1
|
Arantes V, Las-Casas B, Dias IKR, Yupanqui-Mendoza SL, Nogueira CFO, Marcondes WF. Enzymatic approaches for diversifying bioproducts from cellulosic biomass. Chem Commun (Camb) 2024; 60:9704-9732. [PMID: 39132917 DOI: 10.1039/d4cc02114b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cellulosic biomass is the most abundantly available natural carbon-based renewable resource on Earth. Its widespread availability, combined with rising awareness, evolving policies, and changing regulations supporting sustainable practices, has propelled its role as a crucial renewable feedstock to meet the escalating demand for eco-friendly and renewable materials, chemicals, and fuels. Initially, biorefinery models using cellulosic biomass had focused on single-product platform, primarily monomeric sugars for biofuel. However, since the launch of the first pioneering cellulosic plants in 2014, these models have undergone significant revisions to adapt their biomass upgrading strategy. These changes aim to diversify the bioproduct portfolio and improve the revenue streams of cellulosic biomass biorefineries. Within this area of research and development, enzyme-based technologies can play a significant role by contributing to eco-design in producing and creating innovative bioproducts. This Feature Article highlights our strategies and recent progress in utilizing the biological diversity and inherent selectivity of enzymes to develop and continuously optimize sustainable enzyme-based technologies with distinct application approaches. We have advanced technologies for standalone platforms, which produce various forms of cellulose nanomaterials engineered with customized and enhanced properties and high yields. Additionally, we have tailored technologies for integration within a biorefinery concept. This biorefinery approach prioritizes designing tailored processes to establish bionanomaterials, such as cellulose and lignin nanoparticles, and bioactive molecules as part of a new multi-bioproduct platform for cellulosic biomass biorefineries. These innovations expand the range of bioproducts that can be produced from cellulosic biomass, transcending the conventional focus on monomeric sugars for biofuel production to include biomaterials biorefinery. This shift thereby contributes to strengthening the Bioeconomy strategy and supporting the achievement of several Sustainable Development Goals (SDGs) of the 2030 Agenda for Sustainable Development.
Collapse
Affiliation(s)
- Valdeir Arantes
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Bruno Las-Casas
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Isabella K R Dias
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Sergio Luis Yupanqui-Mendoza
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Carlaile F O Nogueira
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Wilian F Marcondes
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| |
Collapse
|
2
|
Las-Casas B, Arantes V. Exploring xylan removal via enzymatic post-treatment to tailor the properties of cellulose nanofibrils for packaging film applications. Int J Biol Macromol 2024; 274:133325. [PMID: 38908627 DOI: 10.1016/j.ijbiomac.2024.133325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Hemicellulose plays a key role in both the production of cellulose nanofibrils (CNF) and their properties as suspensions and films. While the use of enzymatic and chemical pre-treatments for tailoring hemicellulose levels is well-established, post-treatment methods using enzymes remain relatively underexplored and hold significant promise for modifying CNF film properties. This study aimed to investigate the effects of enzymatic xylan removal on the properties of CNF film for packaging applications. The enzymatic post-treatment was carried out using an enzymatic cocktail enriched with endoxylanase (EX). The EX post-treated-CNFs were characterized by LALLS, XRD, and FEG-SEM, while their films were characterized in terms of physical, morphological, optical, thermal, mechanical, and barrier properties. Employing varying levels of EX facilitated the hydrolysis of 8 to 35 % of xylan, yielding CNFs with different xylan contents. Xylan was found to be vital for the stability of CNF suspensions, as its removal led to the agglomeration of nanofibrils. Nanostructures with preserved crystalline structures and different morphologies, including nanofibers, nanorods, and their hybrids were observed. The EX post-treatment contributed to a smoother film surface, improved thermostability, and better moisture barrier properties. However, as the xylan content decreased, the films became lighter (lower grammage), less strong, and more brittle. Thus, the enzymatic removal of xylan enabled the customization of CNF films' performance without affecting the inherent crystalline structure, resulting in materials with diverse functionalities that could be explored for use in packaging films.
Collapse
Affiliation(s)
- Bruno Las-Casas
- Applied Bionanotechnology Laboratory, Department of Biotechnology, University of São Paulo, - Lorena School of Engineering, Lorena, São Paulo 12602-810, Brazil
| | - Valdeir Arantes
- Applied Bionanotechnology Laboratory, Department of Biotechnology, University of São Paulo, - Lorena School of Engineering, Lorena, São Paulo 12602-810, Brazil.
| |
Collapse
|
3
|
Kashcheyeva EI, Korchagina AA, Gismatulina YA, Gladysheva EK, Budaeva VV, Sakovich GV. Simultaneous Production of Cellulose Nitrates and Bacterial Cellulose from Lignocellulose of Energy Crop. Polymers (Basel) 2023; 16:42. [PMID: 38201707 PMCID: PMC10780700 DOI: 10.3390/polym16010042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
This study is focused on exploring the feasibility of simultaneously producing the two products, cellulose nitrates (CNs) and bacterial cellulose (BC), from Miscanthus × giganteus. The starting cellulose for them was isolated by successive treatments of the feedstock with HNO3 and NaOH solutions. The cellulose was subjected to enzymatic hydrolysis for 2, 8, and 24 h. The cellulose samples after the hydrolysis were distinct in structure from the starting sample (degree of polymerization (DP) 1770, degree of crystallinity (DC) 64%) and between each other (DP 1510-1760, DC 72-75%). The nitration showed that these samples and the starting cellulose could successfully be nitrated to furnish acetone-soluble CNs. Extending the hydrolysis time from 2 h to 24 h led to an enhanced yield of CNs from 116 to 131%, with the nitrogen content and the viscosity of the CN samples increasing from 11.35 to 11.83% and from 94 to 119 mPa·s, respectively. The SEM analysis demonstrated that CNs retained the fiber shape. The IR spectroscopy confirmed that the synthesized material was specifically CNs, as evidenced by the characteristic frequencies of 1657-1659, 1277, 832-833, 747, and 688-690 cm-1. Nutrient media derived from the hydrolyzates obtained in 8 h and 24 h were of good quality for the synthesis of BC, with yields of 11.1% and 9.6%, respectively. The BC samples had a reticulate structure made of interlaced microfibrils with 65 and 81 nm widths and DPs of 2100 and 2300, respectively. It is for the first time that such an approach for the simultaneous production of CNs and BC has been employed.
Collapse
Affiliation(s)
- Ekaterina I. Kashcheyeva
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (A.A.K.); (Y.A.G.); (V.V.B.)
| | | | | | - Evgenia K. Gladysheva
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (A.A.K.); (Y.A.G.); (V.V.B.)
| | | | | |
Collapse
|
4
|
Lu H, Xue M, Nie X, Luo H, Tan Z, Yang X, Shi H, Li X, Wang T. Glycoside hydrolases in the biodegradation of lignocellulosic biomass. 3 Biotech 2023; 13:402. [PMID: 37982085 PMCID: PMC10654287 DOI: 10.1007/s13205-023-03819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/15/2023] [Indexed: 11/21/2023] Open
Abstract
Lignocellulose is a plentiful and intricate biomass substance made up of cellulose, hemicellulose, and lignin. Cellulose and hemicellulose are polysaccharides characterized by different compositions and degrees of polymerization. As renewable resources, their applications are eco-friendly and can help reduce reliance on petrochemical resources. This review aims to illustrate cellulose, hemicellulose, and their structures and hydrolytic enzymes. To obtain desirable enzyme sources for the high hydrolysis of lignocellulose, highly stable, efficient and thermophilic enzyme sources, and new technologies, such as rational design and machine learning, have been introduced in detail. Generally, the efficient biodegradation of abundant natural biomass into fermentable sugars or other intermediates has great potential in practical applications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03819-1.
Collapse
Affiliation(s)
- Honglin Lu
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Maoyuan Xue
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xinling Nie
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 China
| | - Hongzheng Luo
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Zhongbiao Tan
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xiao Yang
- Department of Poultry Science, The University of Georgia, Athens, GA 30602 USA
| | - Hao Shi
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 China
| | - Tao Wang
- Department of Microbiology, The University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
5
|
Schwarz M, Tokuda G, Osaki H, Mikaelyan A. Reevaluating Symbiotic Digestion in Cockroaches: Unveiling the Hindgut's Contribution to Digestion in Wood-Feeding Panesthiinae (Blaberidae). INSECTS 2023; 14:768. [PMID: 37754736 PMCID: PMC10531843 DOI: 10.3390/insects14090768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Cockroaches of the subfamily Panesthiinae (family Blaberidae) are among the few major groups of insects feeding on decayed wood. Despite having independently evolved the ability to thrive on this recalcitrant and nitrogen-limited resource, they are among the least studied of all wood-feeding insect groups. In the pursuit of unraveling their unique digestive strategies, we explored cellulase and xylanase activity in the crop, midgut, and hindgut lumens of Panesthia angustipennis and Salganea taiwanensis. Employing Percoll density gradient centrifugation, we further fractionated luminal fluid to elucidate how the activities in the gut lumen are further partitioned. Our findings challenge conventional wisdom, underscoring the significant contribution of the hindgut, which accounts for approximately one-fifth of cellulase and xylanase activity. Particle-associated enzymes, potentially of bacterial origin, dominate hindgut digestion, akin to symbiotic strategies observed in select termites and passalid beetles. Our study sheds new light on the digestive prowess of panesthiine cockroaches, providing invaluable insights into the evolution of wood-feeding insects and their remarkable adaptability to challenging, nutrient-poor substrates.
Collapse
Affiliation(s)
- Melbert Schwarz
- Department of Entomology and Plant Pathology, North Carolina State University, 100 Derieux Place, Raleigh, NC 27695, USA; (M.S.); (H.O.)
| | - Gaku Tokuda
- Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213, Japan;
| | - Haruka Osaki
- Department of Entomology and Plant Pathology, North Carolina State University, 100 Derieux Place, Raleigh, NC 27695, USA; (M.S.); (H.O.)
- Department of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Aram Mikaelyan
- Department of Entomology and Plant Pathology, North Carolina State University, 100 Derieux Place, Raleigh, NC 27695, USA; (M.S.); (H.O.)
| |
Collapse
|
6
|
Østby H, Várnai A. Hemicellulolytic enzymes in lignocellulose processing. Essays Biochem 2023; 67:533-550. [PMID: 37068264 PMCID: PMC10160854 DOI: 10.1042/ebc20220154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 04/19/2023]
Abstract
Lignocellulosic biomass is the most abundant source of carbon-based material on a global basis, serving as a raw material for cellulosic fibers, hemicellulosic polymers, platform sugars, and lignin resins or monomers. In nature, the various components of lignocellulose (primarily cellulose, hemicellulose, and lignin) are decomposed by saprophytic fungi and bacteria utilizing specialized enzymes. Enzymes are specific catalysts and can, in many cases, be produced on-site at lignocellulose biorefineries. In addition to reducing the use of often less environmentally friendly chemical processes, the application of such enzymes in lignocellulose processing to obtain a range of specialty products can maximize the use of the feedstock and valorize many of the traditionally underutilized components of lignocellulose, while increasing the economic viability of the biorefinery. While cellulose has a rich history of use in the pulp and paper industries, the hemicellulosic fraction of lignocellulose remains relatively underutilized in modern biorefineries, among other reasons due to the heterogeneous chemical structure of hemicellulose polysaccharides, the composition of which varies significantly according to the feedstock and the choice of pretreatment method and extraction solvent. This paper reviews the potential of hemicellulose in lignocellulose processing with focus on what can be achieved using enzymatic means. In particular, we discuss the various enzyme activities required for complete depolymerization of the primary hemicellulose types found in plant cell walls and for the upgrading of hemicellulosic polymers, oligosaccharides, and pentose sugars derived from hemicellulose depolymerization into a broad spectrum of value-added products.
Collapse
Affiliation(s)
- Heidi Østby
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Aas, Norway
| | - Anikó Várnai
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Aas, Norway
| |
Collapse
|
7
|
de Amorim Dos Santos A, Silva MJFE, Scatolino MV, Durães AFS, Dias MC, Damásio RAP, Tonoli GHD. Comparison of pre-treatments mediated by endoglucanase and TEMPO oxidation for eco-friendly low-cost energy production of cellulose nanofibrils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4934-4948. [PMID: 35978240 DOI: 10.1007/s11356-022-22575-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Specific kinds of enzymes have been used as an eco-friendly pre-treatment for mechanical extraction of cellulose nanofibrils (CNFs) from vegetal pulps. Another well-established pre-treatment is the 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated oxidation, which has gained considerable attention. Pre-treatments assist in fiber swelling, facilitating mechanical fibrillation, and reducing energy consumption; however, some of these methods are extremely expensive. This work aimed to evaluate the influence of enzymatic pre-treatment with endoglucanase on the energy consumption during mechanical fibrillation of cellulose pulps. Bleached pulps from Eucalyptus sp. and Pinus sp. were pre-treated with endoglucanase enzyme compared to TEMPO-meditated oxidation. Average diameters of CNFs pre-treated with enzymes were close to that found for TEMPO-oxidized nanofibrils (TOCNFs). Results showed that enzymatic pre-treatment did not significantly modify the pulp chemical and morphological characteristics with efficient stabilization of the CNFs suspension at higher supernatant turbidity. Energy consumption of pulps treated with endoglucanase enzymes was lower than that shown by pulps treated with TEMPO, reaching up to 58% of energy savings. The enzyme studied in the pulp treatment showed high efficiency in reducing energy consumption during mechanical fibrillation and production of films with high mechanical quality, being an eco-friendly option for pulp treatment.
Collapse
Affiliation(s)
- Allan de Amorim Dos Santos
- Forest Science Department, University of Lavras, University Campus, P.O. Box 3037, Lavras, MG, 37200-000, Brazil.
| | | | - Mário Vanoli Scatolino
- Agricultural Sciences Center, Federal University of the Semiarid (UFERSA), Mossoró, RN, 59625-900, Brazil
| | - Alisson Farley Soares Durães
- Forest Science Department, University of Lavras, University Campus, P.O. Box 3037, Lavras, MG, 37200-000, Brazil
| | - Matheus Cordazzo Dias
- Forest Science Department, University of Lavras, University Campus, P.O. Box 3037, Lavras, MG, 37200-000, Brazil
| | | | | |
Collapse
|
8
|
Razzak A, Khiari R, Moussaoui Y, Belgacem MN. Cellulose Nanofibers from Schinus molle: Preparation and Characterization. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196738. [PMID: 36235273 PMCID: PMC9572333 DOI: 10.3390/molecules27196738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022]
Abstract
Schinus molle (SM) was investigated as a primary source of cellulose with the aim of discovering resources to generate cellulose nanofibers (CNF). The SM was put through a soda pulping process to purify the cellulose, and then, the fiber was treated with an enzymatic treatment. Then, a twin-screw extruder and/or masuko were utilized to help with fiber delamination during the nanofibrillation process. After the enzymatic treatment, the twin-screw extruder and masuko treatment give a yield of 49.6 and 50.2%, respectively. The optical and atomic force microscopy, morfi, and polymerization degrees of prepared cellulosic materials were established. The pulp fibers, collected following each treatment stage, demonstrated that fiber characteristics such as length and crystallinity varied according to the used treatment (mechanical or enzymatic treatment). Obviously, the enzymic treatment resulted in shorter fibers and an increased degree of polymerization. However, the CNF obtained after enzymatic and extrusion treatment was achieved, and it gave 19 nm as the arithmetic width and a Young's modulus of 8.63 GPa.
Collapse
Affiliation(s)
- Abir Razzak
- Laboratory for the Application of Materials to the Environment, Water, and Energy (LR21ES15), Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
- Facultyof Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
| | - Ramzi Khiari
- Laboratory of Environmental Chemistry and Clean Process (LCE2P-LR21ES04), Faculty of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
- Department of Textile, Higher Institute of Technological Studies (ISET) of Ksar-Hellal, Ksar-Hellal 5070, Tunisia
- University of Grenoble Alpes, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Younes Moussaoui
- Facultyof Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax, University of Sfax, Sfax 3029, Tunisia
- Correspondence:
| | | |
Collapse
|
9
|
Long L, Hu Y, Sun F, Gao W, Hao Z, Yin H. Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery. Int J Biol Macromol 2022; 219:68-83. [PMID: 35931294 DOI: 10.1016/j.ijbiomac.2022.07.240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
One crucial step in processing the recalcitrant lignocellulosic biomass is the fast hydrolysis of natural cellulose to fermentable sugars that can be subsequently converted to biofuels and bio-based chemicals. Recent studies have shown that lytic polysaccharide monooxygenase (LPMOs) with auxiliary activity family 9 (AA9) are capable of efficiently depolymerizing the crystalline cellulose via regioselective oxidation reaction. Intriguingly, the catalysis by AA9 LPMOs requires reductant to provide electrons, and lignin and its phenolic derivatives can be oxidized, releasing reductant to activate the reaction. The activity of AA9 LPMOs can be enhanced by in-situ generation of H2O2 in the presence of O2. Although scientific understanding of these enzymes remains somewhat unknown or controversial, structure modifications on AA9 LPMOs through protein engineering have emerged in recent years, which are prerequisite for their extensive applications in the development of cellulase-mediated lignocellulosic biorefinery processes. In this review, we critically comment on advances in studies for AA9 LPMOs, i.e., characteristic of AA9 LPMOs catalysis, external electron donors to AA9 LPMOs, especially the role of the oxidization of lignin and its derivatives, and AA9 LPMOs protein engineering as well as their extensive applications in the bioprocessing of lignocellulosic biomass. Perspectives are also highlighted for addressing the challenges.
Collapse
Affiliation(s)
- Lingfeng Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Wa Gao
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS(, Dalian 116023, China
| | - Zhikui Hao
- Institute of Applied Biotechnology, School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS(, Dalian 116023, China
| |
Collapse
|
10
|
Bondancia TJ, Florencio C, Baccarin GS, Farinas CS. Cellulose nanostructures obtained using enzymatic cocktails with different compositions. Int J Biol Macromol 2022; 207:299-307. [PMID: 35259434 DOI: 10.1016/j.ijbiomac.2022.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/01/2022] [Accepted: 03/02/2022] [Indexed: 01/11/2023]
Abstract
Cellulose nanostructures obtained from lignocellulosic biomass by the enzymatic route can offer advantages in terms of material properties and processing sustainability. However, most of the enzymatic cocktails commonly used in the saccharification of biomass are designed to promote the complete depolymerization of the cellulose structure into soluble sugars. Here, investigation was made of the way that the action of different commercially available cellulase enzyme cocktails can affect the production of nanocellulose. For this, enzymatic cocktails designed for complete or partial saccharification were compared, using eucalyptus cellulose pulp as a model feedstock. The results showed that all the enzymatic cocktails were effective in the formation of nanocellulose structures, with the complete saccharification enzymes being more efficient in promoting the coproduction of glucose (36.5 g/L, 87% cellulose conversion). The presence of auxiliary enzymes, especially xylanases, acted cooperatively to favor the production of nanostructures with higher crystallinity (up to 79%), higher surface charge (zeta potential up to -30.9 mV), and more uniform dimensions within the size range of cellulose nanocrystals (80 to 350 nm). Interestingly, for the enzymatic cocktails designed for partial saccharification, the xylanase activity was more important than the endoglucanase activity in the production of nanocellulose with improved properties. The findings showed that the composition of the enzymatic cocktails already used for complete biomass saccharification can be suitable for obtaining nanocellulose, together with the release of a glucose stream, in a format compatible with the biorefinery concept.
Collapse
Affiliation(s)
- Thalita J Bondancia
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, São Carlos, SP, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos, SP, Brazil
| | - Camila Florencio
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, São Carlos, SP, Brazil
| | - Graziela S Baccarin
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, São Carlos, SP, Brazil; Chemistry Department, Federal University of São Carlos, SP, Brazil
| | - Cristiane S Farinas
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, São Carlos, SP, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos, SP, Brazil.
| |
Collapse
|
11
|
Squinca P, Bilatto S, Badino AC, Farinas CS. The use of enzymes to isolate cellulose nanomaterials: A systematic map review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
12
|
Guimarães BMR, Scatolino MV, Martins MA, Ferreira SR, Mendes LM, Lima JT, Junior MG, Tonoli GHD. Bio-based films/nanopapers from lignocellulosic wastes for production of added-value micro-/nanomaterials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8665-8683. [PMID: 34490567 DOI: 10.1007/s11356-021-16203-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The growing demand for products with lower environmental impact and the extensive applicability of cellulose nanofibrils (CNFs) have received attention due to their attractive properties. In this study, bio-based films/nanopapers were produced with CNFs from banana tree pseudostem (BTPT) wastes and Eucalyptus kraft cellulose (EKC) and were evaluated by their properties, such as mechanical strength, biodegradability, and light transmittance. The CNFs were produced by mechanical fibrillation (after 20 and 40 passages) from suspensions of BTPT (alkaline pre-treated) and EKC. Films/nanopapers were produced by casting from both suspensions with concentrations of 2% (based in dry mass of CNF). The BTPT films/nanopapers showed greater mechanical properties, with Young's modulus and tensile strength around 2.42 GPa and 51 MPa (after 40 passages), respectively. On the other hand, the EKC samples showed lower disintegration in water after 24 h and biodegradability. The increase in the number of fibrillation cycles produced more transparent films/nanopapers and caused a significant reduction of water absorption for both raw materials. The permeability was similar for the films/nanopapers from BTPT and EKC. This study indicated that attractive mechanical properties and biodegradability, besides low cost, could be achieved by bio-based nanomaterials, with potential for being applied as emulsifying agents and special membranes, enabling more efficient utilization of agricultural wastes.
Collapse
Affiliation(s)
| | - Mário Vanoli Scatolino
- Department of Production Engineering, State University of Amapá - UEAP, Macapá, AP, Brazil.
| | - Maria Alice Martins
- Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA Instrumentação, Quinze de Novembro St, POB 741, São Carlos, SP, Brazil
| | - Saulo Rocha Ferreira
- Department of Engineering, Federal University of Lavras - UFLA, Perimetral Av, POB 3037, Lavras, MG, Brazil
| | - Lourival Marin Mendes
- Department of Forest Sciences, Federal University of Lavras - UFLA, Perimetral Av, POB 3037, Lavras, MG, Brazil
| | - José Tarcísio Lima
- Department of Forest Sciences, Federal University of Lavras - UFLA, Perimetral Av, POB 3037, Lavras, MG, Brazil
| | - Mario Guimarães Junior
- Department of Electromechanical, Federal Center for Technological Education of Minas Gerais - CEFET, Araxá, MG, Brazil
| | | |
Collapse
|
13
|
Karnaouri A, Chorozian K, Zouraris D, Karantonis A, Topakas E, Rova U, Christakopoulos P. Lytic polysaccharide monooxygenases as powerful tools in enzymatically assisted preparation of nano-scaled cellulose from lignocellulose: A review. BIORESOURCE TECHNOLOGY 2022; 345:126491. [PMID: 34871721 DOI: 10.1016/j.biortech.2021.126491] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Nanocellulose, either in the form of fibers or crystals, constitutes a renewable, biobased, biocompatible material with advantageous mechanical properties that can be isolated from lignocellulosic biomass. Enzyme-assisted isolation of nanocellulose is an attractive, environmentally friendly approach that leads to products of higher quality compared to their chemically prepared counterparts. Lytic polysaccharide monooxygenases (LPMOs) are enzymes that oxidatively cleave the β-1,4-glycosidic bond of polysaccharides upon activation of O2 or H2O2 and presence of an electron donor. Their use for treatment of cellulose fibers towards the preparation of nano-scaled cellulose is related to the ability of LPMOs to create nicking points on the fiber surface, thus facilitating fiber disruption and separation. The aim of this review is to describe the mode of action of LPMOs on cellulose fibers towards the isolation of nanostructures, thus highlighting their great potential for the production of nanocellulose as a novel value added product from lignocellulose.
Collapse
Affiliation(s)
- Anthi Karnaouri
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Lab, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| | - Koar Chorozian
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Lab, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Dimitrios Zouraris
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, Zografou, 15780 Athens, Greece
| | - Antonis Karantonis
- Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, Zografou, 15780 Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Lab, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Ulrika Rova
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
14
|
Bankeeree W, Prasongsuk S, Lotrakul P, Abd‐Aziz S, Punnapayak H. Enzymes for Hemicellulose Degradation. BIOREFINERY OF OIL PRODUCING PLANTS FOR VALUE‐ADDED PRODUCTS 2022:199-220. [DOI: 10.1002/9783527830756.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
Ionic liquid pretreatment of stinging nettle stems and giant miscanthus for bioethanol production. Sci Rep 2021; 11:18465. [PMID: 34531459 PMCID: PMC8445950 DOI: 10.1038/s41598-021-97993-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Production of ethanol from lignocellulosic biomass is considered the most promising proposition for developing a sustainable and carbon-neutral energy system. The use of renewable raw materials and variability of lignocellulosic feedstock generating hexose and pentose sugars also brings advantages of the most abundant, sustainable and non-food competitive biomass. Great attention is now paid to agricultural wastes and overgrowing plants as an alternative to fast-growing energetic crops. The presented study explores the use of stinging nettle stems, which have not been treated as a source of bioethanol. Apart from being considered a weed, stinging nettle is used in pharmacy or cosmetics, yet its stems are always a non-edible waste. Therefore, the aim was to evaluate the effectiveness of pretreatment using imidazolium- and ammonium-based ionic liquids, enzymatic hydrolysis, fermentation of stinging nettle stems, and comparison of such a process with giant miscanthus. Raw and ionic liquid-pretreated feedstocks of stinging nettle and miscanthus were subjected to compositional analysis and scanning electron microscopy to determine the pretreatment effect. Next, the same conditions of enzymatic hydrolysis and fermentation were applied to both crops to explore the stinging nettle stems potential in the area of bioethanol production. The study showed that the pretreatment of both stinging nettle and miscanthus with imidazolium acetates allowed for increased availability of the critical lignocellulosic fraction. The use of 1-butyl-3-methylimidazolium acetate in the pretreatment of stinging nettle allowed to obtain very high ethanol concentrations of 7.3 g L-1, with 7.0 g L-1 achieved for miscanthus. Results similar for both plants were obtained for 1-ethyl-3-buthylimidazolium acetate. Moreover, in the case of ammonium ionic liquids, even though they have comparable potential to dissolve cellulose, it was impossible to depolymerize lignocellulose and extract lignin. Furthermore, they did not improve the efficiency of the hydrolysis process, which in turn led to low alcohol concentration. Overall, from the presented results, it can be assumed that the stinging nettle stems are a very promising bioenergy crop.
Collapse
|
16
|
Teeravivattanakit T, Baramee S, Ketbot P, Waeonukul R, Pason P, Tachaapaikoon C, Ratanakhanokchai K, Phitsuwan P. Digestibility of Bacillus firmus K-1 pretreated rice straw by different commercial cellulase cocktails. Prep Biochem Biotechnol 2021; 52:508-513. [PMID: 34455937 DOI: 10.1080/10826068.2021.1969575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Removal of xylan in plant biomass is believed to increase cellulose hydrolysis by uncovering cellulose surfaces for cellulase adsorption and, in turn, catalysis reaction. Herein, we describe an eco-friendly method by culturing a xylanolytic Bacillus firmus K-1 on rice straw to remove xylan. The bacterium was grown on 2.5% (w/v) rice straw with different biomass particle sizes for two days at 37 °C. We found that the particle sizes ranged from <1 to 5 mm gave a similar xylan removal degree (about 21%). Besides, the porosity and disintegration of the rice straw fibers were observed at the molecular level. The digestibility of pretreated rice straw was tested with different commercial cellulase cocktails. We found that the pretreated rice straw was more susceptible to enzymatic hydrolysis, giving 30-70% glucan conversion than the untreated one. The degree of cellulose hydrolysis depended strongly on the kinds of enzyme and their formulations. HighlightCulturing B. firmus K-1 on rice straw yielded about 21% removal of xylan.Particle sizes (of 1-5 mm) had negligible effects on xylan removal efficiency.The degree of glucan conversion in pretreated biomass relied on enzyme formulation.
Collapse
Affiliation(s)
- Thitiporn Teeravivattanakit
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Sirilak Baramee
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Prattana Ketbot
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Rattiya Waeonukul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Patthra Pason
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Chakrit Tachaapaikoon
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Khanok Ratanakhanokchai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Paripok Phitsuwan
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
17
|
Dhali K, Ghasemlou M, Daver F, Cass P, Adhikari B. A review of nanocellulose as a new material towards environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145871. [PMID: 33631573 DOI: 10.1016/j.scitotenv.2021.145871] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Synthetic polymers, commonly referred to as plastics, are anthropogenic contaminants that adversely affect the natural ecosystems. The continuous disposal of long lifespan plastics has resulted in the accumulation of plastic waste, leading to significant pollution of both marine and terrestrial habitats. Scientific pursuit to seek environment-friendly materials from renewable resources has focused on cellulose, the primary reinforcement component of the cell wall of plants, as it is the most abundantly available biopolymer on earth. This paper provides an overview on the current state of science on nanocellulose research; highlighting its extraction procedures from lignocellulosic biomass. Literature shows that the process used to obtain nanocellulose from lignocellulosic biomass greatly influences its morphology, properties and surface chemistry. The efficacy of chemical methods that use alkali, acid, bleaching agents, ionic liquids, deep eutectic solvent for pre-treatment of biomass is discussed. There has been a continuous endeavour to optimize the pre-treatment protocol as it is specific to lignocellulosic biomass and also depends on factors such as nature of the biomass, process and environmental parameters and economic viability. Nanofibers are primarily isolated through mechanical fibrillation while nanocrystals are predominantly extracted using acid hydrolysis. A concise overview on the ways to improve the yield of nanocellulose from cellulosic biomass is also presented in this review. This work also reviews the techniques used to modify the surface properties of nanocellulose by functionalizing surface hydroxyl groups to impart desirable hydrophilic-hydrophobic balance. An assessment on the emerging application of nanocellulose with an emphasis on development of nanocomposite materials for designing environmentally sustainable products is incorporated. Finally, the status of the industrial production of nanocellulose presented, which indicates that there is a continuously increased demand for cellulose nanomaterials. The demand for cellulose is expected to increase further due to its increasing and broadening applications.
Collapse
Affiliation(s)
- Kingshuk Dhali
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; Department of Post-Harvest Engineering, Faculty of Agricultural Engineering, Bidhan Chandra Krishi Viswavidyalaya, Nadia, W.B., India
| | - Mehran Ghasemlou
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Fugen Daver
- School of Engineering, RMIT University, Melbourne, VIC 3083, Australia
| | - Peter Cass
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO) Clayton, VIC 3168, Australia
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| |
Collapse
|
18
|
Torres Castillo NE, Melchor-Martínez EM, Ochoa Sierra JS, Ramírez-Torres NM, Sosa-Hernández JE, Iqbal HMN, Parra-Saldívar R. Enzyme mimics in-focus: Redefining the catalytic attributes of artificial enzymes for renewable energy production. Int J Biol Macromol 2021; 179:80-89. [PMID: 33667559 DOI: 10.1016/j.ijbiomac.2021.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023]
Abstract
Herein, the advantages of enzyme mimetics by redefining the catalytic attributes and implementing artificial enzymes (AEs) for energy-related applications have presented. The intrinsic enzyme-like catalytic characteristics of nanozymes have become a growing area of prime interest in bio-catalysis. The development of AEs has redefined the concept of catalytic activity, opening a wide range of possibilities in biotechnological and energy sectors. Nowadays, power-energy is one of the most valuable resources that enable the development and progress of humanity. Over the last 50 years, fossil fuels' burning has released greenhouse gases and negatively impacted the environment and health. In 2019, around 84% of global primary energy came from coal, oil, and gas. Therefore, a global energy transition to renewable and sustainable energy is urgently needed to generate clean energy as biofuels and biohydrogen. However, to achieve this, the implementation of natural enzymes brings more significant challenges because their practical application is limited by the low operational stability, harsh environmental conditions, and expensive preparation processes. Hence, to accelerate the transition, promising substitutes are AEs, well-defined structures made of organic or inorganic materials that can mimic the catalytic power of natural enzymes. Despite being still in the midst, enzyme mimics overcome the main obstacles for a conventional enzyme. It opens future opportunities to optimize the production of renewable energies with excellent performance, high efficiency, and increasingly competitive prices. Thus, this work is a comprehensive study covering the promising potential of AEs, as biocatalysts, specifically for renewable energy production.
Collapse
Affiliation(s)
| | | | | | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | | |
Collapse
|
19
|
Banvillet G, Gatt E, Belgacem N, Bras J. Cellulose fibers deconstruction by twin-screw extrusion with in situ enzymatic hydrolysis via bioextrusion. BIORESOURCE TECHNOLOGY 2021; 327:124819. [PMID: 33581376 DOI: 10.1016/j.biortech.2021.124819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
The aim of this work was to study the cellulose fibers deconstruction by twin-screw extrusion with in situ enzymatic hydrolysis via bioextrusion, for cellulose nanofibrils (CNF) production. Cellulose pulp was extruded with an optimized screw profile, with or without (reference) the addition of an enzymatic solution. An increase of crystallinity index from 67.0% to 73.7% and decrease of DP from 1003 to 419 were observed with bioextrusion. Direct activity measurements of the enzyme confirmed its activity during the process (sugar content increasing from 0.07 ± 0.004 to 2.38 ± 0.003 mg/mL) and after the process (specific activities around 0.20 CMCU/mL). Enzymes were not deactivated during bioextrusion and could be recycled. CNF properties were higher with bioextrusion compared to reference (respective quality indices of 55.5 ± 2.7 and 39.8 ± 2.8), with a lower energy consumption. This proof of concept could be optimized for the industrial production of highly concentrated CNF.
Collapse
Affiliation(s)
- Gabriel Banvillet
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LGP2, F-38000 Grenoble, France; Arjowiggins France SAS, Voiron F-38500, France
| | - Etienne Gatt
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LGP2, F-38000 Grenoble, France
| | - Naceur Belgacem
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LGP2, F-38000 Grenoble, France; Institut Universitaire de France (IUF), Paris F-75000, France
| | - Julien Bras
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LGP2, F-38000 Grenoble, France; Institut Universitaire de France (IUF), Paris F-75000, France; Nestle Research Center, Lausanne 1100, Switzerland.
| |
Collapse
|
20
|
Wu XQ, Liu PD, Liu Q, Xu SY, Zhang YC, Xu WR, Liu GD. Production of cellulose nanofibrils and films from elephant grass using deep eutectic solvents and a solid acid catalyst. RSC Adv 2021; 11:14071-14078. [PMID: 35423938 PMCID: PMC8697674 DOI: 10.1039/d1ra02259h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
A new strategy was developed to produce cellulose nanofibrils (CNFs) and films from raw elephant grass using deep eutectic solvents and a recyclable spent coffee-derived solid acid (SC-SO3H) catalyst with assistance of ultrasonic disintegration and a suction filtration film forming method. The effects of a solid acid and reused solid acid were comprehensively studied by comparing with catalyst-free conditions and using sulfuric acid as the catalyst. The CNF fibers obtained from this novel SC-SO3H catalyst method showed the longest fiber length. The corresponding films achieved the strongest tensile strength of 79.8 MPa and the elongation at break of 13.6%, and best thermostability. In addition, the performance of CNFs and films prepared by the fourth recovered SC-SO3H-4 catalyst was close to that obtained with the first use. The SC-SO3H could be reused by a simple decantation method, meaning this novel method has the potential for green and sustainable preparation of CNFs and films. A new strategy was developed to produce cellulose nanofibrils and films from elephant grass using deep eutectic solvents and a recyclable solid acid catalyst with assistance of ultrasonic disintegration and a suction filtration film forming method.![]()
Collapse
Affiliation(s)
- Xi-Que Wu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, School of Science, School of Chemical Engineering and Technology, Hainan University Haikou 570228 PR China
| | - Pan-Dao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences Haikou 571101 PR China
| | - Qun Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, School of Science, School of Chemical Engineering and Technology, Hainan University Haikou 570228 PR China
| | - Shu-Ying Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, School of Science, School of Chemical Engineering and Technology, Hainan University Haikou 570228 PR China
| | - Yu-Cang Zhang
- College of Food and Biological Engineering, Jimei University Xiamen 361021 PR China
| | - Wen-Rong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, Key Laboratory of Solid Waste Resource Utilization and Environmental Protection, School of Science, School of Chemical Engineering and Technology, Hainan University Haikou 570228 PR China
| | - Guo-Dao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences Haikou 571101 PR China
| |
Collapse
|
21
|
Barbash VA, Yashchenko OV, Gondovska AS, Deykun IM. Preparation and characterization of nanocellulose obtained by TEMPO-mediated oxidation of organosolv pulp from reed stalks. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01749-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Effect of endoglucanase and high-pressure homogenization post-treatments on mechanically grinded cellulose nanofibrils and their film performance. Carbohydr Polym 2021; 253:117253. [DOI: 10.1016/j.carbpol.2020.117253] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/19/2022]
|
23
|
Micro- and Nanocellulose in Polymer Composite Materials: A Review. Polymers (Basel) 2021; 13:polym13020231. [PMID: 33440879 PMCID: PMC7827473 DOI: 10.3390/polym13020231] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/28/2022] Open
Abstract
The high demand for plastic and polymeric materials which keeps rising every year makes them important industries, for which sustainability is a crucial aspect to be taken into account. Therefore, it becomes a requirement to makes it a clean and eco-friendly industry. Cellulose creates an excellent opportunity to minimize the effect of non-degradable materials by using it as a filler for either a synthesis matrix or a natural starch matrix. It is the primary substance in the walls of plant cells, helping plants to remain stiff and upright, and can be found in plant sources, agriculture waste, animals, and bacterial pellicle. In this review, we discussed the recent research development and studies in the field of biocomposites that focused on the techniques of extracting micro- and nanocellulose, treatment and modification of cellulose, classification, and applications of cellulose. In addition, this review paper looked inward on how the reinforcement of micro- and nanocellulose can yield a material with improved performance. This article featured the performances, limitations, and possible areas of improvement to fit into the broader range of engineering applications.
Collapse
|
24
|
Meng X, Ma L, Li T, Zhu H, Guo K, Liu D, Ran W, Shen Q. The functioning of a novel protein, Swollenin, in promoting the lignocellulose degradation capacity of Trichoderma guizhouense NJAU4742 from a proteomic perspective. BIORESOURCE TECHNOLOGY 2020; 317:123992. [PMID: 32799087 DOI: 10.1016/j.biortech.2020.123992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 05/25/2023]
Abstract
The functioning of a novel auxiliary enzyme, TgSWO from Trichoderma guizhouense NJAU4742, was investigated based on the proteomic analysis of wild-type (WT), knockout (KO) and overexpression (OE) treatments. The results showed that the cellulase and hemicellulase activities of OE and WT were significantly higher than those of KO. Simultaneously, tandem mass tag (TMT) analysis results indicated that cellulases and hemicellulases were significantly upregulated in OE, especially hydrophobin (HFB, A1A105805.1) and endo-β-1,4-glucanases (A1A101831.1), with ratios of 43.73 and 9.88, respectively, compared with WT. The synergistic effect of TgSWO on cellulases increased the reducing sugar content by 1.45 times in KO + TgSWO (1.8 mg) compared with KO, and there was no significant difference between KO + TgSWO (1.2 mg) and WT. This study elucidated the function of TgSWO in promoting the lignocellulose degradation capacity of NAJU4742, which provides new insights into the efficient conversion of lignocellulose.
Collapse
Affiliation(s)
- Xiaohui Meng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Lei Ma
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Tuo Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Han Zhu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Kai Guo
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Province Key Laboratory for Biosensors, Jinan 250014, China
| | - Dongyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Wei Ran
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
25
|
Yi T, Zhao H, Mo Q, Pan D, Liu Y, Huang L, Xu H, Hu B, Song H. From Cellulose to Cellulose Nanofibrils-A Comprehensive Review of the Preparation and Modification of Cellulose Nanofibrils. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5062. [PMID: 33182719 PMCID: PMC7697919 DOI: 10.3390/ma13225062] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/25/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022]
Abstract
This review summarizes the preparation methods of cellulose nanofibrils (CNFs) and the progress in the research pertaining to their surface modification. Moreover, the preparation and surface modification of nanocellulose were comprehensively introduced based on the existing literature. The review focuses on the mechanical treatment of cellulose, the surface modification of fibrillated fibers during pretreatment, the surface modification of nanocellulose and the modification of CNFs and their functional application. In the past five years, research on cellulose nanofibrils has progressed with developments in nanomaterials research technology. The number of papers on nanocellulose alone has increased by six times. However, owing to its high energy consumption, high cost and challenging industrial production, the applications of nanocellulose remain limited. In addition, although nanofibrils exhibit strong biocompatibility and barrier and mechanical properties, their high hydrophilicity limits their practical application. Current research on cellulose nanofibrils has mainly focused on the industrial production of CNFs, their pretreatment and functional modification and their compatibility with other biomass materials. In the future, with the rapid development of modern science and technology, the demand for biodegradable biomass materials will continue to increase. Furthermore, research on bio-based nanomaterials is expected to advance in the direction of functionalization and popularization.
Collapse
Affiliation(s)
- Tan Yi
- College of Light Industry and Food Engineering, Guangxi University, Junwu Rd, Xixiangtang District, Nanning 530004, China; (T.Y.); (H.Z.); (Q.M.); (D.P.); (L.H.); (H.X.); (B.H.)
| | - Hanyu Zhao
- College of Light Industry and Food Engineering, Guangxi University, Junwu Rd, Xixiangtang District, Nanning 530004, China; (T.Y.); (H.Z.); (Q.M.); (D.P.); (L.H.); (H.X.); (B.H.)
| | - Qi Mo
- College of Light Industry and Food Engineering, Guangxi University, Junwu Rd, Xixiangtang District, Nanning 530004, China; (T.Y.); (H.Z.); (Q.M.); (D.P.); (L.H.); (H.X.); (B.H.)
| | - Donglei Pan
- College of Light Industry and Food Engineering, Guangxi University, Junwu Rd, Xixiangtang District, Nanning 530004, China; (T.Y.); (H.Z.); (Q.M.); (D.P.); (L.H.); (H.X.); (B.H.)
| | - Yang Liu
- College of Light Industry and Food Engineering, Guangxi University, Junwu Rd, Xixiangtang District, Nanning 530004, China; (T.Y.); (H.Z.); (Q.M.); (D.P.); (L.H.); (H.X.); (B.H.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Junwu Rd, Xixiangtang District, Nanning 530004, China
| | - Lijie Huang
- College of Light Industry and Food Engineering, Guangxi University, Junwu Rd, Xixiangtang District, Nanning 530004, China; (T.Y.); (H.Z.); (Q.M.); (D.P.); (L.H.); (H.X.); (B.H.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Junwu Rd, Xixiangtang District, Nanning 530004, China
| | - Hao Xu
- College of Light Industry and Food Engineering, Guangxi University, Junwu Rd, Xixiangtang District, Nanning 530004, China; (T.Y.); (H.Z.); (Q.M.); (D.P.); (L.H.); (H.X.); (B.H.)
| | - Bao Hu
- College of Light Industry and Food Engineering, Guangxi University, Junwu Rd, Xixiangtang District, Nanning 530004, China; (T.Y.); (H.Z.); (Q.M.); (D.P.); (L.H.); (H.X.); (B.H.)
| | - Hainong Song
- Guangxi Bossco Environmental Protection Technology Co., Ltd., 12 Kexing Road, High-tech Zone, Nanning 530012, China;
| |
Collapse
|
26
|
Tian D, Zhong N, Leung J, Shen F, Hu J, Saddler JN. Potential of Xylanases to Reduce the Viscosity of Micro/Nanofibrillated Bleached Kraft Pulp. ACS APPLIED BIO MATERIALS 2020; 3:2201-2208. [PMID: 35025272 DOI: 10.1021/acsabm.0c00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The generally high viscosity of micro/nanofibrillated cellulose limits its applications in cream and fluid products. A bleached softwood Kraft (BSK) pulp was refined with increasing energy (500-2500 kWh t-1) to produce micro/nanofibrillated cellulose (MNBSK). Subsequent xylanase treatment was shown to influence the viscosity, gel point, aspect ratio, and fiber surface morphology of the MNBSK. It was apparent that the accessibility to xylanases was increased even at low refining energies (500 kWh t-1). Depending on the initial degree of cellulose fibrillation, xylanase treatment decreased the viscosity of the MNBSK from 4190-2030 to 681-243 Pa·s at a shear rate of 0.01 s-1, corresponding to the reduction in the aspect ratio from 183-296 to 163-194. It was likely that the xylanases were predominantly acting on the xylan present on the fiber surfaces, reducing the cross-linking points on the cellulose fibers and consequently resulting in the reduction in MNBSK viscosity.
Collapse
Affiliation(s)
- Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.,Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.,State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Na Zhong
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jerry Leung
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Jack N Saddler
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
27
|
Bian H, Dong M, Chen L, Zhou X, Ni S, Fang G, Dai H. Comparison of mixed enzymatic pretreatment and post-treatment for enhancing the cellulose nanofibrillation efficiency. BIORESOURCE TECHNOLOGY 2019; 293:122171. [PMID: 31558340 DOI: 10.1016/j.biortech.2019.122171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
In this work, lignocellulosic nanofibrils (LCNF) produced from mechanical fibrillation with mixed enzymatic pretreatment or post-treatment were compared and the chemical composition, water retention value (WRV), average-number height and crystallinity for the obtained LCNF were evaluated. Compared to pure mechanical fibrillation, both mixed enzymatic pretreatment and post-treatment could efficiently facilitate cellulose nanofibrillation. Moreover, mixed enzymatic pretreatment was more suitable for LCNF production, resulting in a relatively higher WRV of 909% and smaller average-number height of 15 nm. These discoveries provide new insights into a more efficient biological method for the production and application of cellulose nanomaterials.
Collapse
Affiliation(s)
- Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Maolin Dong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lidong Chen
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuelian Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuzhen Ni
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Guigan Fang
- China Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
28
|
Valls C, Pastor FIJ, Roncero MB, Vidal T, Diaz P, Martínez J, Valenzuela SV. Assessing the enzymatic effects of cellulases and LPMO in improving mechanical fibrillation of cotton linters. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:161. [PMID: 31289461 PMCID: PMC6593493 DOI: 10.1186/s13068-019-1502-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/15/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND The increasing interest in replacing petroleum-based products by more sustainable materials in the packaging sector gives relevance to cellulose as a biodegradable natural resource. Moreover, its properties can be modified physically, chemically or biotechnologically in order to obtain new bioproducts. Refined cotton linters with high cellulose content were treated with hydrolytic (cellulases) and oxidative (LPMO and Laccase_Tempo) enzymes to evaluate their effect on fibre properties and in improving mechanical fibrillation. RESULTS Cellulases released cellooligosaccharides, reducing fibre length and partially degrading cellulose. They also improved mechanical fibrillation yielding up to 18% of nanofibrillated cellulose (NFC). LPMO introduced a slight amount of COOH groups in cellulose fibres, releasing cellobionic acid to the effluents. The action of cellulases was improved after LPMO treatment; however, the COOH groups created disappeared from fibres. After mechanical fibrillation of LPMO-cellulase-treated cotton linters a 23% yield of NFC was obtained. Laccase_Tempo treatment also introduced COOH groups in cellulose fibres from cotton, yielding 10% of NFC. Degree of polymerization was reduced by Laccase_Tempo, while LPMO treatment did not significantly affect it but produced a higher reduction in fibre length. The combined treatment with LPMO and cellulase provided films with higher transparency (86%), crystallinity (92%), smoothness and improved barrier properties to air and water than films casted from non-treated linters and from commercial NFC. CONCLUSIONS The combined enzymatic treatment with LPMO and cellulases boosted mechanical fibrillation of cotton linters, improving the NFC production and providing bioproducts with high transparency and high barrier properties.
Collapse
Affiliation(s)
- Cristina Valls
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
- CELBIOTECH_Paper Engineering Research Group, Universitat Politècnica de Catalunya, BarcelonaTech, 08222 Terrassa, Spain
| | - F. I. Javier Pastor
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - M. Blanca Roncero
- CELBIOTECH_Paper Engineering Research Group, Universitat Politècnica de Catalunya, BarcelonaTech, 08222 Terrassa, Spain
| | - Teresa Vidal
- CELBIOTECH_Paper Engineering Research Group, Universitat Politècnica de Catalunya, BarcelonaTech, 08222 Terrassa, Spain
| | - Pilar Diaz
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Josefina Martínez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Susana V. Valenzuela
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
29
|
A bio-mechanical process for cellulose nanofiber production – Towards a greener and energy conservation solution. Carbohydr Polym 2019; 208:191-199. [DOI: 10.1016/j.carbpol.2018.12.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/19/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023]
|
30
|
Long L, Shen F, Wang F, Tian D, Hu J. Synthesis, characterization and enzymatic surface roughing of cellulose/xylan composite films. Carbohydr Polym 2019; 213:121-127. [PMID: 30879651 DOI: 10.1016/j.carbpol.2019.02.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
Upgrading renewable cellulose biopolymer to various high-value material/chemical is of great importance in building a sustainable bio-economy. This work assessed the technical feasibility of fabricating transparent cellulose/xylan composite films using facile solution-casting method. More importantly, this work also initially assessed the technical potential of xylanase treatment to selectively modify the surface of the obtained composite films with the goal of extending their applications. When bleached Kraft xylan addition was lower than 20 wt%, the composite films could still retain their original mechanical and structural advantages. Xylanase treatment specifically removed 26.0% and 32.3% xylan of the composite films with an enzyme loading of 2 and 5 mg g-1 cellulose, respectively. It was shown that xylan component was heterogeneously located in the surface of the composite films during film-casting process, which allowed the subsequent surface etching/roughing at nanoscale using facile xylanase treatment without compromising their structural advantages.
Collapse
Affiliation(s)
- Lingfeng Long
- Jiangsu Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Fei Wang
- Jiangsu Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China.
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, T2N 1N4, Canada
| |
Collapse
|
31
|
Effect of xylanase-assisted pretreatment on the properties of cellulose and regenerated cellulose films from sugarcane bagasse. Int J Biol Macromol 2019; 122:503-516. [DOI: 10.1016/j.ijbiomac.2018.10.191] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/29/2018] [Accepted: 10/27/2018] [Indexed: 11/21/2022]
|
32
|
|
33
|
Moreau C, Tapin-Lingua S, Grisel S, Gimbert I, Le Gall S, Meyer V, Petit-Conil M, Berrin JG, Cathala B, Villares A. Lytic polysaccharide monooxygenases (LPMOs) facilitate cellulose nanofibrils production. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:156. [PMID: 31249619 PMCID: PMC6589874 DOI: 10.1186/s13068-019-1501-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/15/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that cleave polysaccharides through an oxidative mechanism. These enzymes are major contributors to the recycling of carbon in nature and are currently used in the biorefinery industry. LPMOs are commonly used in synergy with cellulases to enhance biomass deconstruction. However, there are few examples of the use of monocomponent LPMOs as a tool for cellulose fibrillation. In this work, we took advantage of the LPMO action to facilitate disruption of wood cellulose fibers as a strategy to produce nanofibrillated cellulose (NFC). RESULTS The fungal LPMO from AA9 family (PaLPMO9E) was used in this study as it displays high specificity toward cellulose and its recombinant production in bioreactor is easily upscalable. The treatment of birchwood fibers with PaLPMO9E resulted in the release of a mixture of C1-oxidized oligosaccharides without any apparent modification in fiber morphology and dimensions. The subsequent mechanical shearing disintegrated the LPMO-pretreated samples yielding nanoscale cellulose elements. Their gel-like aspect and nanometric dimensions demonstrated that LPMOs disrupt the cellulose structure and facilitate the production of NFC. CONCLUSIONS This study demonstrates the potential use of LPMOs as a pretreatment in the NFC production process. LPMOs weaken fiber cohesion and facilitate fiber disruption while maintaining the crystallinity of cellulose.
Collapse
Affiliation(s)
- Céline Moreau
- UR1268 Biopolymères Interactions Assemblages, INRA, 44316 Nantes, France
| | - Sandra Tapin-Lingua
- InTechFibres Division, FCBA, Domaine Universitaire, CS 90252, 39044 Grenoble Cedex 9, France
| | - Sacha Grisel
- Biodiversité et Biotechnologie Fongiques, INRA, Aix Marseille University, UMR1163, 13009 Marseille, France
| | - Isabelle Gimbert
- Biodiversité et Biotechnologie Fongiques, INRA, Aix Marseille University, UMR1163, 13009 Marseille, France
| | - Sophie Le Gall
- UR1268 Biopolymères Interactions Assemblages, INRA, 44316 Nantes, France
| | - Valérie Meyer
- CTP, Domaine Universitaire, CS 90252, 39044 Grenoble Cedex 9, France
| | | | - Jean-Guy Berrin
- Biodiversité et Biotechnologie Fongiques, INRA, Aix Marseille University, UMR1163, 13009 Marseille, France
| | - Bernard Cathala
- UR1268 Biopolymères Interactions Assemblages, INRA, 44316 Nantes, France
| | - Ana Villares
- UR1268 Biopolymères Interactions Assemblages, INRA, 44316 Nantes, France
| |
Collapse
|
34
|
Wang S, Gao W, Chen K, Xiang Z, Zeng J, Wang B, Xu J. Deconstruction of cellulosic fibers to fibrils based on enzymatic pretreatment. BIORESOURCE TECHNOLOGY 2018; 267:426-430. [PMID: 30032056 DOI: 10.1016/j.biortech.2018.07.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Enzymatic pretreatment has shown great potential in making the disintegration of cellulosic fibers to fibrils cost-effectively and environmental-friendly. In this study, an extensive commercial endoglucanase was used to pretreat cellulosic fibers for fibrillation. The pretreatment time and the enzyme dosage were optimized using response surface methodology. A 100% fiber recovery was obtained at endoglucanase usage of 9.0 mg/g (substrate) and pretreatment time of less than 3.0 h. A highly fibrillated and fractured surface of pretreated fibers was observed after 0.5 h of pretreatment compared to native fibers. Meanwhile, the progressive deconstruction of cellulosic fibers was occurred with the enzymatic pretreatment time increasing. The degree of deconstruction of fibers was evidenced by changes of the fiber microstructure, such as the inter-/intra-molecular H-bonds, the β-1,4-glucosidic linkages, crystallinity and crystallite size. These discoveries provide new insights into a more efficient and economic pretreatment methods for the disintegration of fibrils from cellulosic fibers.
Collapse
Affiliation(s)
- Shengdan Wang
- State Key Laboratory of Pulp and Paper Engineering, Plant Micro/Nano Fiber Research Center, South China University of Technology, Guangzhou 510640, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Wenhua Gao
- State Key Laboratory of Pulp and Paper Engineering, Plant Micro/Nano Fiber Research Center, South China University of Technology, Guangzhou 510640, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China.
| | - Kefu Chen
- State Key Laboratory of Pulp and Paper Engineering, Plant Micro/Nano Fiber Research Center, South China University of Technology, Guangzhou 510640, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, Plant Micro/Nano Fiber Research Center, South China University of Technology, Guangzhou 510640, China
| | - Jinsong Zeng
- State Key Laboratory of Pulp and Paper Engineering, Plant Micro/Nano Fiber Research Center, South China University of Technology, Guangzhou 510640, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- State Key Laboratory of Pulp and Paper Engineering, Plant Micro/Nano Fiber Research Center, South China University of Technology, Guangzhou 510640, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Jun Xu
- State Key Laboratory of Pulp and Paper Engineering, Plant Micro/Nano Fiber Research Center, South China University of Technology, Guangzhou 510640, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
35
|
Long L, Tian D, Zhai R, Li X, Zhang Y, Hu J, Wang F, Saddler J. Thermostable xylanase-aided two-stage hydrolysis approach enhances sugar release of pretreated lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2018; 257:334-338. [PMID: 29500062 DOI: 10.1016/j.biortech.2018.02.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 05/16/2023]
Abstract
One of the challenges in biorefinery is the still too much enzyme involved in the saccharification of the cellulosic component. High-temperature hydrolysis with thermostable enzyme showed promise. In this study, a temperature-elevated two-stage hydrolysis, including xylan "coat" removal at high-temperature by thermostable xylanase (Xyn10A) from Thermotoga thermarum DSM 5069 followed with saccharification step by commercial cellulase, was introduced to improve biomass deconstruction. Results showed that high-temperature xylanase treatment considerably increased cellulose accessibility/hydrolyzability towards cellulases, with smoothed fiber surface morphology. Comparing with commercial xylanase (HTec) treatment at 50 °C, thermostable Xyn10A pre-hydrolysis at 85 °C was able to achieve a slightly better improvement of cellulose hydrolysis with much lower xylanase loading (about 5 times lower than HTec). It appeared that the increased temperature during thermostable xylanase treatment facilitated biomass slurry viscosity reduction, which exhibited more benefits during hydrolysis of various steam pretreated substrates at increased solid content (up to 10% w/w).
Collapse
Affiliation(s)
- Lingfeng Long
- College of Chemical Engineering, Nanjing Forestry University, Jiangsu Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing 210037, PR China; Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Dong Tian
- Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Rui Zhai
- Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Xun Li
- College of Chemical Engineering, Nanjing Forestry University, Jiangsu Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing 210037, PR China
| | - Yu Zhang
- College of Chemical Engineering, Nanjing Forestry University, Jiangsu Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing 210037, PR China
| | - Jinguang Hu
- Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada.
| | - Fei Wang
- College of Chemical Engineering, Nanjing Forestry University, Jiangsu Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing 210037, PR China
| | - Jack Saddler
- Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
36
|
Bian H, Gao Y, Yang Y, Fang G, Dai H. Improving cellulose nanofibrillation of waste wheat straw using the combined methods of prewashing, p-toluenesulfonic acid hydrolysis, disk grinding, and endoglucanase post-treatment. BIORESOURCE TECHNOLOGY 2018; 256:321-327. [PMID: 29459318 DOI: 10.1016/j.biortech.2018.02.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Here we established a new approach for improving the cellulose nanofibrillation of high ash content waste wheat straw (WWS). The results were comprehensively elucidated from the ash removal, delignification, mechanical fibrillation and endoglucanase post-treatment. When water dosage was increased from 50 to 500 times of the WWS weight, the ash content gradually decreased during prewashing process, which facilitated lignin solubilization in subsequent p-toluenesulfonic acid (p-TsOH) hydrolysis. Approximately 80% of lignin in prewashed WWS could be dissolved during acid hydrolysis to result in a relatively higher crystallinity of 59.1%. Compared with the lignocellulosic nanofibrils (LCNF) directly obtained using acid hydrolysis and disk grinding, prewashing-assisted acid hydrolyzed WWS was fibrillated into LCNF with smaller height of 57.0 nm. Mild endoglucanase post-treatment could further produce less entangled LCNF with thinner diameters. In short, this study presented a promising and green pathway to achieve an efficient utilization of agricultural residue wastes to cellulose nanomaterials.
Collapse
Affiliation(s)
- Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yiqin Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Guigan Fang
- China Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|