To reduce the environmental impact and production costs arising from nutrients, research needs to find alternatives to the currently used artificial nutrients. Microalgae cultivation in anaerobic effluents (more specifically, digestate) represents a promising strategy for increasing sustainability and obtaining valuable products. However, digestate must be processed prior to its use as nutrient source. Depending on its composition, different methods are suitable for removing solids (e.g., centrifugation) and adjusting nutrient concentrations and ratios (e.g., dilution, ammonia stripping). Moreover, the resulting cultivation medium must be light-permeable. Various studies show that growth rates comparable to those in artificial media can be achieved when proper digestate treatment is used. The necessary steps for obtaining a suitable cultivation medium also depend on the microalgae species to be cultivated. Concerning the application of the biomass, legal aspects and impurities originating from digestate must be considered. Furthermore, microalgae species and their application fields are essential criteria when selecting downstream processing methods (harvest, disintegration, dehydration, product purification). Microalgae grown on digestate can be used to produce various products (e.g., bioenergy, animal feed, bioplastics, and biofertilizers). This review gives insight into the origin and composition of digestate, processing options to meet requirements for microalgae cultivation and challenges regarding downstream processing and products.
Collapse
|
14
|
A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance. ENERGIES 2020. [DOI: 10.3390/en13102451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This paper reviews the current technological development of bio-hydrogen (BioH2) generation, focusing on using lignocellulosic feedstock via dark fermentation (DF). Using the collected reference reports as the training data set, supervised machine learning via the constructed artificial neuron networks (ANNs) imbedded with feed backward propagation and one cross-out validation approach was deployed to establish correlations between the carbon sources (glucose and xylose) together with the inhibitors (acetate and other inhibitors, such as furfural and aromatic compounds), hydrogen yield (HY), and hydrogen evolution rate (HER) from reported works. Through the statistical analysis, the concentrations variations of glucose (F-value = 0.0027) and acetate (F-value = 0.0028) were found to be statistically significant among the investigated parameters to HY and HER. Manipulating the ratio of glucose to acetate at an optimal range (approximate in 14:1) will effectively improve the BioH2 generation (HY and HER) regardless of microbial strains inoculated. Comparative studies were also carried out on the evolutions of electron equivalent balances using lignocellulosic biomass as substrates for BioH2 production across different reported works. The larger electron sinks in the acetate is found to be appreciably related to the higher HY and HER. To maintain a relative higher level of the BioH2 production, the biosynthesis needs to be kept over 30% in batch cultivation, while the biosynthesis can be kept at a low level (2%) in the continuous operation among the investigated reports. Among available solutions for the enhancement of BioH2 production, the selection of microbial strains with higher capacity in hydrogen productions is still one of the most phenomenal approaches in enhancing BioH2 production. Other process intensifications using continuous operation compounded with synergistic chemical additions could deliver additional enhancement for BioH2 productions during dark fermentation.
Collapse
|
15
|
Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Patel AK, Pant D, Rajesh Banu J, Rao CV, Kim YG, Yang YH. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. BIORESOURCE TECHNOLOGY 2020; 300:122724. [PMID: 31926792 DOI: 10.1016/j.biortech.2019.122724] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 05/12/2023]
Abstract
Lignocellulosic biomass is an inexpensive renewable source that can be used to produce biofuels and bioproducts. The recalcitrance nature of biomass hampers polysaccharide accessibility for enzymes and microbes. Several pretreatment methods have been developed for the conversion of lignocellulosic biomass into value-added products. However, these pretreatment methods also produce a wide range of secondary compounds, which are inhibitory to enzymes and microorganisms. The selection of an effective and efficient pretreatment method discussed in the review and its process optimization can significantly reduce the production of inhibitory compounds and may lead to enhanced production of fermentable sugars and biochemicals. Moreover, evolutionary and genetic engineering approaches are being used for the improvement of microbial tolerance towards inhibitors. Advancements in pretreatment and detoxification technologies may help to increase the productivity of lignocellulose-based biorefinery. In this review, we discuss the recent advancements in lignocellulosic biomass pretreatment technologies and strategies for the removal of inhibitors.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Sujit Sadashiv Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA
| | - Ashwini Ashok Bedekar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill-171005 (H.P), India
| | - Anil Kumar Patel
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Deepak Pant
- Department of Chemistry, Central University of Haryana, Mahendragarh, Haryana 123031, India
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, 06978 Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
16
|
Anwar M, Lou S, Chen L, Li H, Hu Z. Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. BIORESOURCE TECHNOLOGY 2019; 292:121972. [PMID: 31444119 DOI: 10.1016/j.biortech.2019.121972] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Recently, ensuring energy security is a key challenge to political and economic strength in the world. Bio-hydrogen production from microalgae is the promising alternative source for potential renewable and self-sustainability energy but still in the initial phase of development. Practically and sustainability of microalgae hydrogen production is still debatable. The genetic engineering and metabolic pathway engineering of hydrogenase and nitrogenase play a key role to enhance hydrogen production. Microalgae have photosynthetic efficiency and synthesize huge carbohydrate biomass, used as 4th generation feedstock to generate bio-hydrogen. Recent genetically modified strains of microalgae are the attractive source for enhancing bio-hydrogen production in the future. The potential of hydrogen production from microRNAs are gaining great interest of researcher. The main objective of this review is attentive discussed recent approaches on new molecular genetics engineering and metabolic pathway developments, modern photo-bioreactors efficiency, economic assessment, limitations and knowledge gap of bio-hydrogen production from microalgae.
Collapse
Affiliation(s)
- Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Sulin Lou
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Liu Chen
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Hui Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, People's Republic of China.
| |
Collapse
|
17
|
Gnanasekaran R, Dhandapani B, Iyyappan J. Improved itaconic acid production by Aspergillus niveus using blended algal biomass hydrolysate and glycerol as substrates. BIORESOURCE TECHNOLOGY 2019; 283:297-302. [PMID: 30921582 DOI: 10.1016/j.biortech.2019.03.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Superfluous algal biomass hydrolysate and purified glycerol obtained from biodiesel production were utilized for the production of itaconic acid by Aspergillus niveus. The lipid extracted Gracilaria edulis algal biomass residual was subjected to a pretreatment for the enhanced production of itaconic acid. Glycerol acquired from biodiesel production was pretreated and utilized as a substrate for itaconic acid production. The effect of individual and combined substrate concentration on itaconic acid production was investigated. Ultrasonication combined with the acid pretreated algal biomass produces higher itaconic acid due to the higher level of the total carbohydrate content (58.47 ± 2.57% w/v). After 168 h of incubation, A. niveus utilizes algal biomass hydrolysate and purified glycerol as substrate and produced 31.55 ± 1.25 g/L of itaconic acid and the dry cell weight is 18.24 ± 0.23 g/L respectively. Glycerol and algal biomass hydrolysate was a potential substrate for itaconic acid production by fungal species.
Collapse
Affiliation(s)
- Ramakrishnan Gnanasekaran
- Department of Biotechnology, Vel Tech High Tech Dr Rangarajan Dr Sakunthala Engineering College, Chennai, India
| | - Balaji Dhandapani
- Department of Chemical Engineering, SSN College of Engineering, Chennai, India.
| | - Jayaraj Iyyappan
- Department of Biotechnology, Vel Tech High Tech Dr Rangarajan Dr Sakunthala Engineering College, Chennai, India
| |
Collapse
|
18
|
Han H, Ling Z, Khan A, Virk AK, Kulshrestha S, Li X. Improvements of thermophilic enzymes: From genetic modifications to applications. BIORESOURCE TECHNOLOGY 2019; 279:350-361. [PMID: 30755321 DOI: 10.1016/j.biortech.2019.01.087] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Thermozymes (from thermophiles or hyperthermophiles) offer obvious advantages due to their excellent thermostability, broad pH adaptation, and hydrolysis ability, resulting in diverse industrial applications including food, paper, and textile processing, biofuel production. However, natural thermozymes with low yield and poor adaptability severely hinder their large-scale applications. Extensive studies demonstrated that using genetic modifications such as directed evolution, semi-rational design, and rational design, expression regulations and chemical modifications effectively improved enzyme's yield, thermostability and catalytic efficiency. However, mechanism-based techniques for thermozymes improvements and applications need more attention. In this review, stabilizing mechanisms of thermozymes are summarized for thermozymes improvements, and these improved thermozymes eventually have large-scale industrial applications.
Collapse
Affiliation(s)
- Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Amanpreet Kaur Virk
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
19
|
Kim SH, Mudhoo A, Pugazhendhi A, Saratale RG, Surroop D, Jeetah P, Park JH, Saratale GD, Kumar G. A perspective on galactose-based fermentative hydrogen production from macroalgal biomass: Trends and opportunities. BIORESOURCE TECHNOLOGY 2019; 280:447-458. [PMID: 30777703 DOI: 10.1016/j.biortech.2019.02.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
This review analyses the relevant studies which focused on hydrogen synthesis by dark fermentation of galactose from macroalgal biomass by discussing the inoculum-related pretreatments, batch fermentation and inhibition, continuous fermentation systems, bioreactor designs for continuous operation and ionic liquid-assisted catalysis. The potential for process development is also revisited and the challenges towards suppressing glucose dominance over a galactose-based hydrogen production system are presented. The key challenges in the pretreatment process aiming to achieve a maximum recovery of upgradable (fermentable) sugars from the hydrolysates and promoting the concomitant detoxification of the hydrolysates have also been highlighted. The research avenues for bioprocess intensification connected to enhance selective sugar recovery and effective detoxification constitute the critical steps to develop future red macroalgae-derived galactose-based robust biohydrogen production system.
Collapse
Affiliation(s)
- Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Dinesh Surroop
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Pratima Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Jeong-Hoon Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Anam-Dong, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
20
|
Bakonyi P, Kumar G, Bélafi-Bakó K, Kim SH, Koter S, Kujawski W, Nemestóthy N, Peter J, Pientka Z. A review of the innovative gas separation membrane bioreactor with mechanisms for integrated production and purification of biohydrogen. BIORESOURCE TECHNOLOGY 2018; 270:643-655. [PMID: 30213541 DOI: 10.1016/j.biortech.2018.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
This review article focuses on an assessment of the innovative Gas Separation Membrane Bioreactor (GS-MBR), which is an emerging technology because of its potential for in-situ biohydrogen production and separation. The GS-MBR, as a special membrane bioreactor, enriches CO2 directly from the headspace of the anaerobic H2 fermentation process. CO2 can be fed as a substrate to auxiliary photo-bioreactors to grow microalgae as a promising raw material for biocatalyzed, dark fermentative H2-evolution. Overall, these features make the GS-MBR worthy of study. To the best of the authors' knowledge, the GS-MBR has not been studied in detail to date; hence, a comprehensive review of this topic will be useful to the scientific community.
Collapse
Affiliation(s)
- Péter Bakonyi
- Research Institute of Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Katalin Bélafi-Bakó
- Research Institute of Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Stanislaw Koter
- Faculty of Chemistry, Department of Physical Chemistry, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100, Toruń, Poland
| | - Wojciech Kujawski
- Faculty of Chemistry, Department of Physical Chemistry, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100, Toruń, Poland
| | - Nándor Nemestóthy
- Research Institute of Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
| | - Jakub Peter
- Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Zbynek Pientka
- Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
21
|
Prabakar D, Suvetha K S, Manimudi VT, Mathimani T, Kumar G, Rene ER, Pugazhendhi A. Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:165-180. [PMID: 29679823 DOI: 10.1016/j.jenvman.2018.03.136] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/25/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
The implementation of different pretreatment techniques and technologies prior to effluent discharge is a direct result of the inefficiency of several existing wastewater treatment methods. A majority of the industrial sectors have known to cause severe negative effects on the environment. The five major polluting industries are the paper and pulp mills, coal manufacturing facilities, petrochemical, textile and the pharmaceutical sectors. Pretreatment methods have been widely used in order to lower the toxicity levels of effluents and comply with environmental standards. In this review, the possible environmental benefits and concerns of adopting different pretreatment technologies for renewable energy production and product/resource recovery has been reviewed and discussed.
Collapse
Affiliation(s)
- Desika Prabakar
- Centre for Biotechnology, Anna University, Guindy, Chennai, 600 025, Tamil Nadu, India
| | - Subha Suvetha K
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201 303, India
| | - Varshini T Manimudi
- Centre for Biotechnology, Anna University, Guindy, Chennai, 600 025, Tamil Nadu, India
| | - Thangavel Mathimani
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2601DA, Delft, The Netherlands
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
22
|
Kumar MD, Tamilarasan K, Kaliappan S, Banu JR, Rajkumar M, Kim SH. Surfactant assisted disperser pretreatment on the liquefaction of Ulva reticulata and evaluation of biodegradability for energy efficient biofuel production through nonlinear regression modelling. BIORESOURCE TECHNOLOGY 2018; 255:116-122. [PMID: 29414156 DOI: 10.1016/j.biortech.2018.01.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
The present study aimed to increase the disintegration potential of marine macroalgae, (Ulva reticulata) through chemo mechanical pretreatment (CMP) in an energy efficient manner. By combining surfactant with disperser, the specific energy input was considerably reduced from 437.1 kJ/kg TS to 264.9 kJ/kg TS to achieve 10.7% liquefaction. A disperser rpm (10,000), pretreatment time (30 min) and tween 80 dosage (21.6 mg/L) were considered as an optimum for effective liquefaction of algal biomass. CMP was designated as an appropriate pretreatment resulting in a higher soluble organic release 1250 mg/L, respectively. Anaerobic fermentation results revealed that the volatile fatty acid (VFA) concentration was doubled (782 mg/L) in CMP when compared to mechanical pretreatment (MP) (345 mg/L). CMP pretreated algal biomass was considered as the suitable for biohydrogen production with highest H2 yield of about 63 mL H2/g COD than (MP) (45 mL H2/g COD) and control (10 mL H2/g COD).
Collapse
Affiliation(s)
- M Dinesh Kumar
- Department of Civil Engineering, Anna University Regional campus, Tirunelveli, India
| | - K Tamilarasan
- Department of Civil Engineering, Anna University Regional campus, Tirunelveli, India
| | - S Kaliappan
- Institute of Remote Sensing, College of Engineering, Guindy, Anna University, Chennai, India
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional campus, Tirunelveli, India.
| | - M Rajkumar
- Department of Environmental Sciences, Bharathiar University, Coimbatore, India
| | - Sang Hyoun Kim
- Department of Environmental Engineering, Daegu University, Gyeongsan, Republic of Korea
| |
Collapse
|
23
|
|
24
|
Bakonyi P, Kumar G, Koók L, Tóth G, Rózsenberszki T, Bélafi-Bakó K, Nemestóthy N. Microbial electrohydrogenesis linked to dark fermentation as integrated application for enhanced biohydrogen production: A review on process characteristics, experiences and lessons. BIORESOURCE TECHNOLOGY 2018; 251:381-389. [PMID: 29295757 DOI: 10.1016/j.biortech.2017.12.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Microbial electrohydrogenesis cells (MECs) are devices that have attracted significant attention from the scientific community to generate hydrogen gas electrochemically with the aid of exoelectrogen microorganisms. It has been demonstrated that MECs are capable to deal with the residual organic materials present in effluents generated along with dark fermentative hydrogen bioproduction (DF). Consequently, MECs stand as attractive post-treatment units to enhance the global H2 yield as a part of a two-stage, integrated application (DF-MEC). In this review article, it is aimed (i) to assess results communicated in the relevant literature on cascade DF-MEC systems, (ii) describe the characteristics of each steps involved and (iii) discuss the experiences as well as the lessons in order to facilitate knowledge transfer and help the interested readers with the construction of more efficient coupled set-ups, leading eventually to the improvement of overall biohydrogen evolution performances.
Collapse
Affiliation(s)
- Péter Bakonyi
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Gopalakrishnan Kumar
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - László Koók
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Gábor Tóth
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Tamás Rózsenberszki
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Katalin Bélafi-Bakó
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprém, Hungary
| |
Collapse
|
25
|
Gallagher JA, Turner LB, Adams JMM, Barrento S, Dyer PW, Theodorou MK. Species variation in the effects of dewatering treatment on macroalgae. JOURNAL OF APPLIED PHYCOLOGY 2018; 30:2305-2316. [PMID: 30147237 PMCID: PMC6096787 DOI: 10.1007/s10811-018-1420-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 05/16/2023]
Abstract
Seaweeds can be a valuable resource for biorefinery and biotechnology applications, but their high water content is a recurrent problem and one of the key bottlenecks for their sustainable use. Treatments to increase dry matter content of the kelp Laminaria digitata were recently described by the authors. However macroalgae are an extremely diverse group of organisms and compositional variation between species may influence the effects of particular treatments. In this study, potential dewatering treatments including drying, osmotic media, and the application of both organic and mineral acids all followed by screw-pressing have been tested on two other species of kelp (Laminaria hyperborea and Saccharina latissima) and a red seaweed (Palmaria palmata). Conditions that dewatered these species were identified and the data have been combined with the previous results for L. digitata. There were significant differences between species across all the traits of interest. However dewatering was highly dependent on specific interactions with both treatment and season of collection. Nevertheless, the dry matter content of brown seaweeds was widely and successfully increased by air drying or acid treatment followed by screw-pressing. The results for P. palmata were quite different, particularly with regard to juice production. For this species, acid treatment did not result in dewatering, but dry matter content could be increased by screw-pressing immediately after harvest. Together the data presented here demonstrate that dewatering pre-treatments need to be specific for the type of seaweed to be processed; important knowledge for the future use of this sustainable biomass resource.
Collapse
Affiliation(s)
- Joe A. Gallagher
- Biorefining Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3EE UK
| | - Lesley B. Turner
- Biorefining Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3EE UK
| | - Jessica M. M. Adams
- Biorefining Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3EE UK
| | - Sara Barrento
- Centre for Sustainable Aquatic Research (CSAR), Swansea University, Singleton Park, Swansea, SA2 8PP UK
- CIIMAR, CIIMAR–Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Philip W. Dyer
- Centre for Sustainable Chemical Processes, Department of Chemistry, Durham University, South Road, Durham, DH1 3LE UK
| | - Michael K. Theodorou
- Agricultural Centre for Sustainable Energy Systems, Harper Adams University, Newport, Shropshire TF10 8NB UK
| |
Collapse
|