1
|
Khanashyam AC, Mundanat AS, Sajith Babu K, Thorakkattu P, Krishnan R, Abdullah S, Bekhit AEDA, McClements DJ, Santivarangkna C, Nirmal NP. Emerging alternative food protein sources: production process, quality parameters, and safety point of view. Crit Rev Biotechnol 2025; 45:1-22. [PMID: 39676293 DOI: 10.1080/07388551.2024.2341902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/25/2023] [Accepted: 01/17/2024] [Indexed: 12/17/2024]
Abstract
The rise in the global population has increased the demand for dietary food protein. Strategies to maximize agricultural and livestock outputs could strain land and freshwater supply and contribute to substantial negative environmental impacts. Consequently, there has been an emphasis on identifying alternative sources of edible proteins that are more sustainable, sustainable, ethical, and healthy. This review provides a critical report on future food protein sources including: plant, cultured meat, insect, and microbial, as alternative sources to traditional animal-based sources. The technical challenges associated with the production process of alternative protein sources are discussed. The most important quality parameters of alternative proteins, such as: protein composition and digestibility, allergenicity, functional and sensory attributes, and safety regulations have been documented. Lastly, future direction and conclusion have been made on future protein trends. However, further regulatory norms need to develop for safe consumption and distribution around the world.
Collapse
Affiliation(s)
| | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Karthik Sajith Babu
- Department of Animal Sciences and Industry/Food Science Institute, KS State University, Manhattan, KS, USA
| | - Priyamvada Thorakkattu
- Department of Animal Sciences and Industry/Food Science Institute, KS State University, Manhattan, KS, USA
| | - Reshma Krishnan
- Agro Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Sajeeb Abdullah
- Department of Food Technology, Saintgits College of Engineering, Kottukulam Hills, Kerala, India
| | | | | | - Chalat Santivarangkna
- Department of Food Science, Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Nilesh Prakash Nirmal
- Department of Food Science, Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Liang P, Wang H, Hu X, Elshobary M, Cui Y, Zou B, Zhu F, Schagerl M, El-Sheekh M, Huo S. Impact of the NH4+/NO3− ratio on growth of oil-rich filamentous microalgae Tribonema minus in simulated nitrogen-rich wastewater. JOURNAL OF WATER PROCESS ENGINEERING 2024; 68:106378. [DOI: 10.1016/j.jwpe.2024.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
|
3
|
Sun Y, Li P, Huang Y, Xia A, Zhu X, Zhu X, Liao Q. Synergistic treatment of digested wastewater with high ammonia nitrogen concentration using straw and microalgae. BIORESOURCE TECHNOLOGY 2024; 412:131406. [PMID: 39222863 DOI: 10.1016/j.biortech.2024.131406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Microalgae as a promising approach for wastewater treatment, has challenges in directly treating digested piggery wastewater (DPW) with high ammonia nitrogen (NH4+-N) concentration. To improve the performance of microalgae in DPW treatment, straw was employed as a substrate to form a straw-microalgae biofilm. The results demonstrated that the straw-microalgae biofilm achieved the highest NH4+-N removal rate of 193.2 mg L-1 d-1, which was 28.8 % higher than that of culture system without straw. The final NH4+-N concentration in the effluent met the discharge standard of 5 mg L-1. Furthermore, the total organic carbon (TOC) released from straw facilitated bacterial proliferation and the secretion of extracellular polymeric substances (EPS). The EPS and TOC increased the suspension viscosity and surface tension, thereby enhancing the residence time of CO2 in the liquid phase and promoting CO2 fixation. This study presented a novel method for the biological treatment of high-ammonia-nitrogen DPW.
Collapse
Affiliation(s)
- Yabo Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Peirong Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
4
|
Jiao T, Zhao C, Zhang M, Han F, Han Y, Zhang S, Zhou W. Recovery of ammonia assimilating microbiome after Cr (VI) shock by bio-accelerators. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123020. [PMID: 39454390 DOI: 10.1016/j.jenvman.2024.123020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
The pretreatment process is often unable to completely intercept heavy metals in wastewater, facing a huge risk of leakage, increasing the difficulty of treating pollutants in the subsequent biochemical process or even leading to the collapse of the system, and facing the difficulty of inoperability and rehabilitation. Heterotrophic ammonia assimilation has the potential to maintain some stability after heavy metal shock, thanks to its rapid microbial proliferation, robust resistance to high loads, remarkable environmental adaptability, and inherent stability. Bio-accelerators dosing strategies could strengthen the performance recovery ability of traditional bio-system after heavy metal impact. However, no recovery strategies for inhibiting HAA have been reported. Herein, three bio-accelerants, specifically, vitamin A, 6-benzylaminopurine, and α-ketoglutaric acid, were investigated for their potential to restore the HAA system impacted by 20 mg/L Cr (VI). The three bio-accelerants effectively mitigated the toxicity of the HAA system, resulting in a 60.4% increase in NH4+-N removal efficiency within just 6 days with cytokinin. During toxicity remediation, three bio-accelerants facilitated the production of extracellular protein components in soluble microbial products and stimulated the secretion of extracellular polymeric substances. The three bio-accelerants enhanced competition among genera and influenced community assembly processes to regulate community structure and enhance functional gene expression. This study offers a practical approach to enhancing the HAA process and remediating microbial toxicity.
Collapse
Affiliation(s)
- Tong Jiao
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Chuanfu Zhao
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Mengru Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Fei Han
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Yufei Han
- Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, PR China
| | - Shuhui Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China.
| |
Collapse
|
5
|
Mollo L, Petrucciani A, Norici A. Monocultures vs. polyculture of microalgae: unveiling physiological changes to facilitate growth in ammonium rich-medium. PHYSIOLOGIA PLANTARUM 2024; 176:e14574. [PMID: 39400338 DOI: 10.1111/ppl.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Due to the increasing production of wastewater from human activities, the use of algal consortia for phytoremediation has become well-established over the past decade. Understanding how interspecific interactions and cultivation modes (monocultures vs. polyculture) influence algal growth and behaviour is a cutting-edge topic in both fundamental and applied science. Ammonium-rich growth media were used to challenge the monocultures of Auxenochlorella protothecoides, Chlamydomonas reinhardtii and Tetradesmus obliquus, as well as their polyculture; NO3 - was also used as the sole nitrogen chemical form in control cultures. The study primarily compared the growth, carbon and nitrogen metabolisms, and protein content of the green microalgae monocultures to those of their consortium. Overall, the cultivation mode significantly affected all the measured parameters. Notably, at 50 mM NH4 +, the assimilation rates of carbon and nitrogen were at least twice as high as those in the monoculture counterparts, and the protein content was three times more abundant.Additionally, the consortium's response to NH4 + toxicity was investigated by observing a linear relationship between the indicator of tolerance to NH4 + nutrition and the N isotopic signature. The study highlighted a high degree of acclimation through metabolic flexibility and diversity, as well as species abundance plasticity in the consortium, resulting in a functional resilience that would otherwise have been unattainable by the respective monocultures.
Collapse
Affiliation(s)
- Lorenzo Mollo
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandra Petrucciani
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandra Norici
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
- CIRCC, Consorzio Interuniversitario Reattività Chimica e Catalisi, Italy
| |
Collapse
|
6
|
Kamravamanesh D, Kokko M. Source separation and anaerobic co-digestion of blackwater and food waste for biogas production and nutrient recovery. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1082-1098. [PMID: 39141053 DOI: 10.2166/wst.2024.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
Anaerobic co-digestion of source-separated blackwater (BW) and food and kitchen waste (FW) offers decentralized circular economy solutions by enabling local production of biogas and nutrient-rich byproducts. In this study, a 2 m3 pilot-scale continuously stirred tank reactor (CSTR) operated under mesophilic conditions was utilized for co-digestion of BW and FW. The process obtained a CH4 yield of 0.7 ± 0.2 m3/kg influent-volatile solid (VS), reaching a maximum yield of 1.1 ± 0.1 m3/kg influent-VS, with an average organic loading rate of 0.6 ± 0.1 kg-VS/m3/d and HRT of 25 days. The CH4 production rate averaged 0.4 ± 0.1 m3/m3/d, peaking at 0.6 ± 0.1 m3/m3/d. Treatment of digestate through flocculation followed by sedimentation recovered over 90% of ammonium nitrogen and potassium, and 80-85% of total phosphorus in the liquid fraction. This nutrient-rich liquid was used to cultivate Chlorella vulgaris, achieving a biomass concentration of 1.2 ± 0.1 g/L and 85 ± 3% and 78 ± 5% ammonium nitrogen and phosphorus removal efficiency, respectively. These findings not only highlight the feasibility of anaerobic co-digestion of source-separated BW and FW in local biogas production but also demonstrate the potential of microalgae cultivation as a sustainable approach to converting digestate into nutrient-rich algae biomass.
Collapse
Affiliation(s)
- Donya Kamravamanesh
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland; Faculty of Engineering and Natural Sciences, Materials Science and Environmental Engineering, Tampere University, Tampere, Finland E-mail:
| | - Marika Kokko
- Faculty of Engineering and Natural Sciences, Materials Science and Environmental Engineering, Tampere University, Tampere, Finland
| |
Collapse
|
7
|
Lian X, Wang Z, Liu Z, Xiong Z, Dai H, Yang L, Liu Y, Yang J, Geng Y, Hu M, Shao P, Luo X. A new microalgal negative carbon technology for landfill leachate treatment: Simultaneous removal of nitrogen and phosphorus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174779. [PMID: 39009161 DOI: 10.1016/j.scitotenv.2024.174779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Replete with ammonia nitrogen and organic pollutants, landfill leachate typically undergoes treatment employing expensive and carbon-intensive integrated techniques. We propose a novel microalgae technology for efficient, low-carbon simultaneous treatment of carbon, nitrogen, and phosphorus in landfill leachate (LL). The microbial composition comprises a mixed microalgae culture with Chlorella accounting for 82.58%. After seven days, the process with an N/P ratio of approximately 14:1 removed 98.81% of NH4+-N, 88.62 % of TN, and 99.55% of TP. Notably, the concentrations of NH4+-N and TP met the discharge standards, while the removal rate of NH4+-N was nearly three times higher than previously reported in relevant studies. The microalgae achieved a removal efficiency of 64.27% for Total Organic Carbon (TOC) and 99.26% for Inorganic Carbon (IC) under mixotrophic cultivation, yielding a biomass of 1.18 g/L. The treatment process employed in this study results in a carbon emissions equivalent of -8.25 kgCO2/kgNremoved, representing a reduction of 33.56 kgCO2 compared to the 2AO + MBR process. In addition, shake flask experiments were conducted to evaluate the biodegradability of leachate after microalgae treatment. After microalgae treatment, the TOCB (Biodegradable Total Organic Carbon)/TOC ratio decreased from 56.54% to 27.71%, with no significant improvement in biodegradability. It establishes a fundamental foundation for further applied research in microalgae treatment of leachate.
Collapse
Affiliation(s)
- Xiaoyan Lian
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhangbao Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhuochao Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Zhensheng Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Huihui Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Yuanqi Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jia Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yanni Geng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Guangdong, Shenzhen 518055, PR China
| | - Minkang Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China
| |
Collapse
|
8
|
Mohit A, Remya N. Low-Cost Greywater Treatment Using Polyculture Microalgae-Microalgal Growth, Organics, and Nutrient Removal Subject to pH and Temperature Variations During the Treatment. Appl Biochem Biotechnol 2024; 196:2728-2740. [PMID: 36692649 DOI: 10.1007/s12010-023-04371-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Organics and nutrient removal studies are rarely done using polyculture microalgae, and that too in outdoor conditions, as they are often not deemed effective for wastewater treatment purposes. This study examined the organics and nutrient removal efficiency of polyculture microalgae cultivated in greywater. The reactor was operated in outdoor conditions. Hence, it was subjected to natural pH and temperature variations. A growth rate of 0.05 g L-1 day-1 was observed for temperatures up to 37 °C, beyond which the growth rate declined by 0.07 g L-1 day-1. During the treatment, the pH of the system was observed to be between 7.4 and 8.4. However, the growth rate would again pick up (0.05 g L-1 day-1) when the pH and temperature moved towards the optimum range, indicating that the polycultures adapt very quickly to their environment. The maximum biomass concentration reached 0.82 gL-1. The highest removal efficiency of organic carbon, ammonia, and phosphate was 80.7, 61.9, and 58.4%, respectively. Nitrate and nitrite concentrations remained ≤ 1.3 mgL-1 and ≤ 2 mgL-1, respectively, indicating the absence of nitrification/denitrification and ammonia volatilization. The mass balance of microalgae indicated that the primary removal mechanism of nitrogen and phosphorus removal was assimilation by the microalgae. The study proved polyculture microalgae to be as effective as some monoculture species in wastewater treatment, which require costlier controlled growth conditions. The high organics and nutrient removal by polycultures in outdoor conditions could pave the way to reducing wastewater treatment costs.
Collapse
Affiliation(s)
- Aggarwal Mohit
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, 752050, India
| | - Neelancherry Remya
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
9
|
Ma M, Jiang L, Xie Z, Liu M, Chen H, Yu Z, Pei H. Phosphorus-supplemented seawater-wastewater cyclic system for microalgal cultivation: Production of high-lipid and high-protein algae. BIORESOURCE TECHNOLOGY 2024; 398:130512. [PMID: 38437960 DOI: 10.1016/j.biortech.2024.130512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
The reuse of wastewater after seawater cultivation is critically important. In this study, a phosphorus-supplemented seawater-wastewater cyclic system (PSSWCS) based on Chlorella pyrenoidosa SDEC-35 was developed. With the addition of phosphorus, the algal biomass and the ability to assimilate nitrogen and carbon were improved. At the nitrogen to phosphorus ratio of 20:1, the biomass productivity per mass of nitrogen reached 3.6 g g-1 (N) day-1 in the second cycle. After the third cycle the protein content reached 35.7% of dry mass, and the major metabolic substances in PSSWCS reached the highest content level of 89.5% (35.7% protein, 38.3% lipid, and 15.5% carbohydrate). After the fourth cycle the lipid content maintained at 40.1%. Furthermore, 100.0% recovery of wastewater in PSSWCS increased the nitrogen and carbon absorption to 15.0 and 396.8 g per tonne of seawater. This study achieved seawater-wastewater recycle and produced high-lipid and high-protein algae by phosphorus addition.
Collapse
Affiliation(s)
- Meng Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China
| | - Liqun Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zhen Xie
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China
| | - Mingyan Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China
| | - Huiying Chen
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China
| | - Ze Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China.
| |
Collapse
|
10
|
Song H, Li J, Su Q, Li H, Guo X, Shao S, Fan L, Xu P, Zhou W, Qian J. Insight into the mechanism of nitrogen sufficiency conversion strategy for microalgae-based ammonium-rich wastewater treatment. CHEMOSPHERE 2024; 349:140904. [PMID: 38070604 DOI: 10.1016/j.chemosphere.2023.140904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/09/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
The strategy of nitrogen sufficiency conversion can improve ammonium nitrogen (NH4+-N) removal with microalgal cells from ammonium-rich wastewater. We selected and identified one promising isolated algal strain, NCU-7, Chlorella sorokiniana, which showed a high algal yield and tolerance to ammonium in wastewater, as well as strong adaptability to N deprivation. The transition from N deprivation through mixotrophy (DN, M) to N sufficiency through autotrophy (SN, P) achieved the highest algal yields (optical density = 1.18 and 1.59) and NH4+-N removal rates (2.5 and 4.2 mg L-1 d-1) from synthetic wastewaters at two NH4+-N concentrations (160 and 320 mg L-1, respectively). Algal cells in DN, M culture obtained the lowest protein content (20.6%) but the highest lipid content (34.0%) among all cultures at the end of the stage 2. After transferring to stage 3, the lowest protein content gradually recovered to almost the same level as SN, P culture on the final day. Transmission electron microscopy and proteomics analysis demonstrated that algal cells had reduced intracellular protein content but accumulated lipids under N deprivation by regulating the reduction in synthesis of protein, carbohydrate, and chloroplast, while enhancing lipid synthesis. After transferring to N sufficiency, algal cells accelerated their growth by recovering protein synthesis, leading to excessive uptake of NH4+-N from wastewater. This study provides specific insights into a nitrogen sufficiency conversion strategy to enhance algal growth and NH4+-N removal/uptake during microalgae-based ammonium-rich wastewater treatment.
Collapse
Affiliation(s)
- Hanwu Song
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Qihui Su
- Xinjiang Rao River Hydrological and Water Resources Monitoring Center, Shangrao, 334000, China
| | - Hongwu Li
- Faculty of Science and Engineering, Soka University, Tokyo, 1928577, Japan
| | - Xujie Guo
- Nanchang Environmental Science Research Institute Co., Ltd, Nanchang, 330031, China
| | - Shengxi Shao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Liangliang Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Peilun Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China.
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
11
|
Lu Q, Liu H, Sun Y, Li H. Combined zeolite-based ammonia slow-release and algae-yeast consortia to treat piggery wastewater: Improved nitrogen and carbon migration. BIORESOURCE TECHNOLOGY 2023; 387:129671. [PMID: 37579862 DOI: 10.1016/j.biortech.2023.129671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Integration of zeolite-based ammonia adsorption and algae-yeast consortia was developed to remediate piggery wastewater (PW) containing high concentrations of total ammonia nitrogen (TAN) and total organic carbon (TOC). After optimizing the conditions of ammonia adsorption in the PW. Zeolite addition mitigated ammonia toxicity, allowing zeolites to gradually release ammonia while effectively attenuating algal oxidative stress caused by high TAN concentration. Coupling zeolite-based adsorption and yeast co-incubation further increased TOC degradation and available C/N ratio, thus improving biomass (4.51 g/L), oil yield (2.11 g/L), and nutrient removal (84.18%-99.14%). The integrated microalgae-based PW treatment exhibited higher carbon migration into biomass (46.14%) and reduced treatment costs than conventional approaches. Simultaneously, the lowest carbon migration to wastewater also meant the smallest carbon emission into water bodies. These findings demonstrate that this novel strategy can remove nutrients in raw PW effectively and produce high oil-rich biomass in a sustainable and environmentally-friendly manner.
Collapse
Affiliation(s)
- Qian Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yan Sun
- Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, Guangdong 510650, China
| | - Huankai Li
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
12
|
Li Z, Wang Z, Cai S, Lin L, Huang G, Hu Z, Jin W, Zheng Y. Effects of light intensity and salinity on formation and performance of microalgal-bacterial granular sludge. BIORESOURCE TECHNOLOGY 2023; 386:129534. [PMID: 37488013 DOI: 10.1016/j.biortech.2023.129534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Photosynthetic microorganisms in microalgal-bacterial granular sludge offer advantages in wastewater treatment processes. This study examined the effects of light intensity and salinity on microalgal-bacterial granular sludge formation and microbial changes. Activated sludge was inoculated into three bioreactors and operated in batch treatment mode for 100 days under different light intensities (0, 60, and 120 μmol m-2 s-1) and staged increases in salinity concentration (0, 1, 2, and 3%). Results showed that microalgal-bacterial granular sludge was successfully formed within 30 days, and high light exposure increased algal particle stability and inorganic nitrogen removal (63, 66, 71%), while chemical oxygen demand removal (>95%) was similar across groups. High-throughput sequencing results showed that the critical algae were Chlorella and diatoms, while the main bacteria included Paracoccus and Xanthomarina with high extracellular polymeric substance production. This study aims to enhance the comprehension of MBGS processes in saline wastewater treatment under varying light intensities.
Collapse
Affiliation(s)
- Ze Li
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ziyan Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Si Cai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Langli Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guanqin Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Yihong Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
13
|
Chen W, Liu J, Chu G, Wang Q, Zhang Y, Gao C, Gao M. Comparative evaluation of four Chlorella species treating mariculture wastewater under different photoperiods: Nitrogen removal performance, enzyme activity, and antioxidant response. BIORESOURCE TECHNOLOGY 2023; 386:129511. [PMID: 37468008 DOI: 10.1016/j.biortech.2023.129511] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The nitrogen removal performance, nitrogen metabolism enzyme activities, and antioxidant response of four Chlorella species (Chlorella sp., Chlorella vulgaris, Chlorella sorokiniana, and Chlorella protothecoides) were compared under different light: dark (L:D) photoperiods during treating mariculture wastewater. The increase of light duration in the range of 8L:16D to 16L:8D was beneficial to the chlorophyll synthesis of selected four Chlorella species. Chlorella vulgaris was the most effective to treat mariculture wastewater than Chlorella sp., Chlorella sorokiniana, and Chlorella protothecoides. and its microalgae density, photosynthetic activity, and nitrogen metabolism enzyme activity were higher than those of the other three Chlorella species. An obvious oxidative stress in microalgal cells was under 20L:4D photoperiod, which led to a decrease in photosynthetic activity and nitrogen metabolizing enzyme activity. Among the four Chlorella species, Chlorella protothecoides had the highest degree of light-induced stress and ROS accumulation. This study can provide suitable microalgae and optimal photoperiod for treating mariculture wastewater.
Collapse
Affiliation(s)
- Wenzheng Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiateng Liu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guangyu Chu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Qianzhi Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuqiao Zhang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chang Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
14
|
Dai J, Zheng M, He Y, Zhou Y, Wang M, Chen B. Real-time response counterattack strategy of tolerant microalgae Chlorella vulgaris MBFJNU-1 in original swine wastewater and free ammonia. BIORESOURCE TECHNOLOGY 2023; 377:128945. [PMID: 36958682 DOI: 10.1016/j.biortech.2023.128945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
This work was the first time to systematically clarify the potential tolerance mechanism of an indigenous Chlorella vulgaris MBFJNU-1 towards the free ammonia (FA) during the original swine wastewater (OSW) treatment by transcriptome analysis using C. vulgaris UETX395 as the control group. The obtained results showed that C. vulgaris MBFJNU-1 was found to be more resistant to the high levels of FA (115 mg/L) and OSW in comparison to C. vulgaris UETX395 (38 mg/L). Moreover, the transcriptomic results stated that some key pathways from arginine biosynthesis, electron generation and transmission, ATP synthesis in chloroplasts, and glutathione synthesis of C. vulgaris MBFJNU-1 were greatly related with the OSW and FA. Additionally, C. vulgaris MBFJNU-1 in OSW and FA performed similar results in the common differentially expressed genes from these mentioned pathways. Overall, these obtained results deliver essential details in microalgal biotechnology to treat swine wastewater and high free ammonia wastewater.
Collapse
Affiliation(s)
- Jingxuan Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Mingmin Zheng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
15
|
High-efficient removal of ammonium and co-production of protein-rich biomass from ultrahigh-NH4+ industrial wastewater by mixotrophic Galdieria sulphuraria. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
16
|
Jiang X, Shan X, Li F. Improving the Quality of Reclaimed Water via Applying Spirulina platensis to Eliminate Residual Nitrate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2117. [PMID: 36767484 PMCID: PMC9916132 DOI: 10.3390/ijerph20032117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The application of reclaimed water has been recognized as the key approach for alleviating water scarcity, while its low quality, such as high nitrogen content, still makes people worry about the corresponding ecological risk. Herein, we investigated the feasibility of removing residual nitrate from reclaimed water by applying Spirulina platensis. It is found that 15 mg/L total nitrogen could be decreased to 1.8 mg/L in 5 days, equaling 88.1 % removal efficiency under the optimized conditions. The deficient phosphorus at 0.5-1.0 mg/L was rapidly eliminated but was already sufficient to support nitrate removal by S. platensis. The produced ammonia is generally below 0.2 mg/L, which is much lower than the standard limit of 5 mg/L. In such a nutrient deficiency condition, S. platensis could maintain biomass growth well via photosynthesis. The variation of pigments, including chlorophyll a and carotenoids, suggested a certain degree of influences of illumination intensity and phosphorus starvation on microalgae. The background cations Cu2+ and Zn2+ exhibited significant inhibition on biomass growth and nitrate removal; thus, more attention needs to be paid to the further application of microalgae in reclaimed water. Our results demonstrated that cultivation of S. platensis should be a very promising solution to improve the quality of reclaimed water by efficiently removing nitrate and producing biomass.
Collapse
Affiliation(s)
- Xiaohua Jiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xin Shan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fengmin Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
17
|
Lu Q, Xiao Y, Wu P. Emerging technologies of employing algae and microorganisms to promote the return-to-field of crop straws: A mini-review. Front Bioeng Biotechnol 2023; 11:1152778. [PMID: 37064245 PMCID: PMC10097884 DOI: 10.3389/fbioe.2023.1152778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/16/2023] [Indexed: 04/18/2023] Open
Abstract
As an agricultural waste, crop straw enriched with a variety of nutrients is regarded as an important fertilizer resource. In the past, crop straw return-to-field played a key role in the sustainability of agricultural environment, but some problems, such as ammonia loss in ammoniation, low rate of straw decomposition, and high carbon footprint, attracted researchers' attentions. In this paper, we propose three technical routes, including cyanobacteria-based ammonia assimilation, microorganisms-based crop straw pretreatment, and microalgae-based carbon capture, to address the aforementioned problems. Besides, challenges which may hinder the practical application of these technical routes as well as the potential solutions are discussed in detail. It is expected that this paper could provide new ideas to the practical application of crop straw return-to-field.
Collapse
Affiliation(s)
- Qian Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Qian Lu, ; Yu Xiao,
| | - Yu Xiao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Qian Lu, ; Yu Xiao,
| | - Pengfei Wu
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
18
|
Ziganshina EE, Bulynina SS, Yureva KA, Ziganshin AM. Growth Parameters of Various Green Microalgae Species in Effluent from Biogas Reactors: The Importance of Effluent Concentration. PLANTS (BASEL, SWITZERLAND) 2022; 11:3583. [PMID: 36559695 PMCID: PMC9786779 DOI: 10.3390/plants11243583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The use of liquid waste as a feedstock for cultivation of microalgae can reduce water and nutrient costs and can also be used to treat wastewater with simultaneous production of biomass and valuable products. This study applied strategies to treat diluted anaerobic digester effluent (ADE) as a residue of biogas reactors with moderate (87 ± 0.6 mg L-1; 10% ADE) and elevated NH4+-N levels (175 ± 1.1 mg L-1; 20% ADE). The effect of ADE dilution on the acclimatization of various microalgae was studied based on the analysis of the growth and productivity of the tested green algae. Two species of the genus Chlorella showed robust growth in the 10-20% ADE (with a maximum total weight of 3.26 ± 0.18 g L-1 for C. vulgaris and 2.81 ± 0.10 g L-1 for C. sorokiniana). The use of 10% ADE made it possible to cultivate the strains of the family Scenedesmaceae more effectively than the use of 20% ADE. The growth of Neochloris sp. in ADE was the lowest compared to other microalgal strains. The results of this study demonstrated the feasibility of introducing individual green microalgae into the processes of nutrient recovery from ADE to obtain biomass with a high protein content.
Collapse
|
19
|
Chen J, Dai L, Mataya D, Cobb K, Chen P, Ruan R. Enhanced sustainable integration of CO 2 utilization and wastewater treatment using microalgae in circular economy concept. BIORESOURCE TECHNOLOGY 2022; 366:128188. [PMID: 36309175 DOI: 10.1016/j.biortech.2022.128188] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Microalgae have been shown to have a promising potential for CO2 utilization and wastewater treatment which still faces the challenges of high resource and energy requirements. The implementation of the circular economy concept is able to address the issues that limit the application of microalgae-based technologies. In this review, a comprehensive discussion on microalgae-based CO2 utilization and wastewater treatment was provided, and the integration of this technology with the circular economy concept, for long-term economic and environmental benefits, was described. Furthermore, technological challenges and feasible strategies towards the improvement of microalgae cultivation were discussed. Finally, necessary regulations and effective policies favoring the implementation of microalgae cultivation into the circular economy were proposed. These are discussed to support sustainable development of microalgae-based bioremediation and bioproduction. This work provides new insights into the implementation of the circular economy concept into microalgae-based CO2 utilization and wastewater treatment to enhance sustainable production.
Collapse
Affiliation(s)
- Junhui Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Leilei Dai
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Dmitri Mataya
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Kirk Cobb
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|
20
|
Singh AK, Nakhate SP, Gupta RK, Chavan AR, Poddar BJ, Prakash O, Shouche YS, Purohit HJ, Khardenavis AA. Mining the landfill soil metagenome for denitrifying methanotrophic taxa and validation of methane oxidation in microcosm. ENVIRONMENTAL RESEARCH 2022; 215:114199. [PMID: 36058281 DOI: 10.1016/j.envres.2022.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/21/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
In the present study, the microbial community residing at different depths of the landfill was characterized to assess their roles in serving as a methane sink. Physico-chemical characterization revealed the characteristic signatures of anaerobic degradation of organic matter in the bottom soil (50-60 cm) and, active process of aerobic denitrification in the top soil (0-10 cm). This was also reflected from the higher abundance of bacterial domain in the top soil metagenome represented by dominant phyla Proteobacteria and Actinobacteria which are prime decomposers of organic matter in landfill soils. The multiple fold higher relative abundances of the two most abundant genera; Streptomyces and Intrasporangium in the top soil depicted greater denitrifying taxa in top soil than the bottom soil. Amongst the aerobic methanotrophs, the genera Methylomonas, Methylococcus, Methylocella, and Methylacidiphilum were abundantly found in the top soil metagenome that were essential for oxidizing methane generated in the landfill. On the other hand, the dominance of archaeal domain represented by Methanosarcina and Methanoculleus in the bottom soil highlighted the complete anaerobic digestion of organic components via acetoclasty, carboxydotrophy, hydrogenotrophy, methylotrophy. Functional characterization revealed a higher abundance of methane monooxygenase gene in the top soil and methyl coenzyme M reductase gene in the bottom soil that correlated with the higher relative abundance of aerobic methanotrophs in the top soil while methane generation being the active process in the highly anaerobic bottom soil in the landfill. The activity dependent abundance of endogenous microbial communities in the different zones of the landfill was further validated by microcosm studies in serum bottles which established the ability of the methanotrophic community for methane metabolism in the top soil and their potential to serve as sink for methane. The study provides a better understanding about the methanotrophs in correlation with their endogenous environment, so that these bacteria can be used in resolving the environmental issues related to methane and nitrogen management at landfill site.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suraj Prabhakarrao Nakhate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagyashri Jagdishprasad Poddar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Om Prakash
- National Centre for Microbial Resource, National Centre for Cell Sciences, Pune, Maharashtra, 411007, India
| | - Yogesh S Shouche
- National Centre for Microbial Resource, National Centre for Cell Sciences, Pune, Maharashtra, 411007, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
21
|
Cheng Q, Du L, Xu L, Zhao Y, Ma J, Lin H. Toxicity alleviation and metabolism enhancement of nonylphenol in green algae Dictyosphaerium sp. by NaHCO 3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157698. [PMID: 35908712 DOI: 10.1016/j.scitotenv.2022.157698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Nonylphenol (NP) toxicity limits the improvements in its algal remediation efficiency. This study comprehensively investigated the performance and mechanism of NaHCO3-driving effects on NP-exposed algae. The results showed that NaHCO3 enhanced algal resistance to NP and the corresponding EC50 values increased 1.31-4.25 times. Further, the toxicological effects of NP reduced with increasing pyrenoid volume and chlorophyll and carotenoids production, and decreasing cellular damage degree. Moreover, the concentration of extracellular polymeric substances was enhanced and more NP adsorption sites were formed. Consistently, RNA-seq demonstrated significant expression alterations in genes related to energy metabolism, cellular synthesis, photosynthesis, and carbon fixation. Besides, NP biodegradation rate was increased by 15.2 % and 11.1 % in the 1, and 4 mg/L NP treatments, respectively. Identification of degradation intermediates and their toxicity via Ecological Structure Activity Relationship program showed that NaHCO3 accelerated sequential α-C removal from NP in algae with faster generation of less toxic metabolites, namely, 4-ethylphenol, 4-cresol and 4-hydroxybenzoic acid. This study provides new insights into the role of NaHCO3 in toxicity alleviation and metabolism enhancement of NP in algae and can assist NP bioremediation efforts in aquatic environment.
Collapse
Affiliation(s)
- Qilu Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Linna Du
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Ligen Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuhua Zhao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
22
|
From manure to high-value fertilizer: The employment of microalgae as a nutrient carrier for sustainable agriculture. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Zhao X, Meng X, Liu Y, Bai S, Li B, Li H, Hou N, Li C. Single-cell sorting of microalgae and identification of optimal conditions by using response surface methodology coupled with life-cycle approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155061. [PMID: 35395299 DOI: 10.1016/j.scitotenv.2022.155061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Response surface methodology (RSM) has been widely used to identify optimal conditions for environmental microorganisms to maximize degrading pollutants and accumulating biomass. However, to date, environmental impact and economic cost have rarely been considered. In this study, a single cell of microalgae Chlorella sorokiniana ZM-5 was sorted, and its enrichment was carried out for the first time. The optimized conditions by RSM for achieving the highest COD, TN, TP removal and 352.61 mg/g lipid production were 24 h light time, 4.3:1C/N, 7.2 pH, and 30 °C temperature, respectively. Life-cycle approaches were then carried out upon this illustrative case, and the results indicated that the implementation of the above optimal conditions could reduce the total environmental impact by 48.0% and the total economic impact by 10.2%. This study showed the feasibility of applying life-cycle approaches to examine the optimal conditions of a biological process in terms of minimizing environmental impact and economic costs.
Collapse
Affiliation(s)
- Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiangwei Meng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yan Liu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shunwen Bai
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bei Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun 130033, China; HOOKE Instruments Ltd., Changchun 130033, China
| | - Hang Li
- HOOKE Instruments Ltd., Changchun 130033, China
| | - Ning Hou
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
24
|
Chen Z, Qiu S, Li M, Zhou D, Ge S. Instant Inhibition and Subsequent Self-Adaptation of Chlorella sp. Toward Free Ammonia Shock in Wastewater: Physiological and Genetic Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9641-9650. [PMID: 35737736 DOI: 10.1021/acs.est.1c08001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Free ammonia (FA) has been recently demonstrated as the primary stress factor suppressing microalgal activities in high-ammonium wastewater. However, its inhibition mechanism and microalgal self-adaptive regulations remain unknown. This study revealed an initial inhibition and subsequent self-adaptation of a wastewater-indigenous Chlorella sp. exposed to FA shock. Mutual physiological and transcriptome analysis indicated that genetic information processing, photosynthesis, and nutrient metabolism were the most influenced metabolic processes. Specifically, for the inhibition behavior, DNA damage was indicated by the significantly up-regulated related genes, leading to the activation of cell cycle checkpoints, programmed apoptosis, and suppressed microalgal growth; FA shock inhibited the photosynthetic activities including both light and dark reactions and photoprotection through non-photochemical quenching; ammonium uptake was also suppressed with the inhibited glutamine synthetase/glutamine α-oxoglutarate aminotransferase cycle and the inactivated glutamate dehydrogenase pathway. With respect to microalgal self-adaptation, DNA damage possibly enhanced overall cell viability through reprogramming the cell fate; recovered nutrient uptake provided substances for self-adaptation activities including amino acid biosynthesis, energy production and storage, and genetic information processing; elevated light reactions further promoted self-adaptation through photodamage repair, photoprotection, and antioxidant systems. These findings enrich our knowledge of microalgal molecular responses to FA shock, facilitating the development of engineering optimization strategies for the microalgal wastewater bioremediation system.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| | - Di Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| |
Collapse
|
25
|
Wang Q, Li H, Shen Q, Wang J, Chen X, Zhang Z, Lei Z, Yuan T, Shimizu K, Liu Y, Lee DJ. Biogranulation process facilitates cost-efficient resources recovery from microalgae-based wastewater treatment systems and the creation of a circular bioeconomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154471. [PMID: 35288130 DOI: 10.1016/j.scitotenv.2022.154471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Energy self-sufficient wastewater treatment designs can reduce net energy consumption and achieve resources recovery. Microalgae are regarded as a promising candidate for developing a circular bioeconomy in wastewater treatment plants (WWTPs) due to its potential for simultaneous wastewater remediation and high value-added materials production. Much effort has been made to overcome the high production costs for microalgae; however, biomass harvesting still remains as the bottleneck for its large-scale application. In this study, the novel biogranulation system facilitating easier and faster microalgae harvesting was firstly compared with the conventional suspended culture for energy-efficiency and sustainability assessment on microalgae (Ankistrodesmus falcatus var. acicularis) cultivation using the synthetic anaerobic digestion liquor. Results demonstrated that the biogranulation system enhanced volumetric biomass productivity (223.17 ± 11.82 g/m3/day) by about 4.4 times compared to that from the suspended system (41.57 ± 2.08 g/m3/day) under the same environmental conditions. It was noticed that lipids, carbohydrates and proteins were accumulated in microalgae cells along with nutrients remediation, and the microalgae granules with much higher proteins content (313.28 ± 26.67 mg/g-VSS) could be easily harvested through 2 min gravity sedimentation with little impact on the contents of carbohydrates and lipids. In the whole cultivation and harvesting process, the biomass mass-based electricity consumption and footprint demand by the biogranulation system were reduced by 58% and 76%, respectively. Results from this study provide a cost-effective and sustainable approach for microalgae in the treatment of nutrients rich digestion liquor with simultaneous production of valuable biomaterials.
Collapse
Affiliation(s)
- Qian Wang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hui Li
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Qingyue Shen
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jixiang Wang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xingyu Chen
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
26
|
Singh AK, Gupta RK, Purohit HJ, Khardenavis AA. Genomic characterization of denitrifying methylotrophic Pseudomonas aeruginosa strain AAK/M5 isolated from municipal solid waste landfill soil. World J Microbiol Biotechnol 2022; 38:140. [PMID: 35705700 DOI: 10.1007/s11274-022-03311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/15/2022] [Indexed: 11/26/2022]
Abstract
Municipal landfills are known for methane production and a source of nitrate pollution leading to various environmental issues. Therefore, this niche was selected for the isolation of one-carbon (C1) utilizing bacteria with denitrifying capacities using anaerobic enrichment on nitrate mineral salt medium supplemented with methanol as carbon source. Eight axenic cultures were isolated of which, isolate AAK/M5 demonstrated the highest methanol removal (73.28%) in terms of soluble chemical oxygen demand and methane removal (41.27%) at the expense of total nitrate removal of 100% and 33% respectively. The whole genome characterization with phylogenomic approach suggested that the strain AAK/M5 could be assigned to Pseudomonas aeruginosa with close neighbours as type strains DVT779, AES1M, W60856, and LES400. The circular genome annotation showed the presence of complete set of genes essential for methanol utilization and complete denitrification process. The study demonstrates the potential of P. aeruginosa strain AAK/M5 in catalysing methane oxidation thus serving as a methane sink vis-à-vis utilization of nitrate. Considering the existence of such bacteria at landfill site, the study highlights the need to develop strategies for their enrichment and designing of efficient catabolic activity for such environments.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440020, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
27
|
Chen Z, Xie Y, Qiu S, Li M, Yuan W, Ge S. Granular indigenous microalgal-bacterial consortium for wastewater treatment: Establishment strategy, functional microorganism, nutrient removal, and influencing factor. BIORESOURCE TECHNOLOGY 2022; 353:127130. [PMID: 35398536 DOI: 10.1016/j.biortech.2022.127130] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Granular indigenous microalgal-bacterial consortium (G-IMBC) system integrates the advantages of the MBC and granular activated sludge technologies, also with superior microalgal wastewater adaptation capacity. In this review, the concept of IMBC was firstly described, followed by its establishment and acclimation strategies. Characteristics and advantages of G-IMBC system compared to other IMBC systems (i.e., attached and floc IMBC systems) were then introduced. Moreover, the involved functional microorganisms and their interactions, as well as nutrient removal mechanisms were systematically and critically reviewed. Finally, the influencing factors including wastewater characteristics and operation factors were discussed. This study aims to provide a comprehensive up-to-date summary of the G-IMBC system for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Yue Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Wenqi Yuan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
28
|
Ren X, Liu Y, Fan C, Hong H, Wu W, Zhang W, Wang Y. Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods 2022; 11:foods11091215. [PMID: 35563938 PMCID: PMC9101592 DOI: 10.3390/foods11091215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microalgae have been increasingly considered as a sustainable “biofactory” with huge potentials to fill up the current and future shortages of food and nutrition. They have become an economically and technologically viable solution to produce a great diversity of high-value bioactive compounds, including n-3 polyunsaturated fatty acids (PUFA). The n-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), possess an array of biological activities and positively affect a number of diseases, including cardiovascular and neurodegenerative disorders. As such, the global market of n-3 PUFA has been increasing at a fast pace in the past two decades. Nowadays, the supply of n-3 PUFA is facing serious challenges as a result of global warming and maximal/over marine fisheries catches. Although increasing rapidly in recent years, aquaculture as an alternative source of n-3 PUFA appears insufficient to meet the fast increase in consumption and market demand. Therefore, the cultivation of microalgae stands out as a potential solution to meet the shortages of the n-3 PUFA market and provides unique fatty acids for the special groups of the population. This review focuses on the biosynthesis pathways and recombinant engineering approaches that can be used to enhance the production of n-3 PUFA, the impact of environmental conditions in heterotrophic cultivation on n-3 PUFA production, and the technologies that have been applied in the food industry to extract and purify oil in microalgae and protect n-3 PUFA from oxidation.
Collapse
Affiliation(s)
- Xiang Ren
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| | - Yanjun Liu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Chao Fan
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Hao Hong
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wenzhong Wu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wei Zhang
- DeOxiTech Consulting, 30 Cloverfield Court, Dartmouth, NS B2W 0B3, Canada;
| | - Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| |
Collapse
|
29
|
Jain R, Mishra S, Mohanty K. Cattle wastewater as a low-cost supplement augmenting microalgal biomass under batch and fed-batch conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114213. [PMID: 34896802 DOI: 10.1016/j.jenvman.2021.114213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
The utilization of costly chemical fertilizers and large freshwater requirements make the microalgae cultivation process uneconomical and highly unsustainable. To address this challenge, the present study aimed to integrate cattle wastewater (CW) (alternate for fertilizers) with domestic sewage wastewater (DSW) (substitute for freshwater) to cultivate Chlorella thermophile. To maximize the biomass yield, in-depth nutrient consumption patterns in both batch and fed-batch cultivation conditions were analyzed. Out of the eight (1%-4.5%) different CW feed concentrations tested during the batch cultivation, 2.5% CW set gave the highest biomass yield (2.17 g L-1), which was almost double the yield obtained using Bold Basal Medium (1.24 g L-1) and DSW without any CW addition (1.22 g L-1). However, the biomass yield declined with CW> 2.5%, and the ammonium (NH4+) inhibitory effect was observed. To address the (NH4+) toxicity challenge and further enhance the biomass yield, fed-batch experiments were designed with an intermittent CW feeding based on nutrient (NH4+) consumption pattern. The fed-batch cultivation resulted in twofold increased biomass yield (4.52 g L-1) in comparison to the batch process. The nutrient consumption pattern inferred that the (NH4+) concentration greater than 600 mg L-1 during the logarithmic phase was inhibitory for Chlorella thermophila cells. On biomass characterization, a significant improvement in protein content with CW addition was observed. The FAME analysis of the derived lipid stated its competitive biofuel quality with up-gradation of C:16 and C:18 groups. Based on the obtained results, projection analysis for an integrated rural model demonstrated the technology's potential for sustainable water management with valuable resource recovery.
Collapse
Affiliation(s)
- Rahul Jain
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Sanjeev Mishra
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Kaustubha Mohanty
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
30
|
Al-Mallahi J, Ishii K. Attempts to alleviate inhibitory factors of anaerobic digestate for enhanced microalgae cultivation and nutrients removal: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114266. [PMID: 34906810 DOI: 10.1016/j.jenvman.2021.114266] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion is a well-established process that is applied to treat organic wastes and convert the carbon to valuable methane gas as a source of energy. The digestate that comes out as a by-product is of a great challenge due to its high nutrient content that can be toxic in case of improper disposal to the environment. Several attempts have been done to valorize this digestate. Digestate has been considered as an interesting medium to cultivate microalgae. The nutrients available in the digestate, mainly nitrogen and phosphorus, can be an interesting supplement for microalgae growth requirement. The main obstacles of using digestate as a medium to cultivate microalgae are the dark color and the high ammonium-nitrogen concentration. The focus of this review is to discuss in detail the major attempts in research to overcome inhibition and enhance microalgae cultivation in digestate. This review initially discussed the obstacles of digestate as a medium for microalgae cultivation. Different processes to overcome inhibition were discussed including dilution, supplying additional carbon source, favoring mixotrophic cultivation and pretreatment. More emphasis in this review was given to digestate pretreatment. Among the pretreatment methods, filtration, and centrifugation were of the most applied ones. These strategies were found to be effective for turbidity and chromaticity reduction. For ammonium nitrogen removal, ammonia stripping and biological pretreatment methods were found to play a vital role. Adsorption could work both ways depending on the material used. Combining different pretreatment methods as well as including selected microalgae stains were found interesting strategies to facilitate microalgae cultivation with no dilution. This study recommend that more study should investigate the optimization of microalgae cultivation in anaerobic digestate without the need for dilution.
Collapse
Affiliation(s)
- Jumana Al-Mallahi
- Faculty of Engineering, Hokkaido University, N13, W18, Kita-ku, Sapporo, 060-8628, Japan.
| | - Kazuei Ishii
- Faculty of Engineering, Hokkaido University, N13, W18, Kita-ku, Sapporo, 060-8628, Japan
| |
Collapse
|
31
|
Ma X, Mi Y, Zhao C, Wei Q. A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151387. [PMID: 34740661 DOI: 10.1016/j.scitotenv.2021.151387] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Energy is a major driving force for the economic development. Due to the scarcity of fossil fuels and negative impact on the environment, it is important to develop renewable and sustainable energy sources for humankind. Microalgae as the primary feedstock for biodiesel has shown great application potential. However, lipid yield from microalgae is limited by the upstream cost, which restrain the realization of large-scale biofuel production. The modification of lipid-rich microalgae cell has become the focus over the last few decades to improve the lipid content and productivity of microalgae. Carbon is a vital nutrient that regulates the growth and metabolism of microalgae. Different carbon sources are assimilated by microalgae cells via different pathways. Inorganic carbon sources are mainly used through the CO2-concentrating mechanisms (CCMs), while organic carbon sources are absorbed by microalgae mainly through the Pentose Phosphate (PPP) Pathway and the Embden-Meyerhof-Pranas (EMP) pathway. Therefore, the addition of carbon source has a significant impact on the production of microalgae biomass and lipid accumulation. In this paper, mechanisms of lipid synthesis and carbon uptake of microalgae were introduced, and the effects of different carbon conditions (types, concentrations, and addition methods) on lipid accumulation in microalgal biomass production and biodiesel production were comprehensively discussed. This review also highlights the recent advances in microalgae lipid cultivation with large-scale commercialization and the development prospects of biodiesel production. Current challenges and constructive suggestions are proposed on cost-benefit concerns in large-scale production of microalgae biodiesel.
Collapse
Affiliation(s)
- Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, China
| | - Yuwei Mi
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Chen Zhao
- China Construction Fifth Engineering Division Corp., Ltd, 9 Kaixuan Rd, Liangqing District, Nanning, Guangxi 530000, China
| | - Qun Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
32
|
Ahmad A, Banat F, Alsafar H, Hasan SW. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150585. [PMID: 34597562 DOI: 10.1016/j.scitotenv.2021.150585] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
A growing world population is causing hazardous compounds to form at an increasingly rapid rate, calling for ecological action. Wastewater management and treatment is an expensive process that requires appropriate integration technology to make it more feasible and cost-effective. Algae are of great interest as potential feedstocks for various applications, including environmental sustainability, biofuel production, and the manufacture of high-value bioproducts. Bioremediation with microalgae is a potential approach to reduce wastewater pollution. The need for effective nutrient recovery, greenhouse gas reduction, wastewater treatment, and biomass reuse has led to a wide interest in the use of microalgae for wastewater treatment. Furthermore, algae biomass can be used to produce bioenergy and high-value bioproducts. The use of microalgae as medicine (production of bioactive and medicinal compounds), biofuels, biofertilizers, and food additives has been explored by researchers around the world. Technological and economic barriers currently prevent the commercial use of algae, and optimal downstream processes are needed to reduce production costs. Therefore, the simultaneous use of microalgae for wastewater treatment and biofuel production could be an economical approach to address these issues. This article provides an overview of algae and their application in bioremediation, bioenergy production, and bioactive compound production. It also highlights the current problems and opportunities in the algae-based sector, which has recently become quite promising.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Habiba Alsafar
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
33
|
Zhou Y, Liu L, Li M, Hu C. Algal biomass valorisation to high-value chemicals and bioproducts: Recent advances, opportunities and challenges. BIORESOURCE TECHNOLOGY 2022; 344:126371. [PMID: 34838628 DOI: 10.1016/j.biortech.2021.126371] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Algae are considered promising biomass resources for biofuel production. However, some arguments doubt the economical and energetical feasibility of algal cultivation, harvesting, and conversion processes. Beyond biofuel, value-added bioproducts can be generated via algae conversion, which would enhance the economic feasibility of algal biorefineries. This review primarily focuses on valuable chemical and bioproduct production from algae. The methods for effective recovery of valuable algae components, and their applications are summarized. The potential routes for the conversion of lipids, carbohydrates, and proteins to valuable chemicals and bioproducts are assessed from recent studies. In addition, this review proposes the following challenges for future algal biorefineries: (1) utilization of naturally grown algae instead of cultivated algae; (2) fractionation of algae to individual components towards high-selectivity products; (3) avoidance of humin formation from algal carbohydrate conversion; (4) development of strategies for algal protein utilisation; and (5) development of efficient processes for commercialization and industrialization.
Collapse
Affiliation(s)
- Yingdong Zhou
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Li Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Mingyu Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
34
|
Chen F, Leng Y, Lu Q, Zhou W. The application of microalgae biomass and bio-products as aquafeed for aquaculture. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Rai A, Sen A, Sarkar B, Chakrabarty J, Mondal BK, Dutta S. Phycoremediation of pollutants from secondary treated coke-oven wastewater using poultry litter as nutrient source: a cost-effective polishing technique. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2406-2421. [PMID: 34810320 DOI: 10.2166/wst.2021.433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article focuses on the phycoremediation of pollutants from secondary treated coke-oven effluent through a green and economical route. A microalgal sample was collected and identified as a consortium of Chlorella sp. and Synechococcus sp. The culture cost was reduced by using poultry litter extract as supplementary material to BG-11 medium. Since the major pollutants present in real secondary treated coke-oven wastewater are phenol, ammoniacal-N (NH4+) and cyanide, several matrices were designed with these three major pollutants by varying their initial concentrations such as phenol (2-10 mg/L), cyanide (0.3-1 mg/L) and NH4+ (100-200 mg/L), termed as simulated secondary treated coke-oven wastewater. Maximum removal was observed with individual solutions of phenol (4 mg/L), cyanide (0.6 mg/L) and NH4+ (175 mg/L), while maximum removal in simulated secondary treated coke-oven wastewater was observed at higher concentrations of phenol (8 mg/L) and cyanide (0.8 mg/L) and the same concentration of NH4+ (175 mg/L). A consortium was found effective to meet statutory limits of pollutants. Kinetic model was developed for predicting growth of consortium and observed that the poultry litter extract-enriched BG-11 medium showed higher values of maximum specific growth rate (0.56 per day) and carrying capacity (1,330 mg/L) than that in BG-11 medium only.
Collapse
Affiliation(s)
- Abhilasha Rai
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India E-mail:
| | - Aniket Sen
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal 700107, India
| | - Biswajit Sarkar
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India E-mail:
| | - Jitamanyu Chakrabarty
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Bikash Kumar Mondal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India E-mail:
| | - Susmita Dutta
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India E-mail:
| |
Collapse
|
36
|
Chan KKY, Kong HK, Tse SPK, Chan Z, Lo PY, Kwok KWH, Lo SCL. Finding Species-Specific Extracellular Surface-Facing Proteomes in Toxic Dinoflagellates. Toxins (Basel) 2021; 13:624. [PMID: 34564629 PMCID: PMC8473415 DOI: 10.3390/toxins13090624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/27/2022] Open
Abstract
As a sequel to our previous report of the existence of species-specific protein/peptide expression profiles (PEPs) acquired by mass spectrometry in some dinoflagellates, we established, with the help of a plasma-membrane-impermeable labeling agent, a surface amphiesmal protein extraction method (SAPE) to label and capture species-specific surface proteins (SSSPs) as well as saxitoxins-producing-species-specific surface proteins (Stx-SSPs) that face the extracellular space (i.e., SSSPsEf and Stx-SSPsEf). Five selected toxic dinoflagellates, Alexandrium minutum, A. lusitanicum, A. tamarense, Gymnodinium catenatum, and Karenia mikimotoi, were used in this study. Transcriptomic databases of these five species were also constructed. With the aid of liquid chromatography linked-tandem mass spectrometry (LC-MS/MS) and the transcriptomic databases of these species, extracellularly facing membrane proteomes of the five different species were identified. Within these proteomes, 16 extracellular-facing and functionally significant transport proteins were found. Furthermore, 10 SSSPs and 6 Stx-SSPs were identified as amphiesmal proteins but not facing outward to the extracellular environment. We also found SSSPsEf and Stx-SSPsEf in the proteomes. The potential functional correlation of these proteins towards the production of saxitoxins in dinoflagellates and the degree of species specificity were discussed accordingly.
Collapse
Affiliation(s)
- Kenrick Kai-yuen Chan
- Department of Applied Biology and Chemical Technology, Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; (K.K.-y.C.); (H.-k.K.); (S.P.-k.T.); (Z.C.); (P.-y.L.); (K.W.H.K.)
| | - Hang-kin Kong
- Department of Applied Biology and Chemical Technology, Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; (K.K.-y.C.); (H.-k.K.); (S.P.-k.T.); (Z.C.); (P.-y.L.); (K.W.H.K.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Sirius Pui-kam Tse
- Department of Applied Biology and Chemical Technology, Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; (K.K.-y.C.); (H.-k.K.); (S.P.-k.T.); (Z.C.); (P.-y.L.); (K.W.H.K.)
| | - Zoe Chan
- Department of Applied Biology and Chemical Technology, Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; (K.K.-y.C.); (H.-k.K.); (S.P.-k.T.); (Z.C.); (P.-y.L.); (K.W.H.K.)
| | - Pak-yeung Lo
- Department of Applied Biology and Chemical Technology, Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; (K.K.-y.C.); (H.-k.K.); (S.P.-k.T.); (Z.C.); (P.-y.L.); (K.W.H.K.)
| | - Kevin W. H. Kwok
- Department of Applied Biology and Chemical Technology, Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; (K.K.-y.C.); (H.-k.K.); (S.P.-k.T.); (Z.C.); (P.-y.L.); (K.W.H.K.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Samuel Chun-lap Lo
- Department of Applied Biology and Chemical Technology, Faculty of Applied Science and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; (K.K.-y.C.); (H.-k.K.); (S.P.-k.T.); (Z.C.); (P.-y.L.); (K.W.H.K.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
37
|
Wang Q, Yu Z, Wei D, Chen W, Xie J. Mixotrophic Chlorella pyrenoidosa as cell factory for ultrahigh-efficient removal of ammonium from catalyzer wastewater with valuable algal biomass coproduction through short-time acclimation. BIORESOURCE TECHNOLOGY 2021; 333:125151. [PMID: 33892430 DOI: 10.1016/j.biortech.2021.125151] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
To achieve ultrahigh-efficient ammonium removal and valuable biomass coproduction, Chlorella-mediated short-time acclimation was implemented in photo-fermentation. The results demonstrated short-time acclimation of mixotrophic Chlorella pyrenoidosa could significantly improve NH4+ removal and biomass production in shake flasks. After acclimation through two batch cultures in 5-L photo-fermenter, the maximum NH4+ removal rate (1,400 mg L-1 d-1) were achieved under high NH4+ level (4,750 mg L-1) in batch 3. In 50-L photo-fermenter, through one batch acclimated culture, the maximum NH4+ removal rate (2,212 mg L-1 d-1) and biomass concentration (58.4 g L-1) were achieved in batch 2, with the highest productivities of protein (5.56 g L-1 d-1) and total lipids (5.66 g L-1 d-1). The hypothetical pathway of nutrients assimilation in mixotrophic cells as cell factory was proposed with detailed discussion. This study provided a novel strategy for high-ammonium wastewater treatment without dilution, facilitating the algae-based "waste-to-treasure" bioconversion process for green manufacturing.
Collapse
Affiliation(s)
- Qingke Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zongyi Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou, China.
| | - Weining Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Chinese Academy of Fishery Sciences Pearl River Fisheries Research Institute, Guangzhou, China
| |
Collapse
|
38
|
A state-of-the-art review on the synthetic mechanisms, production technologies, and practical application of polyunsaturated fatty acids from microalgae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102281] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Kong W, Kong J, Ma J, Lyu H, Feng S, Wang Z, Yuan P, Shen B. Chlorella vulgaris cultivation in simulated wastewater for the biomass production, nutrients removal and CO 2 fixation simultaneously. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112070. [PMID: 33561760 DOI: 10.1016/j.jenvman.2021.112070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Chlorella vulgaris (C. vulgaris) was promising microalgae to simultaneously achieve biomass production, carbon dioxide (CO2) fixation, nutrients removal and proteins production especially under different conditions of CO2 gas and wastewaters. Results presented that maximal specific growth rate of C. vulgaris was 0.21-0.35 d-1 and 0.33-0.43 d-1 at 0.038% and 10% CO2 respectively, and corresponding maximal CO2 fixation rate was attended with 4.51-14.26 and 56.26-85.72 mg CO2·L-1·d-1. C. vulgaris showed good wastewater removal efficiency of nitrogen and phosphorus at 10% CO2 with 96.12%-99.61% removal rates. Nitrogen fixation amount achieved 41.86 mg L-1 when the initial NH4Cl concentration was set at 60 mg L-1 at 10% CO2. Improved total protein (25.01-365.49 mg) and amino acids (24.56-196.44 mg) contents of C. vulgaris biomass was observed with the increasing of added CO2 and ammonium concentrations. Moreover, the developed kinetic function of C. vulgaris growth depends on both phosphorus quota and nitrogen quota with correlation coefficient (R2) ranged from 0.68 to 0.97. Computed maximal consumed nutrients concentrations (ΔCmax) based on Logistic function are positively related to initial NH4+-N concentrations, which indicated that adding ammonium could stimulate the utilization of both phosphorus and nitrogen.
Collapse
Affiliation(s)
- Wenwen Kong
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Jia Kong
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Jiao Ma
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Shuo Feng
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Zhuozhi Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Peng Yuan
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, PR China.
| |
Collapse
|
40
|
Municipal Wastewater: A Sustainable Source for the Green Microalgae Chlorella vulgaris Biomass Production. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The need to reduce the costs associated with microalgae cultivation encouraged scientific research into coupling this process with wastewater treatment. Thus, the aim of this work was to assess the growth of Chlorella vulgaris (Chlorophyta) in different effluents from a municipal wastewater treatment plant (WWTP), namely secondary effluent (SE) and sludge run-off (SR). Assays were performed, under the same conditions, in triplicate with 4 dilution ratios of the wastewaters (25%, 50%, 75% and 100%) with the standard culture medium bold basal medium double nitrated (BBM2N) as a control. The capability of C. vulgaris for biomass production, chlorophyll synthesis and nutrients removal in the SE and SR was evaluated. The 25% SE and 25% SR showed increased specific growth rates (0.47 and 0.55 day−1, respectively) and higher biomass yields (8.64 × 107 and 1.95 × 107 cells/mL, respectively). Regarding the chlorophyll content, the 100% SR promoted the highest concentration of this pigment (2378 µg/L). This green microalga was also able to remove 94.8% of total phosphorus of SE, while in 50% SR, 31.2% was removed. Removal of 73.9% and 65.9% of total nitrogen in 50% and 100% SR, respectively, was also observed. C. vulgaris growth can, therefore, be maximized with the addition of municipal effluents, to optimize biomass production, while cleansing the effluents.
Collapse
|
41
|
Svierzoski NDS, Matheus MC, Bassin JP, Brito YD, Mahler CF, Webler AD. Treatment of a slaughterhouse wastewater by anoxic-aerobic biological reactors followed by UV-C disinfection and microalgae bioremediation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:409-420. [PMID: 32777158 DOI: 10.1002/wer.1435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/07/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
In this study, removal of organic matter and nitrogen from a cattle slaughterhouse wastewater was investigated in a two-stage anoxic-aerobic biological system, followed by UV-C disinfection. Ecotoxicity of the raw, biotreated, and disinfected wastewater against the microalgae Scenedesmus sp. was evaluated in short-term tests, while the potential of the microalgae as a nutrient removal step was addressed in long-term experiments. Throughout 5 operational phases, the biological system was subjected to gradual reduction of the hydraulic retention time (8-1.5 day), increasing the organic (0.21-1.11 kgCOD·m-3 ·day-1 ) and nitrogen (0.05-0.28 kgN·m-3 · day-1 ) loading rates. COD and total ammoniacal nitrogen (TAN) removal ranged within 83%-97% and 83%-99%, respectively. While providing alkalinity source, effluent TAN concentrations were below 5 mg·L-1 . Nitrate was the main nitrification product, while nitrite levels remained low (<1 mgN·L-1 ). Upon supplementation of external COD as ethanol, total nitrogen removal reached up to 90% at the highest load (0.28 kgN·m-3 ·day-1 ). After UV-C treatment, 3-log reduction of total coliforms was attained. The 96-hr ecotoxicity tests showed that all non-diluted samples tested (raw, biologically treated and UV-C irradiated wastewater) were toxic to microalgae. Nevertheless, these organisms were able to acclimate and grow under the imposed conditions, allowing to achieve nitrogen and phosphorous removal up to 99.1% and 43.0%, respectively. PRACTITIONER POINTS: The treatment of a slaughterhouse wastewater in an anoxic-aerobic biological system followed by a UV-C disinfection step was assessed. The pre-denitrification system showed efficient simultaneous removal of organic matter and nitrogen from the wastewater under increasing applied loads. UV-C disinfection worked effectively in reducing coliforms from the biotreated effluent, boosting the performance of microalgae on nutrients removal. Despite the toxicity to microalgae, they were capable to acclimate to the aqueous matrices tested, reducing efficiently the nutrients content. The combined stages of treatment presented great capacity for depleting up to 97% COD, 99% nitrogen, and 43% phosphorous.
Collapse
Affiliation(s)
| | | | - João Paulo Bassin
- COPPE, Chemical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yves Dias Brito
- Department of Environmental Engineering, Federal University of Rondônia, Rondônia, Brazil
| | - Claudio Fernando Mahler
- COPPE, Civil Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Dresch Webler
- Department of Environmental Engineering, Federal University of Rondônia, Rondônia, Brazil
| |
Collapse
|
42
|
Digestate as Sustainable Nutrient Source for Microalgae—Challenges and Prospects. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The interest in microalgae products has been increasing, and therefore the cultivation industry is growing steadily. To reduce the environmental impact and production costs arising from nutrients, research needs to find alternatives to the currently used artificial nutrients. Microalgae cultivation in anaerobic effluents (more specifically, digestate) represents a promising strategy for increasing sustainability and obtaining valuable products. However, digestate must be processed prior to its use as nutrient source. Depending on its composition, different methods are suitable for removing solids (e.g., centrifugation) and adjusting nutrient concentrations and ratios (e.g., dilution, ammonia stripping). Moreover, the resulting cultivation medium must be light-permeable. Various studies show that growth rates comparable to those in artificial media can be achieved when proper digestate treatment is used. The necessary steps for obtaining a suitable cultivation medium also depend on the microalgae species to be cultivated. Concerning the application of the biomass, legal aspects and impurities originating from digestate must be considered. Furthermore, microalgae species and their application fields are essential criteria when selecting downstream processing methods (harvest, disintegration, dehydration, product purification). Microalgae grown on digestate can be used to produce various products (e.g., bioenergy, animal feed, bioplastics, and biofertilizers). This review gives insight into the origin and composition of digestate, processing options to meet requirements for microalgae cultivation and challenges regarding downstream processing and products.
Collapse
|
43
|
Liu X, Wang M, Zhang J, Wei L, Cheng H. Immobilization altering the growth behavior, ammonium uptake and amino acid synthesis of Chlorella vulgaris at different concentrations of carbon and nitrogen. BIORESOURCE TECHNOLOGY 2021; 320:124438. [PMID: 33246797 DOI: 10.1016/j.biortech.2020.124438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen recycling by microalgae has aroused considerable attention. In this study, immobilized Chlorellavulgaris with 5-day mixotrophic cultivation to recover ammonium (NH4+-N) were systematically investigated under various sodium acetate (CH3COONa) and ammonium chloride (NH4Cl) concentrations, and evaluated by comparison with suspended cells. The results revealed that, unlike suspended cells, NH4+-N uptake by immobilized cells was not in direct proportion to chemical oxygen demand (COD) concentrations. The immobilized cells to NH4+-N uptake was all inferior to that of suspended cells, presenting the maximum rate of 68.92% in group of 30 mg/L NH4+-N and 200 mg/L COD. Free amino acids in immobilized cells such as glutamate (Glu), arginine (Arg), proline (Pro) and leucine (Leu) were more sensitive to NH4+-N assimilation, as higher values observed by suspended cells. Low carbon-nitrogen (C/N) ratio showed remarkable benefits to amino acid synthesis. These results could provide a reference for manipulating the algal system and biomass accumulation.
Collapse
Affiliation(s)
- Xiang Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China.
| | - Min Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jin Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Lin Wei
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Haomiao Cheng
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
44
|
Pang N, Bergeron AD, Gu X, Fu X, Dong T, Yao Y, Chen S. Recycling of Nutrients from Dairy Wastewater by Extremophilic Microalgae with High Ammonia Tolerance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15366-15375. [PMID: 33190494 DOI: 10.1021/acs.est.0c02833] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study explored the possibility of incorporating extremophilic algal cultivation into dairy wastewater treatment by characterizing a unique algal strain. Results showed that extremophilic microalgae Chlorella vulgaris CA1 newly isolated from dairy wastewater tolerated a high level of ammonia nitrogen (2.7 g/L), which was over 20 times the ammonia nitrogen that regular Chlorella sp. could tolerate. The isolate was mixotrophically cultured in dairy effluent treated by anaerobic digestion (AD) for recycling nutrients and polishing the wastewater. The highest biomass content of 13.3 g/L and protein content of 43.4% were achieved in the culture in AD effluent. Up to 96% of the total nitrogen and 79% of the total phosphorus were removed from the dairy AD effluent. The ability of the algae to tolerate a high level of ammonia nitrogen suggests the potential for direct nutrient recycling from dairy wastewater while producing algal biomass and high value bioproducts.
Collapse
Affiliation(s)
- Na Pang
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Andre David Bergeron
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Xiangyu Gu
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Xiao Fu
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Tao Dong
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Yiqing Yao
- College of Mechanical and Electrical Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
45
|
Wang Q, Yu Z, Wei D. High-yield production of biomass, protein and pigments by mixotrophic Chlorella pyrenoidosa through the bioconversion of high ammonium in wastewater. BIORESOURCE TECHNOLOGY 2020; 313:123499. [PMID: 32554150 DOI: 10.1016/j.biortech.2020.123499] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
To achieve a high consumption rate of ammonium with biomass coproduction, the mixotroph Chlorella pyrenoidosa was cultivated in high ammonium-high salinity wastewater medium in this study. The initial cell density, glucose and ammonium concentrations, and light intensity were optimized in shake flasks. A 5-L fermenter with surrounding LED (Light Emitting Diode) and a 50-L fermenter with inlet LED were employed for batch and semicontinuous cultivation. The results demonstrated that the highest contents of protein (56.7% DW) and total pigments (4.48% DW) with productivities of 5.62 g L-1 d-1 and 0.55 mg L-1 d-1, respectively, were obtained in 5-L photofermenter, while the maximum NH4+ consumption rate (1,800 mg L-1 d-1) and biomass yield (23.6 g L-1) were achieved in 50-L photofermenter. This study developed a novel strategy to convert high ammonium in wastewater to high-protein algal biomass, facilitating wastewater bioremediation and nitrogen recycling utilization by the mixotroph C. pyrenoidosa in photofermentation.
Collapse
Affiliation(s)
- Qingke Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Zongyi Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
46
|
Xie Z, Lin W, Liu J, Luo J. Mixotrophic cultivation of Chlorella for biomass production by using pH-stat culture medium: Glucose-Acetate-Phosphorus (GAP). BIORESOURCE TECHNOLOGY 2020; 313:123506. [PMID: 32512426 DOI: 10.1016/j.biortech.2020.123506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Here the study designed a pH-stat culture medium that named as Glucose-Acetate-Phosphorus (GAP) for the mixotrophic cultivation of Chlorella for biomass production. With no addition of pH buffer, the culture pH during mixotrophic growth was effectively maintained steady between 7.5 and 8.5 by balancing the ammonium, acetate and glucose uptakes. Based on the GAP medium supplying with 2 g·L-1 of total organic carbon, the biomass productions of four Chlorella species were determined as 4.08-4.56 g·L-1. In contrast to the cultivation using medium Tris-Acetate-Phosphorus (TAP), a algal culture medium that usually regarded as specific for mixotrophy, the cultivation in GAP were about 1.79-1.86 times higher in biomass production and 83.9-88.9% lower in production cost. The developed GAP medium is a promising alternative for the mixotrophic cultivation of microalgae to produce biomass and cellular contents.
Collapse
Affiliation(s)
- Zhangzhang Xie
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weitie Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jianzhong Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Jianfei Luo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
47
|
New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters. World J Microbiol Biotechnol 2020; 36:144. [PMID: 32856187 DOI: 10.1007/s11274-020-02921-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/22/2020] [Indexed: 12/17/2022]
Abstract
The recovery of ammonia-nitrogen during wastewater treatment and water purification is increasingly critical in energy and economic development. The concentration of ammonia-nitrogen in wastewater is different depending on the type of wastewater, making it challenging to select ammonia-nitrogen recovery technology. Meanwhile, the conventional nitrogen removal method wastes ammonia-nitrogen resources. Based on the circular economy, this review comprehensively introduces the characteristics of several main ammonia-nitrogen source wastewater plants and their respective challenges in treatment, including municipal wastewater, industrial wastewater, livestock and poultry wastewater and landfill leachate. Furthermore, we introduce the main methods currently adopted in the ammonia-nitrogen removal process of wastewater from physical (air stripping, ion exchange and adsorption, membrane and capacitive deionization), chemical (chlorination, struvite precipitation, electrochemical oxidation and photocatalysis) and biological (classical and typical activated sludge, novel methods based on activated sludge, microalgae and photosynthetic bacteria) classification based on the ammonia recovery concept. We discuss the applicable methods of recovering ammonia nitrogen in several main wastewater plants. Finally, we prospect the research direction of ammonia removal and recovery in wastewater based on sustainable development.
Collapse
|
48
|
Saranya D, Shanthakumar S. An integrated approach for tannery effluent treatment with ozonation and phycoremediation: A feasibility study. ENVIRONMENTAL RESEARCH 2020; 183:109163. [PMID: 32000006 DOI: 10.1016/j.envres.2020.109163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
For the exploration of an effective and economical method to treat composite raw tannery effluent, the integrated approach of Ozonation and phycoremediation was followed. In a lab-scale Ozone reactor, the highest performance index was attained, when it was operated at a low O3 flowrate (2 g/h) condition. The tannery effluent partially treated by Ozonation (≈60% COD removed in 90 min) with the ozone consumption of 1.5 g of O3/g of COD, at pH 7.6, coupled with phycoremediation had improved the tannery effluent characteristics to a considerable extent. Overall, the maximum reduction in pollutant concentration attained with the combined treatment was 84% for COD, 60% for colour, 100% for odour, 90% for inorganic carbon, 82% for NH4+- N, 100% for PO4-P, 97% for chromium and 10% for TDS. In phycoremediation, microalgae Nannochloropsis oculata had shown an enhanced growth (μ = 0.255 day-1) with a maximum cell density of 5.2 × 107 cells/mL, dry biomass of 0.86 g L-1 and cell division rate of 0.369 day-1. Elemental analysis of biomass validated the chromium remediation along with other elements such as calcium, magnesium, sodium, potassium, zinc, and iron from the tannery effluent. Therefore, the phycoremediation integrated ozone process can be considered as a feasible treatment method for tannery effluent along with value-added biomass production.
Collapse
Affiliation(s)
- D Saranya
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - S Shanthakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
49
|
Ribeiro DM, Roncaratti LF, Possa GC, Garcia LC, Cançado LJ, Williams TCR, dos Santos Alves Figueiredo Brasil B. A low-cost approach for Chlorella sorokiniana production through combined use of urea, ammonia and nitrate based fertilizers. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2019.100354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
50
|
Yu J, Hu H, Wu X, Zhou T, Liu Y, Ruan R, Zheng H. Coupling of biochar-mediated absorption and algal-bacterial system to enhance nutrients recovery from swine wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134935. [PMID: 31726415 DOI: 10.1016/j.scitotenv.2019.134935] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Algal-bacterial system (ABS) used in treatment of high-strength ammonium wastewaters receives more and more attentions. In this paper, biochar-mediated absorption (BMA) and ABS were applied to recover nutrients from swine wastewater (SW) with high-strength ammonium, respectively. The results showed that the BMA could recover ammonium from the SW, which mitigated ammonia toxicity to the ABS. The bacterial community diversity containing four phyla of bacteria was identified for the first time during nutrients recovery from the SW by the ABS. Proteobacteria and Firmicutes were the two most abundant phyla. A novel scheme for nutrients recovery from the SW by the coupled BMA-ABS method was proposed and evaluated. Nutrients recovery was obviously improved by the coupled BMA-ABS method with biomass concentration of 1.97 g L-1, and a NH4+-N recovery efficiency of 96%, a total nitrogen recovery efficiency of 95%, a total phosphorus recovery efficiency of 96%, and a chemical oxygen demand recovery efficiency of 99%. The coupled BMA-ABS method could enhance nutrients recovery from the SW.
Collapse
Affiliation(s)
- Jiajia Yu
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Hancui Hu
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiaodan Wu
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Ting Zhou
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Yuhuan Liu
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Roger Ruan
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China; Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, United States
| | - Hongli Zheng
- MOE Biomass Energy Research Center and College of Food Science and Technology and State Key Laboratory of Food Science and Technology, Nanchang University, 235 East Nanjing Road, Nanchang, Jiangxi 330047, People's Republic of China.
| |
Collapse
|