1
|
Cui H, Zhu X, Yu X, Li S, Wang K, Wei L, Li R, Qin S. Advancements of astaxanthin production in Haematococcus pluvialis: Update insight and way forward. Biotechnol Adv 2025; 79:108519. [PMID: 39800086 DOI: 10.1016/j.biotechadv.2025.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT. However, the industry's further development faces two main challenges: the limited cultivation areas due to light-dependent AXT accumulation and the low AXT yield coupled with high production costs resulting from complex, time-consuming upstream biomass culture and downstream AXT extraction processes. Therefore, it is urgently to develop novel strategies to improve the AXT production in H. pluvialis to meet industrial demands, which makes its commercialization cost-effective. Although several strategies related to screening excellent target strains, optimizing culture condition for high biomass yield, elucidating the AXT biosynthetic pathway, and exploiting effective inducers for high AXT content have been applied to enhance the AXT production in H. pluvialis, there are still some unsolved and easily ignored perspectives. In this review, firstly, we summarize the structure and function of natural AXT focus on those from the algal H. pluvialis. Secondly, the latest findings regarding the AXT biosynthetic pathway including spatiotemporal specificity, transport, esterification, and storage are updated. Thirdly, we systematically assess enhancement strategies on AXT yield. Fourthly, the regulation mechanisms of AXT accumulation under various stresses are discussed. Finally, the integrated and systematic solutions for improving AXT production are proposed. This review not only fills the existing gap about the AXT accumulation, but also points the way forward for AXT production in H. pluvialis.
Collapse
Affiliation(s)
- Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Xiaoli Zhu
- College of Food and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Le Wei
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| |
Collapse
|
2
|
Dou Y, Cheng L, Wang Y, Yu G, Zhou W. Comparative metabolomic analysis of Haematococcus pluvialis during hyperaccumulation of astaxanthin under the high salinity and nitrogen deficiency conditions. World J Microbiol Biotechnol 2025; 41:37. [PMID: 39810003 DOI: 10.1007/s11274-025-04254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Revealing the differences of metabolite profiles of H. pluvialis during hyperaccumulation of astaxanthin under the high salinity and nitrogen deficiency conditions was the key issues of the present study. To investigate the optimum NaCl and NaNO3 concentration and the corresponding metabolic characteristic related to the astaxanthin accumulation in H. pluvialis, a batch culture experiment was conducted. The results indicated that 7.5 g·L- 1 and 0 g·L- 1 (nitrogen deficiency) were the optimum NaCl and NaNO3 levels for the astaxanthin accumulation respectively, under which the highest astaxanthin contents reached up to 7.51mg·L- 1 and 5.60mg·L- 1. A total of 132 metabolites were identified using LC-MS/MS technique, among which 30 differential metabolites with statistical significance were highlighted. Subsequently, 18 and 10 differential metabolic pathways in the high salinity (HS) and nitrogen-deficient (ND) treatments were extracted and annotated respectively. The values of Fv/Fm, Yield and NPQ were all at the highest level in the ND group during the experiment. The levels of the metabolites in the ND group were almost lower than those both in the control (CK) and HS group, while which in the HS group were substantially at the higher or close levels compared to the CK group. Finally, 7 metabolic markers related to the astaxanthin accumulation were highlighted in the HS and ND group respectively. L-Proline, L-Aspartate, Uridine 5'-monophosphate (UMP), Succinate, L-2-Hydroxygluterate, L-Valine and Inosine 5'-monophosphate (IMP) were identified as the metabolic markers in the HS group, whose fold change were 0.85, 4.14, 0.31, 0.66, 3.10, 1.32 and 0.30. Otherwise, the metabolic markers were Glyceric acid, Thymine, sn-Glycerol 3-phosphate, Glycine, Allantoic acid, L-Valine and IMP in the ND group, with the fold change 0.23, 2.11, 0.38, 0.41, 0.50 and 2.96 respectively. The results provided the comparative metabolomic view of astaxanthin accumulation in H. pluvialis under the different cultivation conditions, moreover showed a novel insights into the astaxanthin production.
Collapse
Affiliation(s)
- Yong Dou
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, P.R. China
- Tianjin Key Laboratory for Green and Ecological Forage, Tianjin Modern Tianjiao Agricultural Technology Co.,Ltd, Tianjin, 301800, P.R. China
- Tianjin Key Lab for Aquaculture Ecology and Cultivation, Tianjin Agricultural University, Tianjin, 300392, P.R. China
| | - Liuyang Cheng
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, P.R. China
- Tianjin Key Lab for Aquaculture Ecology and Cultivation, Tianjin Agricultural University, Tianjin, 300392, P.R. China
| | - Yiwen Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, P.R. China
- Tianjin Key Lab for Aquaculture Ecology and Cultivation, Tianjin Agricultural University, Tianjin, 300392, P.R. China
| | - Guihai Yu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, P.R. China
- Tianjin Key Lab for Aquaculture Ecology and Cultivation, Tianjin Agricultural University, Tianjin, 300392, P.R. China
| | - Wenli Zhou
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, P.R. China.
- Tianjin Key Lab for Aquaculture Ecology and Cultivation, Tianjin Agricultural University, Tianjin, 300392, P.R. China.
| |
Collapse
|
3
|
Zhang Y, Shen MZ, Wang JX, Wang JH, Chi ZY. Less toxic combined microplastics exposure towards attached Chlorella sorokiniana in the presence of sulfamethoxazole while massive microalgal nitrous oxide emission under multiple stresses. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137223. [PMID: 39818055 DOI: 10.1016/j.jhazmat.2025.137223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Microalgae-based wastewater treatment could realize simultaneous nutrients recovery and CO2 sequestration. However, impacts of environmental microplastics (MPs) and antibiotic co-exposure on microalgal growth, nutrients removal, intracellular nitric oxide (NO) accumulation and subsequent nitrous oxide (N2O) emission are unclarified, which could greatly offset the CO2 sequestration benefit. To reveal the potential impacts of environmental concentrations of MPs and antibiotic co-exposure on microalgal greenhouse gas mitigation, this study investigated the effects of representative MPs (PE, PVC, PA), antibiotic sulfamethoxazole (SMX), and nitrite (NO2--N) in various combinations on attached Chlorella sorokiniana growth, nutrients removal, anti-oxidative responses, and N2O emission originated from intracellular NO build-up. Microalgal biofilm growth was more inhibited under 10 μg/L MPs than 100 μg/L SMX, and MPs+SMX co-exposure displayed toxicity antagonism while MPs+MPs co-exposure caused toxicity synergism (up to 66 % growth inhibition). Extracellular polysaccharides content correlated well with microalgal biofilm density under various stresses, while SMX involved stresses displayed chlorophyll a content reduction. Microalgal assimilation and MPs adsorption contributed to nutrients removal, and phosphorus removal displayed less variance among different stresses (residual phosphorus <0.5 mg/L) than nitrogen. Intracellular NO conversion to N2O almost doubled during the co-exposure processes, and N2O emission under NO2--N + PE+PVC co-exposure could offset the contribution of microalgal CO2 sequestration by as high as 176.2 %. Results of this study appealed for urgent concern regarding environmental MPs and antibiotic co-exposure on primary producers' growth characteristics and their greenhouse gas mitigation properties.
Collapse
Affiliation(s)
- Ying Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ming-Zhi Shen
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jian-Xia Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China.
| | - Zhan-You Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
4
|
Song X, Kong F, Liu BF, Song Q, Ren NQ, Ren HY. Antioxidants alleviated low-temperature stress in microalgae by modulating reactive oxygen species to improve lipid production and antioxidant defense. BIORESOURCE TECHNOLOGY 2024; 413:131451. [PMID: 39244108 DOI: 10.1016/j.biortech.2024.131451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
The aim of this study was to investigate the effects of various concentrations of antioxidants, including butyl hydroxy anisd (BHA), butylated hydroxytoluene (BHT), fulvic acid (FA), melatonin (MT), glycine betaine (GB) and putrescine (Put), on growth and lipid synthesis of microalgae under low-temperature (15 ℃). Changes in biochemical indicators, reactive oxygen species (ROS) level, glutathione (GSH) content and antioxidant enzyme activities were also studied. The results indicated that the maximum biomass concentration (1.3 g/L) and lipid productivity (75.3 ± 5.8 mg/L d-1) were achieved under 100 μM MT and 1 μM GB, respectively. Moreover, antioxidants were able to increase the GSH and antioxidant enzymes activities in algal cells under low-temperature stress. This study was enlightening for the utilization of antioxidants to improve the resistance to low-temperature stress and lipid production in microalgae, and provided a theoretical basis for the application of microalgae for lipid accumulation in cold regions.
Collapse
Affiliation(s)
- Xueting Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingqing Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Wang ZX, Su ZC, Zhou GQ, Luo Y, Chen HR, Chen Z, Li X, Liang CY, Dao GH. Evaluation of phytohormone facilitation in microalgal biomass production using mathematical modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176237. [PMID: 39277014 DOI: 10.1016/j.scitotenv.2024.176237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
How to improve the growth efficiency of microalgae is the bottleneck of microalgae large-scale application. The addition of trace substances can promote the growth of microalgae, but there is no suitable model that can be used to predict the effects of trace substance concentrations on the growth of microalgae. In the present study, a mathematical model based on hormesis is proposed to describe the effects produced by trace substances on the biomass of microalgae and applied to assess the dose-response of four phytohormones on Scenedesmus sp. LX1 with a high coefficient of determination (R2 ≥ 0.90). Several new mathematical parameters, such as starting effective dose (SD), inflection point dose (PD), concentration for 0 % of maximal effect, end effective dose (ED), maximum stimulatory effect (MSE), and maximum inhibitory effect (MIE), were extracted and useful to help researchers in applying trace substances to assist in the production of microalgal biomass for data reference and prediction. In concrete terms, the above model parameters can be well applied to screen the trace substances, dominant algal species and determine the concentration range. This study provides valuable insights into the potential of using phytohormones to enhance the biomass production of microalgae and offers a new approach to optimizing the culture of microalgae.
Collapse
Affiliation(s)
- Zhuo-Xuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zi-Ci Su
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guo-Quan Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yu Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake - Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, Yunnan, China
| | - Hui-Ran Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xuan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Cheng-Yue Liang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China.
| | - Guo-Hua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
6
|
Kayani SI, -Rahman SU, Shen Q, Cui Y, Liu W, Hu X, Zhu F, Huo S. Molecular approaches to enhance astaxanthin biosynthesis; future outlook: engineering of transcription factors in Haematococcus pluvialis. Crit Rev Biotechnol 2024; 44:514-529. [PMID: 37380353 DOI: 10.1080/07388551.2023.2208284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/02/2023] [Accepted: 03/10/2023] [Indexed: 06/30/2023]
Abstract
Microalgae are the preferred species for producing astaxanthin because they pose a low toxicity risk than chemical synthesis. Astaxanthin has multiple health benefits and is being used in: medicines, nutraceuticals, cosmetics, and functional foods. Haematococcus pluvialis is a model microalga for astaxanthin biosynthesis; however, its natural astaxanthin content is low. Therefore, it is necessary to develop methods to improve the biosynthesis of astaxanthin to meet industrial demands, making its commercialization cost-effective. Several strategies related to cultivation conditions are employed to enhance the biosynthesis of astaxanthin in H. pluvialis. However, the mechanism of its regulation by transcription factors is unknown. For the first time, this study critically reviewed the studies on identifying transcription factors, progress in H. pluvialis genetic transformation, and use of phytohormones that increase the gene expression related to astaxanthin biosynthesis. In addition, we propose future approaches, including (i) Cloning and characterization of transcription factors, (ii) Transcriptional engineering through overexpression of positive regulators or downregulation/silencing of negative regulators, (iii) Gene editing for enrichment or deletion of transcription factors binding sites, (iv) Hormonal modulation of transcription factors. This review provides considerable knowledge about the molecular regulation of astaxanthin biosynthesis and the existing research gap. Besides, it provides the basis for transcription factors mediated metabolic engineering of astaxanthin biosynthesis in H. pluvialis.
Collapse
Affiliation(s)
- Sadaf-Ilyas Kayani
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Saeed-Ur -Rahman
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wei Liu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Çelekli A, Özbal B, Bozkurt H. Challenges in Functional Food Products with the Incorporation of Some Microalgae. Foods 2024; 13:725. [PMID: 38472838 DOI: 10.3390/foods13050725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Much attention has been given to the use of microalgae to produce functional foods that have valuable bioactive chemicals, including essential amino acids, polyunsaturated fatty acids, vitamins, carotenoids, fiber, and minerals. Microalgal biomasses are increasingly being used to improve the nutritional values of foods because of their unique nutrient compositions that are beneficial to human health. Their protein content and amino acid composition are the most important components. The microalgal biomass used in the therapeutic supplement industry is dominated by bio-compounds like astaxanthin, β-carotene, polyunsaturated fatty acids like eicosapentaenoic acid and docosahexaenoic acid, and polysaccharides such as β-glucan. The popularity of microalgal supplements is growing because of the health benefits of their bioactive substances. Moreover, some microalgae, such as Dunaliella, Arthrospira (Spirulina), Chlorella, and Haematococcus, are commonly used microalgal species in functional food production. The incorporation of microalgal biomass leads not only to enhanced nutritional value but also to improved sensory quality of food products without altering their cooking or textural characteristics. Microalgae, because of their eco-friendly potential, have emerged as one of the most promising and novel sources of new functional foods. This study reviews some recent and relevant works, as well as the current challenges for future research, using different methods of chemical modification in foods with the addition of a few commercial algae to allow their use in nutritional and sensory areas. It can be concluded that the production of functional foods through the use of microalgae in foods has become an important issue.
Collapse
Affiliation(s)
- Abuzer Çelekli
- Department of Biology, Faculty of Art and Science, Gaziantep University, 27310 Gaziantep, Turkey
| | - Buket Özbal
- Department of Biology, Faculty of Art and Science, Gaziantep University, 27310 Gaziantep, Turkey
| | - Hüseyin Bozkurt
- Department of Food Engineering, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey
| |
Collapse
|
8
|
Zhang Y, Wang JX, Liu Y, Zhang JT, Wang JH, Chi ZY. Effects of environmental microplastic exposure on Chlorella sp. biofilm characteristics and its interaction with nitric oxide signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169659. [PMID: 38159749 DOI: 10.1016/j.scitotenv.2023.169659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Microalgal biofilm is promising in simultaneous pollutants removal, CO2 fixation, and biomass resource transformation when wastewater is used as culturing medium. Nitric oxide (NO) often accumulates in microalgal cells under wastewater treatment relevant abiotic stresses such as nitrogen deficiency, heavy metals, and antibiotics. However, the influence of emerging contaminants such as microplastics (MPs) on microalgal intracellular NO is still unknown. Moreover, the investigated MPs concentrations among existing studies were mostly several magnitudes higher than in real wastewaters, which could offer limited guidance for the effects of MPs on microalgae at environment-relevant concentrations. Therefore, this study investigated three commonly observed MPs in wastewater at environment-relevant concentrations (10-10,000 μg/L) and explored their impacts on attached Chlorella sp. growth characteristics, nutrients removal, and anti-oxidative responses (including intracellular NO content). The nitrogen source NO3--N at 49 mg/L being 20 % of the nitrogen strength in classic BG-11 medium was selected for MPs exposure experiments because of least intracellular NO accumulation, so that disturbance of intracellular NO by nitrogen availability could be avoided. Under such condition, 10 μg/L polyethylene (PE) MPs displayed most significant microalgal growth inhibition comparing with polyvinyl chloride (PVC) and polyamide (PA) MPs, showing extraordinarily low chlorophyll a/b ratios, and highest superoxide dismutase (SOD) activity and intracellular NO content after 12 days of MPs exposure. PVC MPs exposed cultures displayed highest malonaldehyde (MDA) content because of the toxic characteristics of organochlorines, and most significant correlations of intracellular NO content with conventional anti-oxidative parameters of SOD, CAT (catalase), and MDA. MPs accelerated phosphorus removal, and the type rather than concentration of MPs displayed higher influences, following the trend of PE > PA > PVC. This study expanded the knowledge of microalgal biofilm under environment-relevant concentrations of MPs, and innovatively discovered the significance of intracellular NO as a more sensitive indicator than conventional anti-oxidative parameters under MPs exposure.
Collapse
Affiliation(s)
- Ying Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jian-Xia Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yang Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Tian Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Zhan-You Chi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
9
|
Ma Y, Sun X, Sun Y, Li H, Li H, Jiao X. Synchronous enhancement of astaxanthin and lipid accumulation in Haematococcus lacustris through co-mutation of ethanol and atmospheric and room temperature plasma: Exploration of characteristics and underlying mechanisms. BIORESOURCE TECHNOLOGY 2024; 394:130305. [PMID: 38199438 DOI: 10.1016/j.biortech.2024.130305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Haematococcus lacustris is a precious algal species renowned for its ability to simultaneous production of astaxanthin and lipid. However, its slow growth rate necessitates the development of appropriate mutagenesis methodologies to effectively enhance its synchronous production of both astaxanthin and lipid. This study introduced the co-mutation of Atmospheric and Room Temperature Plasma (ARTP) and ethanol. The performance and preliminary mechanisms underlying the combined accumulation of astaxanthin and lipid in H. lacustris under both mutations by ARTP and ethanol were comparatively analyzed. Combined astaxanthin and lipid contents relative to total cell mass in the 110-2 strain reached 54.4%, surpassing that of strain 0-3 and the control by 17.0% and 47.6% respectively. Transcriptome level analysis revealed how both ethanol and ARTP induction promote the expressions of carotenoid and lipid synthesis genes and related enzymatic activities. Upregulation of genes associated with cell activity contributed to lipid and astaxanthin metabolism in multi pathways.
Collapse
Affiliation(s)
- Yihua Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055 China
| | - Xin Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055 China.
| | - Youreng Sun
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Haoyang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055 China
| | - Hongwei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055 China
| | - Xiangfei Jiao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055 China
| |
Collapse
|
10
|
Suparmaniam U, Lam MK, Lim JW, Tan IS, Chin BLF, Shuit SH, Lim S, Pang YL, Kiew PL. Abiotic stress as a dynamic strategy for enhancing high value phytochemicals in microalgae: Critical insights, challenges and future prospects. Biotechnol Adv 2024; 70:108280. [PMID: 37944570 DOI: 10.1016/j.biotechadv.2023.108280] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Microalgae showcase an extraordinary capacity for synthesizing high-value phytochemicals (HVPCs), offering substantial potential for diverse applications across various industries. Emerging research suggests that subjecting microalgae to abiotic stress during cultivation and the harvesting stages can further enhance the accumulation of valuable metabolites within their cells, including carotenoids, antioxidants, and vitamins. This study delves into the pivotal impacts of manipulating abiotic stress on microalgae yields, with a particular focus on biomass and selected HVPCs that have received limited attention in the existing literature. Moreover, approaches to utilising abiotic stress to increase HVPCs production while minimising adverse effects on biomass productivity were discussed. The present study also encompasses a techno-economic assessment (TEA) aimed at pinpointing significant bottlenecks in the conversion of microalgae biomass into high-value products and evaluating the desirability of various conversion pathways. The TEA methodology serves as a valuable tool for both researchers and practitioners in the quest to identify sustainable strategies for transforming microalgae biomass into high-value products and goods. Overall, this comprehensive review sheds light on the pivotal role of abiotic stress in microalgae cultivation, promising insights that could lead to more efficient and sustainable approaches for HVPCs production.
Collapse
Affiliation(s)
- Uganeeswary Suparmaniam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT250, 98009 Miri, Sarawak, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT250, 98009 Miri, Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Siew Hoong Shuit
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Selangor, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Selangor, Malaysia
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Selangor, Malaysia
| | - Peck Loo Kiew
- Department of Chemical and Environmental Engineering, Malaysia - Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Nishida Y, Berg PC, Shakersain B, Hecht K, Takikawa A, Tao R, Kakuta Y, Uragami C, Hashimoto H, Misawa N, Maoka T. Astaxanthin: Past, Present, and Future. Mar Drugs 2023; 21:514. [PMID: 37888449 PMCID: PMC10608541 DOI: 10.3390/md21100514] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX is currently experiencing a surge in interest and research. The growing body of literature in this field predominantly focuses on AXs distinctive bioactivities and properties. However, the potential of algae-derived AX as a solution to various global environmental and societal challenges that threaten life on our planet has not received extensive attention. Furthermore, the historical context and the role of AX in nature, as well as its significance in diverse cultures and traditional health practices, have not been comprehensively explored in previous works. This review article embarks on a comprehensive journey through the history leading up to the present, offering insights into the discovery of AX, its chemical and physical attributes, distribution in organisms, and biosynthesis. Additionally, it delves into the intricate realm of health benefits, biofunctional characteristics, and the current market status of AX. By encompassing these multifaceted aspects, this review aims to provide readers with a more profound understanding and a robust foundation for future scientific endeavors directed at addressing societal needs for sustainable nutritional and medicinal solutions. An updated summary of AXs health benefits, its present market status, and potential future applications are also included for a well-rounded perspective.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| | | | - Behnaz Shakersain
- AstaReal AB, Signum, Forumvägen 14, Level 16, 131 53 Nacka, Sweden; (P.C.B.); (B.S.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Akiko Takikawa
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan;
| | - Ruohan Tao
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Yumeka Kakuta
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Chiasa Uragami
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Hideki Hashimoto
- Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan; (R.T.); (Y.K.); (C.U.); (H.H.)
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Suematsu, Nonoichi-shi 921-8836, Japan;
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto 606-0805, Japan
| |
Collapse
|
12
|
Wang L, Yang T, Pan Y, Shi L, Jin Y, Huang X. The Metabolism of Reactive Oxygen Species and Their Effects on Lipid Biosynthesis of Microalgae. Int J Mol Sci 2023; 24:11041. [PMID: 37446218 DOI: 10.3390/ijms241311041] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Microalgae have outstanding abilities to transform carbon dioxide (CO2) into useful lipids, which makes them extremely promising as renewable sources for manufacturing beneficial compounds. However, during this process, reactive oxygen species (ROS) can be inevitably formed via electron transfers in basal metabolisms. While the excessive accumulation of ROS can have negative effects, it has been supported that proper accumulation of ROS is essential to these organisms. Recent studies have shown that ROS increases are closely related to total lipid in microalgae under stress conditions. However, the exact mechanism behind this phenomenon remains largely unknown. Therefore, this paper aims to introduce the production and elimination of ROS in microalgae. The roles of ROS in three different signaling pathways for lipid biosynthesis are then reviewed: receptor proteins and phosphatases, as well as redox-sensitive transcription factors. Moreover, the strategies and applications of ROS-induced lipid biosynthesis in microalgae are summarized. Finally, future perspectives in this emerging field are also mentioned, appealing to more researchers to further explore the relative mechanisms. This may contribute to improving lipid accumulation in microalgae.
Collapse
Affiliation(s)
- Liufu Wang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Tian Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Pan
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Liqiu Shi
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Yaqi Jin
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Xuxiong Huang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Building of China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology and Joint Research on Mariculture Technology, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
13
|
Suparmaniam U, Lam MK, Rawindran H, Lim JW, Pa'ee KF, Yong KTL, Tan IS, Chin BLF, Show PL, Lee KT. Optimizing extraction of antioxidative biostimulant from waste onion peels for microalgae cultivation via response surface model. ENERGY CONVERSION AND MANAGEMENT 2023; 286:117023. [DOI: 10.1016/j.enconman.2023.117023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
|
14
|
Zhang YW, Fu XX, Chen JG, Yang YL, Wu WX, Xiao SL, Huang YJ, Peng WW. Antifungal alkaloids from the branch-leaves of Clausena lansium Lour. Skeels (Rutaceae). PEST MANAGEMENT SCIENCE 2023. [PMID: 36889932 DOI: 10.1002/ps.7441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The rational utilization of botanical secondary metabolites is one of the strategies to reduce the application of chemical fungicides. The extensive biological activities of Clausena lansium indicate that it has the potential to develop botanical fungicides. RESULTS A systematic investigation on the antifungal alkaloids from C. lansium branch-leaves following bioassay-guided isolation was implemented. Sixteen alkaloids, including two new and nine known carbazole alkaloids, one known quinoline alkaloid and four known amides, were isolated. Compounds 4, 7, 12 and 14 showed strong antifungal activity on Phytophthora capsiciwith EC50 values ranging from 50.67 to 70.82 μg mL-1 . Compounds 1, 3, 8, 10, 11, 12 and 16 displayed different degrees of antifungal activity against Botryosphaeria dothidea with EC50 values ranging from 54.18 to 129.83 μg mL-1 . It was reported for the first time that these alkaloids had antifungal effects on P. capsici or B. dothidea, and their structure-activity relationships were further discussed systematically. Additionally, among all alkaloids, dictamine (12) had the strongest antifungal activities against P. capsici (EC50 = 50.67 μg mL-1 ) and B. dothidea (EC50 = 54.18 μg mL-1 ), and its physiological effects on P. capsici and B. dothidea also were further evaluated. CONCLUSION Capsicum lansium is a potential source of antifungal alkaloids, and C. lansium alkaloids had the potential as lead compounds of botanical fungicides in the development of new fungicides with novel action mechanism. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Wei Zhang
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | - Xiao-Xiang Fu
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang, China
| | - Ji-Guang Chen
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | - Yu-Le Yang
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | - Wei-Xuan Wu
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | - Su-Ling Xiao
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | - Ying-Jin Huang
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang, China
| | - Wen-Wen Peng
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
15
|
Gu D, Xiao Q, Zhao Y, Yu X. A low-cost technique for biodiesel production in Ankistrodesmus sp. EHY by using harvested microalgal effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159461. [PMID: 36257437 DOI: 10.1016/j.scitotenv.2022.159461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The present study aims to use Ankistrodesmus sp. EHY to develop a viable and economic lipid production strategy using recycling of harvested microalgal effluent. In comparison to the control, the highest lipid content (52.4 %) and productivity (250.72 mg L-1 d-1) were achieved when 40 % recycled medium was used. Consistent with the trend of lipid accumulation, the six key lipogenetic genes were upregulated, as well as reactive oxygen species (ROS), glutathione (GSH) and genes encoding antioxidant enzymes during cultivation in recycled medium. Moreover, the consumption of dissolved organic carbon (DOC) and the increased humic acid (HA) in the recycled medium might also be associated with lipid biosynthesis. The biodiesel parameters of alga biomass-derived lipids were fitted to the standard of commercial biodiesel. In conclusion, this study offers an economically viable strategy for microalgal biofuel production and wastewater treatment using recycling of harvested microalgal effluent.
Collapse
Affiliation(s)
- Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qiu Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
16
|
Zhang Y, Wang JH, Zhang JT, Chi ZY, Kong FT, Zhang Q. The long overlooked microalgal nitrous oxide emission: Characteristics, mechanisms, and influencing factors in microalgae-based wastewater treatment scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159153. [PMID: 36195148 DOI: 10.1016/j.scitotenv.2022.159153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Microalgae-based wastewater treatment is particularly advantageous in simultaneous CO2 sequestration and nutrients recovery, and has received increasing recognition and attention in the global context of synergistic pollutants and carbon reduction. However, the fact that microalgae themselves can generate the potent greenhouse gas nitrous oxide (N2O) has been long overlooked, most previous research mainly regarded microalgae as labile organic carbon source or oxygenic approach that interfere bacterial nitrification-denitrification and the concomitant N2O production. This study, therefore, summarized the amount and rate of N2O emission in microalgae-based systems, interpreted in-depth the multiple pathways that lead to NO formation as the key precursor of N2O, and the pathways that transform NO into N2O. Reduction of nitrite could take place in either the cytoplasm or the mitochondria to form NO by a series of enzymes, while the NO could be enzymatically reduced to N2O at the chloroplasts or the mitochondria respectively under light and dark conditions. The influences of abiotic factors on microalgal N2O emission were analyzed, including nitrogen types and concentrations that directly affect the nitrogen transformation routes, illumination and oxygen conditions that regulate the enzymatic activities related to N2O generation, and other factors that indirectly interfere N2O emission via NO regulation. The uncertainty of microalgae-based N2O emission in wastewater treatment scenarios were emphasized, which would be particularly impacted by the complex competition between microalgae and ammonia oxidizing bacteria or nitrite oxidizing bacteria over ammonium or inorganic carbon source. Future studies should put more efforts in improving the compatibility of N2O emission results expressions, and adopting consistent NO detection methods for N2O emission prediction. This review will provide much valuable information on the characteristics and mechanisms of microalgal N2O emission, and arouse more attention to the non-negligible N2O emission that may impair overall greenhouse gas reduction efficiency in microalgae-based wastewater treatment systems.
Collapse
Affiliation(s)
- Ying Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Jing-Tian Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Fan-Tao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China
| |
Collapse
|
17
|
Patel AK, Tambat VS, Chen CW, Chauhan AS, Kumar P, Vadrale AP, Huang CY, Dong CD, Singhania RR. Recent advancements in astaxanthin production from microalgae: A review. BIORESOURCE TECHNOLOGY 2022; 364:128030. [PMID: 36174899 DOI: 10.1016/j.biortech.2022.128030] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Microalgae have emerged as the best source of high-value astaxanthin producers. Algal astaxanthin possesses numerous bioactivities hence the rising demand for several health applications and is broadly used in pharmaceuticals, aquaculture, health foods, cosmetics, etc. Among several low-priced synthetic astaxanthin, natural astaxanthin is still irreplaceable for human consumption and food-additive uses. This review highlights the recent development in production enhancement and cost-effective extraction techniques that may apply to large-scale astaxanthin biorefinery. Primarily, the biosynthetic pathway of astaxanthin is elaborated with the key enzymes involved in the metabolic process. Moreover, discussed the latest astaxanthin enhancement strategies mainly including chemicals as product inducers and byproducts inhibitors. Later, various physical, chemical, and biological cell disruption methods are compared for cell disruption efficiency, and astaxanthin extractability. The aim of this review is to provide a comprehensive review of advancements in astaxanthin research covering scalable upstream and downstream astaxanthin bioproduction aspects.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Prashant Kumar
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Akash Pralhad Vadrale
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Reeta Rani Singhania
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| |
Collapse
|
18
|
Xie SR, Li Y, Chen HH, Liang MH, Jiang JG. A strategy to promote carotenoids production in Dunaliella bardawil by melatonin combined with photoinduction. Enzyme Microb Technol 2022; 161:110115. [PMID: 36030697 DOI: 10.1016/j.enzmictec.2022.110115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Microalgae are considered to be a very promising class of raw material for carotenoid production. In this study, melatonin (MLT), a widely used plant growth regulator, was added to the autotrophic medium of Dunaliella bardawil to explore its effects on the growth and pigment accumulation of Dunaliella bardawil. The results showed that the induction of exogenous MLT alone was not beneficial to the growth and pigment accumulation of Dunaliella bardawil, and the higher the concentration, the more obvious the inhibitory effect on the algal cells. Therefore, a strategy to promote carotenoid accumulation in Dunaliella bardawil by combining exogenous MLT and light induction was carried out. Under 4500 LUX light intensity, the content of zeaxanthin was significantly increased under exogenous MLT induction. In the 200 μg/mL, 300 μg/mL, and 400 μg/mL MLT-treated groups, the zeaxanthin single-cell content in the 300 μg/mL-treated group was as high as 0.38 ng/mL (0.17 ng/mL in the control group), which was 1.24-fold higher compared to the control. Under 9500 LUX light intensity, all carotenoids showed an increasing trend in all experimental groups, except for zeaxanthin, which showed a decreasing trend. The effect of 300 μg/mL showed the most obvious in the 200 μg/mL,300 μg/mL, and 400 μg/mL MLT treatment groups, where the lutein, α-carotene and β-carotene contents were 1.24, 1.14 and 1.31 times higher than those of the control group, respectively. Overall, exogenous MLT at high light intensities had a significant effect on pigment accumulation in Dunaliella bardawil.
Collapse
Affiliation(s)
- Shan-Rong Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yu Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao-Hong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ming-Hua Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
19
|
Yu C, Wang HP, Yu X. The associative induction of succinic acid and hydrogen sulfide for high-producing biomass, astaxanthin and lipids in Haematococcus pluvialis. BIORESOURCE TECHNOLOGY 2022; 358:127397. [PMID: 35636672 DOI: 10.1016/j.biortech.2022.127397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
To obtain higher yield of natural astaxanthin, the present study aims to develop a viable and economic induction strategy for astaxanthin production comprising succinic acid (SA) combined with sodium hydrosulfide (NaHS). The biomass (1.33 g L-1), astaxanthin concentration (44.96 mg L-1), astaxanthin content (163.55 pg cell-1), and lipid content (55.34%) were achieved under 1.0 mM SA and 100 μM NaHS treatment. These results were concomitant with enhanced hydrogen sulfide (H2S) but diminished reactive oxide species (ROS). Further study discovered that endogenous H2S could improve astaxanthin and lipid coproduction under SA induction by mediating related gene transcript levels and ROS signalling. Additionally, the concentrations of biomass and astaxanthin increased to 2.14 g L-1 and 66.25 mg L-1, respectively, under the induction of SA and NaHS in a scaled-up bioreactor. Briefly, the work proposed a novel feasible strategy for high yields of biomass and astaxanthin by H. pluvialis.
Collapse
Affiliation(s)
- Chunli Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui-Ping Wang
- Children's Hospital Affiliated to Kunming Medical University, Kunming 650228, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
20
|
Basiony M, Ouyang L, Wang D, Yu J, Zhou L, Zhu M, Wang X, Feng J, Dai J, Shen Y, Zhang C, Hua Q, Yang X, Zhang L. Optimization of microbial cell factories for astaxanthin production: Biosynthesis and regulations, engineering strategies and fermentation optimization strategies. Synth Syst Biotechnol 2022; 7:689-704. [PMID: 35261927 PMCID: PMC8866108 DOI: 10.1016/j.synbio.2022.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
The global market demand for natural astaxanthin is rapidly increasing owing to its safety, the potential health benefits, and the diverse applications in food and pharmaceutical industries. The major native producers of natural astaxanthin on industrial scale are the alga Haematococcus pluvialis and the yeast Xanthopyllomyces dendrorhous. However, the natural production via these native producers is facing challenges of limited yield and high cost of cultivation and extraction. Alternatively, astaxanthin production via metabolically engineered non-native microbial cell factories such as Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica is another promising strategy to overcome these limitations. In this review we summarize the recent scientific and biotechnological progresses on astaxanthin biosynthetic pathways, transcriptional regulations, the interrelation with lipid metabolism, engineering strategies as well as fermentation process control in major native and non-native astaxanthin producers. These progresses illuminate the prospects of producing astaxanthin by microbial cell factories on industrial scale.
Collapse
Affiliation(s)
- Mostafa Basiony
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Danni Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaming Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mohan Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuyuan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Feng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yijie Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chengguo Zhang
- Shandong Jincheng Bio-Pharmaceutical Co., Ltd., No. 117 Qixing River Road, Zibo, 255130, Shandong, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiuliang Yang
- Shandong Jincheng Bio-Pharmaceutical Co., Ltd., No. 117 Qixing River Road, Zibo, 255130, Shandong, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
21
|
Improved Productivity of Astaxanthin from Photosensitive Haematococcus pluvialis Using Phototaxis Technology. Mar Drugs 2022; 20:md20040220. [PMID: 35447893 PMCID: PMC9032356 DOI: 10.3390/md20040220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/25/2022] Open
Abstract
Haematococcus pluvialis is a microalgae actively studied for the production of natural astaxanthin, which is a powerful antioxidant for human application. However, it is economically disadvantageous for commercialization owing to the low productivity of astaxanthin. This study reports an effective screening strategy using the negative phototaxis of the H. pluvialis to attain the mutants having high astaxanthin production. A polydimethylsiloxane (PDMS)-based microfluidic device irradiated with a specific light was developed to efficiently figure out the phototactic response of H. pluvialis. The partial photosynthesis deficient (PP) mutant (negative control) showed a 0.78-fold decreased cellular response to blue light compared to the wild type, demonstrating the positive relationship between the photosynthetic efficiency and the phototaxis. Based on this relationship, the Haematococcus mutants showing photosensitivity to blue light were selected from the 10,000 random mutant libraries. The M1 strain attained from the phototaxis-based screening showed 1.17-fold improved growth rate and 1.26-fold increases in astaxanthin production (55.12 ± 4.12 mg g−1) in the 100 L photo-bioreactor compared to the wild type. This study provides an effective selection tool for industrial application of the H. pluvialis with improved astaxanthin productivity.
Collapse
|
22
|
Li L, Tang X, Luo Y, Hu X, Ren L. Accumulation and conversion of β-carotene and astaxanthin induced by abiotic stresses in Schizochytrium sp. Bioprocess Biosyst Eng 2022; 45:911-920. [PMID: 35212833 DOI: 10.1007/s00449-022-02709-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/12/2022] [Indexed: 11/02/2022]
Abstract
Astaxanthin is a kind of ketone carotenoid belonging to tetraterpenoids with an excellent antioxidant activity and it is widely used in nutrition and health-care industries. This study aimed to explore the effect of different abiotic stresses on carotenoid production in Schizochytrium sp. Firstly, the characteristics of carotenoid accumulation were studied in Schizochytrium sp. by monitoring the change of carotenoid yields and gene expressions. Then, different abiotic stresses were systematically studied to regulate the carotenoid accumulation. Results showed that low temperature could advance the astaxanthin accumulation, while ferric ion could stimulate the conversion from carotene to astaxanthin. The glucose and monosodium glutamate ratio of 100:5 was helpful for the accumulation of β-carotene. In addition, micro-oxygen supply conditions could increase the yield of β-carotene and astaxanthin by 25.47% and 14.92%, respectively. This study provided the potential regulation strategies for carotenoid production which might be used in different carotenoid-producing strains.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmaceutical and Chemical Engineering, Chengxian College, Southeast University, No. 6 Dongda Road, Nanjing, 210088, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiuyang Tang
- School of Pharmaceutical and Chemical Engineering, Chengxian College, Southeast University, No. 6 Dongda Road, Nanjing, 210088, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Yangyang Luo
- School of Pharmaceutical and Chemical Engineering, Chengxian College, Southeast University, No. 6 Dongda Road, Nanjing, 210088, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xuechao Hu
- School of Pharmaceutical and Chemical Engineering, Chengxian College, Southeast University, No. 6 Dongda Road, Nanjing, 210088, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Lujing Ren
- School of Pharmaceutical and Chemical Engineering, Chengxian College, Southeast University, No. 6 Dongda Road, Nanjing, 210088, People's Republic of China. .,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
23
|
Hu Q, Song M, Huang D, Hu Z, Wu Y, Wang C. Haematococcus pluvialis Accumulated Lipid and Astaxanthin in a Moderate and Sustainable Way by the Self-Protection Mechanism of Salicylic Acid Under Sodium Acetate Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:763742. [PMID: 34868161 PMCID: PMC8639525 DOI: 10.3389/fpls.2021.763742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 05/03/2023]
Abstract
To elucidate the mechanism underlying increased fatty acid and astaxanthin accumulation in Haematococcus pluvialis, transcriptome analysis was performed to gain insights into the multiple defensive systems elicited by salicylic acid combined with sodium acetate (SAHS) stresses with a time course. Totally, 112,886 unigenes and 61,323 non-repeat genes were identified, and genes involved in carbon metabolism, primary and secondary metabolism, and immune system responses were identified. The results revealed that SA and NaAC provide both energy and precursors to improve cell growth of H. pluvialis and enhance carbon assimilation, astaxanthin, and fatty acids production in this microalga with an effective mechanism. Interestingly, SA was considered to play an important role in lowering transcriptional activity of the fatty acid and astaxanthin biosynthesis genes through self-protection metabolism in H. pluvialis, leading to its adaption to HS stress and finally avoiding massive cell death. Moreover, positive correlations between 15 key genes involved in astaxanthin and fatty acid biosynthesis pathways were found, revealing cooperative relation between these pathways at the transcription level. These results not only enriched our knowledge of the astaxanthin accumulation mechanism in H. pluvialis but also provided a new view on increasing astaxanthin production in H. pluvialis by a moderate and sustainable way in the future.
Collapse
Affiliation(s)
- Qunju Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Marine Resources Big Data Center of South China Sea, Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Zhanjiang, China
| | - Mingjian Song
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Danqiong Huang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen, China
| | - Chaogang Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
24
|
Smaoui S, Barkallah M, Ben Hlima H, Fendri I, Mousavi Khaneghah A, Michaud P, Abdelkafi S. Microalgae Xanthophylls: From Biosynthesis Pathway and Production Techniques to Encapsulation Development. Foods 2021; 10:2835. [PMID: 34829118 PMCID: PMC8623138 DOI: 10.3390/foods10112835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
In the last 20 years, xanthophylls from microalgae have gained increased scientific and industrial interests. This review highlights the essential issues that concern this class of high value compounds. Firstly, their chemical diversity as the producer microorganisms was detailed. Then, the use of conventional and innovative extraction techniques was discussed. Upgraded knowledge on the biosynthetic pathway of the main xanthophylls produced by photosynthetic microorganisms was reviewed in depth, providing new insightful ideas, clarifying the function of these active biomolecules. In addition, the recent advances in encapsulation techniques of astaxanthin and fucoxanthin, such as spray and freeze drying, gelation, emulsification and coacervation were updated. Providing information about these topics and their applications and advances could be a help to students and young researchers who are interested in chemical and metabolic engineering, chemistry and natural products communities to approach the complex thematic of xanthophylls.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6 B.P. 117, Sfax 3018, Tunisia;
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.B.); (H.B.H.)
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.B.); (H.B.H.)
| | - Imen Fendri
- Laboratoire de Biotechnologie Végétale Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil;
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.B.); (H.B.H.)
| |
Collapse
|
25
|
Ren Y, Deng J, Huang J, Wu Z, Yi L, Bi Y, Chen F. Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: Advances and outlook. BIORESOURCE TECHNOLOGY 2021; 340:125736. [PMID: 34426245 DOI: 10.1016/j.biortech.2021.125736] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 05/25/2023]
Abstract
Astaxanthin is one of the secondary carotenoids involved in mediating abiotic stress of microalgae. As an important antioxidant and nutraceutical compound, astaxanthin is widely applied in dietary supplements and cosmetic ingredients. However, most astaxanthin in the market is chemically synthesized, which are structurally heterogeneous and inefficient for biological uptake. Astaxanthin refinery from Haematococcus pluvialis is now a growing industrial sector. H. pluvialis can accumulate astaxanthin to ∼5% of dry weight. As productivity is a key metric to evaluate the production feasibility, understanding the biological mechanisms of astaxanthin accumulation is beneficial for further production optimization. In this review, the biosynthesis mechanism of astaxanthin and production strategies are summarized. The current research on enhancing astaxanthin accumulation and the potential joint-production of astaxanthin with lipids was also discussed. It is conceivable that with further improvement on the productivity of astaxanthin and by-products, the algal-derived astaxanthin would be more accessible to low-profit applications.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jinquan Deng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Junchao Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Zhaoming Wu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuge Bi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
26
|
Exogenous Antioxidants Improve the Accumulation of Saturated and Polyunsaturated Fatty Acids in Schizochytrium sp. PKU#Mn4. Mar Drugs 2021; 19:md19100559. [PMID: 34677458 PMCID: PMC8541261 DOI: 10.3390/md19100559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/28/2023] Open
Abstract
Species of Schizochytrium are well known for their remarkable ability to produce lipids intracellularly. However, during their lipid accumulation, reactive oxygen species (ROS) are generated inevitably as byproducts, which if in excess results in lipid peroxidation. To alleviate such ROS-induced damage, seven different natural antioxidants (ascorbic acid, α-tocopherol, tea extract, melatonin, mannitol, sesamol, and butylated hydroxytoluene) were evaluated for their effects on the lipid accumulation in Schizochytrium sp. PKU#Mn4 using a fractional factorial design. Among the tested antioxidants, mannitol showed the best increment (44.98%) in total fatty acids concentration. However, the interaction effects of mannitol (1 g/L) and ascorbic acid (1 g/L) resulted in 2.26 ± 0.27 g/L and 1.45 ± 0.04 g/L of saturated and polyunsaturated fatty acids (SFA and PUFA), respectively, in batch fermentation. These concentrations were further increased to 7.68 ± 0.37 g/L (SFA) and 5.86 ± 0.03 g/L (PUFA) through fed-batch fermentation. Notably, the interaction effects yielded 103.7% and 49.6% increment in SFA and PUFA concentrations in batch fermentation. The possible mechanisms underlining those increments were an increased maximum growth rate of strain PKU#Mn4, alleviated ROS level, and the differential expression of lipid biosynthetic genes andupregulated catalase gene. This study provides an applicable strategy for improving the accumulation of SFA and PUFA in thraustochytrids by exogenous antioxidants and the underlying mechanisms.
Collapse
|
27
|
Guo H, Li T, Zhao Y, Yu X. Role of copper in the enhancement of astaxanthin and lipid coaccumulation in Haematococcus pluvialis exposed to abiotic stress conditions. BIORESOURCE TECHNOLOGY 2021; 335:125265. [PMID: 34004560 DOI: 10.1016/j.biortech.2021.125265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the effects of copper (Cu) on astaxanthin and lipid biological synthesis in unicellular alga Haematococcus pluvialis under high-light (HL) and nitrogen-deficiency (ND) conditions. During a 15-day cultivation period, the astaxanthin and lipid contents reached the peak values (3.32% and 47.72%) under 6 μM Cu treatment, which were increased by 66.87% and 34.99% compared to nontreated group, respectively. The application of Cu also increased the transcriptional expression of biosynthesis genes and antioxidant enzyme-related genes, as well as increased the intracellular calcium (Ca2+) level but led to a decrease in reactive oxygen species (ROS) levels. Additionally, Cu treatment induced the activation of calcium-dependent protein kinases (CDPKs) and mitogen-activated protein kinases (MAPKs). This approach simultaneously facilitated astaxanthin and lipid production, and the role of Cu were elucidated on the regulation of signal transduction (e.g., Ca2+, CDPK, MAPK and ROS) in the carotenogenesis and lipogenesis in H. pluvialis.
Collapse
Affiliation(s)
- Hang Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
28
|
Chu X, Liu J, Gu W, Tian L, Tang S, Zhang Z, Jiang L, Xu X. Study of the properties of carotenoids and key carotenoid biosynthesis genes from Deinococcus xibeiensis R13. Biotechnol Appl Biochem 2021; 69:1459-1473. [PMID: 34159631 DOI: 10.1002/bab.2217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/14/2021] [Indexed: 02/01/2023]
Abstract
To investigate the properties of carotenoids from the extremophile Deinococcus xibeiensis R13, the factors affecting the stability of carotenoids extracted from D. xibeiensis R13, including temperature, illumination, pH, redox chemicals, metal ions, and food additives, were investigated. The results showed that low temperature, neutral pH, reducing agents, Mn2+ , and food additives (xylose and glucose) can effectively improve the stability of Deinococcus carotenoids. The carotenoids of D. xibeiensis R13 exhibited strong antioxidant activity, with the scavenging rate of hydroxyl radicals reaching 71.64%, which was higher than the scavenging efficiency for 1,1-diphenyl-2-picrylhydrazyl free radicals and 2,2'-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) free radicals (44.55 and 27.65%, respectively). In addition, the total antioxidant capacity reached 0.60 U/ml, which was 2.61-fold that of carotenoids from the model strain Deinococcus radiodurans R1. Finally, we predicted the gene clusters encoding carotenoid biosynthesis pathways in the genome of R13 and identified putative homologous genes. The key enzyme genes (crtE, crtB, crtI, crtLm, cruF, crtD, and crtO) in carotenoid synthesis of D. xibeiensis R13 were cloned to construct the multigene coexpression plasmids pET-EBI and pRSF-LmFDO. The carotenoid biosynthesis pathway was heterologously introduced into engineered Escherichia coli EBILmFDO, which exhibited a higher yield (7.14 mg/L) than the original strain. These analysis results can help us to better understand the metabolic synthesis of carotenoids in extremophiles.
Collapse
Affiliation(s)
- Xiaoting Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, China
| | - Jie Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Wanyi Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Liqing Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, China
| | - Susu Tang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, China
| | - Zhidong Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, People's Republic of China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu Province, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| |
Collapse
|
29
|
Cui N, Xiao J, Feng Y, Zhao Y, Yu X, Xu JW, Li T, Zhao P. Antioxidants enhance lipid productivity in Heveochlorella sp. Yu. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Yu C, Li X, Han B, Zhao Y, Geng S, Ning D, Ma T, Yu X. Simultaneous improvement of astaxanthin and lipid production of Haematococcus pluvialis by using walnut shell extracts. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
31
|
Astaxanthin as a microalgal metabolite for aquaculture: A review on the synthetic mechanisms, production techniques, and practical application. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102178] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Huang Y, Sun C, Guan X, Lian S, Li B, Wang C. Butylated Hydroxytoluene Induced Resistance Against Botryosphaeria dothidea in Apple Fruit. Front Microbiol 2021; 11:599062. [PMID: 33519739 PMCID: PMC7840594 DOI: 10.3389/fmicb.2020.599062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022] Open
Abstract
Apple ring rot caused by Botryosphaeria dothidea is an important disease in China, which leads to serious economic losses during storage. Plant activators are compounds that induce resistance against pathogen infection and are considered as a promising alternative strategy to traditional chemical treatment. In the present study, butylated hydroxytoluene (BHT), a potential plant activator, was evaluated for its induced resistance against B. dothidea in postharvest apple fruits. The physiological and molecular mechanisms involved in induced resistance were also explored. The results showed that BHT treatment could trigger strong resistance in apple fruits against B. dothidea, and the optimum concentration was 200 μmol L–1 by immersion of fruits. BHT treatment significantly increased the activities of four defensive enzymes and alleviated lipid peroxidation by increasing antioxidant enzyme activities. In addition, salicylic acid (SA) content was enhanced by BHT treatment as well as the expression of three SA biosynthesis-related genes (MdSID2, MdPAD4, and MdEDS1) and two defense genes (MdPR1 and MdPR5). Our results suggest that BHT-conferred resistance against B. dothidea might be mainly through increasing the activities of defense-related enzymes and activating SA signaling pathway, which may provide an alternative strategy to control apple ring rot in postharvest fruits.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Cuicui Sun
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiangnan Guan
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Sen Lian
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Baohua Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Caixia Wang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
33
|
Li Q, Zhao Y, Ding W, Han B, Geng S, Ning D, Ma T, Yu X. Gamma-aminobutyric acid facilitates the simultaneous production of biomass, astaxanthin and lipids in Haematococcus pluvialis under salinity and high-light stress conditions. BIORESOURCE TECHNOLOGY 2021; 320:124418. [PMID: 33221643 DOI: 10.1016/j.biortech.2020.124418] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 05/20/2023]
Abstract
The effects of γ-aminobutyric acid (GABA) on the biomass and astaxanthin and lipids production in Haematococcus pluvialis under combined salinity stress and high-light stresses were investigated. The results showed that the highest biomass (1.65 g L-1), astaxanthin production (3.86 mg L-1 d-1) and lipids content (55.11%) in H. pluvialis LUGU were observed under the 0.25 mM GABA treatment. Moreover, compared with salinity and high-light stress, GABA treatment also increased the transcript levels of biosynthesis genes, the contents of endogenous GABA and carbohydrates but decreased reactive oxygen species (ROS) levels. Further evidence revealed that intracellular GABA could regulate cell growth, astaxanthin production and lipids synthesis by mediating carotenogenesis, lipogenesis and ROS signalling. Collectively, this study provides a combined strategy for promoting the coproduction of astaxanthin and lipids and sheds light on the regulatory mechanism through which GABA affects cell growth, astaxanthin production and lipids biosynthesis in H. pluvialis under unfavourable conditions.
Collapse
Affiliation(s)
- Qingqing Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Ding
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Benyong Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuxiang Geng
- Yunnan Academy of Forestry and Grassland, Kunming 650051, China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland, Kunming 650051, China
| | - Ting Ma
- Yunnan Academy of Forestry and Grassland, Kunming 650051, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
34
|
Zhao Y, Wang HP, Yu C, Ding W, Han B, Geng S, Ning D, Ma T, Yu X. Integration of physiological and metabolomic profiles to elucidate the regulatory mechanisms underlying the stimulatory effect of melatonin on astaxanthin and lipids coproduction in Haematococcus pluvialis under inductive stress conditions. BIORESOURCE TECHNOLOGY 2021; 319:124150. [PMID: 32977092 DOI: 10.1016/j.biortech.2020.124150] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 05/20/2023]
Abstract
The effect of melatonin (MT) on the coproduction of astaxanthin and lipids was studied in Haematococcus pluvialis under inductive stress conditions. The contents of astaxanthin and lipids were enhanced by 1.78- and 1.3-fold, respectively. MT treatment upregulated the transcription levels of carotenogenic, lipogenic and antioxidant system-related genes and decreased the levels of abiotic stress-induced reactive oxidative species (ROS). Further metabolomic analysis suggested that the intermediates in glycolysis and TCA cycle facilitate the accumulation of astaxanthin and lipids in algae treated with MT. Meanwhile, MT treatment upregulated the metabolite levels of the γ-aminobutyric acid (GABA) shunt, which might regulate the carbon-nitrogen balance and the antioxidant system. After MT treatment, exogenous linoleic acid, succinate, and GABA further increased the astaxanthin content. This study may help to elucidate the specific responses to MT induction in H. pluvialis and to identify novel biomarkers that may be employed to further promote astaxanthin and lipids coproduction.
Collapse
Affiliation(s)
- Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui-Ping Wang
- Children's Hospital Affiliated to Kunming Medical University, Kunming 650228, China
| | - Chunli Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Ding
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Benyong Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuxiang Geng
- Yunnan Academy of Forestry and Grassland, Kunming 650051, China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland, Kunming 650051, China
| | - Ting Ma
- Yunnan Academy of Forestry and Grassland, Kunming 650051, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
35
|
Wan X, Zhou XR, Moncalian G, Su L, Chen WC, Zhu HZ, Chen D, Gong YM, Huang FH, Deng QC. Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering. Prog Lipid Res 2020; 81:101083. [PMID: 33373616 DOI: 10.1016/j.plipres.2020.101083] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
There is an increasing demand for astaxanthin in food, feed, cosmetics and pharmaceutical applications because of its superior anti-oxidative and coloring properties. However, naturally produced astaxanthin is expensive, mainly due to low productivity and limited sources. Reprogramming of microorganisms for astaxanthin production via metabolic engineering is a promising strategy. We primarily focus on the application of synthetic biology, enzyme engineering and metabolic engineering in enhancing the synthesis and accumulation of astaxanthin in microorganisms in this review. We also discuss the biosynthetic pathways of astaxanthin within natural producers, and summarize the achievements and challenges in reprogramming microorganisms for enhancing astaxanthin production. This review illuminates recent biotechnological advances in microbial production of astaxanthin. Future perspectives on utilization of new technologies for boosting microbial astaxanthin production are also discussed.
Collapse
Affiliation(s)
- Xia Wan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | | | - Gabriel Moncalian
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Wen-Chao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Hang-Zhi Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Dan Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yang-Min Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Feng-Hong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | - Qian-Chun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| |
Collapse
|
36
|
Shi TQ, Wang LR, Zhang ZX, Sun XM, Huang H. Stresses as First-Line Tools for Enhancing Lipid and Carotenoid Production in Microalgae. Front Bioeng Biotechnol 2020; 8:610. [PMID: 32850686 PMCID: PMC7396513 DOI: 10.3389/fbioe.2020.00610] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/18/2020] [Indexed: 12/30/2022] Open
Abstract
Microalgae can produce high-value-added products such as lipids and carotenoids using light or sugars, and their biosynthesis mechanism can be triggered by various stress conditions. Under nutrient deprivation or environmental stresses, microalgal cells accumulate lipids as an energy-rich carbon storage battery and generate additional amounts of carotenoids to alleviate the oxidative damage induced by stress conditions. Though stressful conditions are unfavorable for biomass accumulation and can induce oxidative damage, stress-based strategies are widely used in this field due to their effectiveness and economy. For the overproduction of different target products, it is required and meaningful to deeply understand the effects and mechanisms of various stress conditions so as to provide guidance on choosing the appropriate stress conditions. Moreover, the underlying molecular mechanisms under stress conditions can be clarified by omics technologies, which exhibit enormous potential in guiding rational genetic engineering for improving lipid and carotenoid biosynthesis.
Collapse
Affiliation(s)
- Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
37
|
Li X, Wang X, Duan C, Yi S, Gao Z, Xiao C, Agathos SN, Wang G, Li J. Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnol Adv 2020; 43:107602. [PMID: 32711005 DOI: 10.1016/j.biotechadv.2020.107602] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 01/14/2023]
Abstract
Although biotechnologies for astaxanthin production from Haematococcus pluvialis have been developed for decades and many production facilities have been established throughout the world, the production cost is still high. This paper is to evaluate the current production processes and production facilities, to analyze the R&D strategies for process improvement, and to review the recent research advances shedding light on production cost reduction. With these efforts being made, we intent to conclude that the production cost of astaxanthin from Haematococcus might be substantially reduced to the levels comparable to that of chemical astaxanthin through further R&D and the future research might need to focus on strain selection and improvement, cultivation process optimization, innovation of cultivation methodologies, and revolution of extraction technologies.
Collapse
Affiliation(s)
- Xin Li
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, PR China
| | - Xiaoqian Wang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, PR China
| | - Chuanlan Duan
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, PR China
| | - Shasha Yi
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, PR China
| | - Zhengquan Gao
- School of Life Sciences, Shandong University of Technology, Zibo, PR China
| | - Chaowen Xiao
- College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Spiros N Agathos
- Earth and Life Institute, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | - Jian Li
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, PR China.
| |
Collapse
|
38
|
Zhang S, He Y, Sen B, Wang G. Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. BIORESOURCE TECHNOLOGY 2020; 307:123234. [PMID: 32245673 DOI: 10.1016/j.biortech.2020.123234] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Oleaginous microorganisms are among the most promising alternative sources of lipids for oleochemicals and biofuels. However, in the course of lipid production, reactive oxygen species (ROS) are generated inevitably as byproducts of aerobic metabolisms. Although excessive accumulation of ROS leads to lipid peroxidation, DNA damage, and protein denaturation, ROS accumulation has been suggested to enhance lipid synthesis in these microorganisms. There are many unresolved questions concerning this dichotomous view of ROS influence on lipid accumulation. These include what level of ROS triggers lipid overproduction, what mechanisms and targets are vital and whether ROS act as toxic byproducts or cellular messengers in these microorganisms? Here we review the current state of knowledge on ROS generation, antioxidative defense system, the dual effects of ROS on microbial lipid production, and ROS-induced lipid peroxidation and accumulation mechanisms. Toward the end, the review summarizes strategies that enhance lipid production based on ROS manipulation.
Collapse
Affiliation(s)
- Sai Zhang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Qingdao Institute Ocean Engineering of Tianjin University, Qingdao 266237, China.
| |
Collapse
|
39
|
Cui J, Yu C, Zhong DB, Zhao Y, Yu X. Melatonin and calcium act synergistically to enhance the coproduction of astaxanthin and lipids in Haematococcus pluvialis under nitrogen deficiency and high light conditions. BIORESOURCE TECHNOLOGY 2020; 305:123069. [PMID: 32114308 DOI: 10.1016/j.biortech.2020.123069] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 05/20/2023]
Abstract
This study focused on the influence of integrating melatonin (MT) and calcium (Ca2+) on the simultaneous accumulation of astaxanthin and lipids in Haematococcus pluvialis under abiotic stress conditions. Compared with the control condition, MT induction enhanced astaxanthin and lipid contents by 65.89% and 27.38%, respectively. The highest contents of astaxanthin and lipids under combined exposure to MT and Ca2+ were 3.8% and 49.53%, respectively, which were 1.13- and 1.21-fold higher than those of cells treated with MT alone. The application of MT and Ca2+ also promoted the expression of carotenogenic and lipogenic genes and increased the levels of Ca2+ and γ-aminobutyric acid (GABA) but decreased reactive oxygen species (ROS) levels. Further evidence indicated that the increased cellular Ca2+ could promote astaxanthin biosynthesis under MT induction by regulating carotenogenic gene levels and GABA and ROS signalling. The integrated strategy efficiently improved the coproduction of astaxanthin and lipids in H. pluvialis.
Collapse
Affiliation(s)
- Jing Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Chunli Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Du-Bo Zhong
- Yunnan Yunce Quality Testing Co., Ltd, Kunming 650217, China
| | - Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
40
|
Cloning, expression, and characterization of a novel plant type cryptochrome gene from the green alga Haematococcus pluvialis. Protein Expr Purif 2020; 172:105633. [PMID: 32259580 DOI: 10.1016/j.pep.2020.105633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/30/2020] [Indexed: 11/20/2022]
Abstract
A full-length cDNA sequence of plant type CRY (designated Hae-P-CRY) was cloned from the green alga Haematococcus pluvialis. The cDNA sequence was 3608 base pairs (bp) in length, which contained a 2988-bp open reading frame encoding 995 amino acids with molecular mass of 107.7 kDa and isoelectric point of 6.19. Multiple alignment analysis revealed that the deduced amino acid sequence of Hae-P-CRY shared high identity of 47-66% with corresponding plant type CRYs from other eukaryotes. The catalytic motifs of plant type CRYs were detected in the amino acid sequence of Hae-P-CRY including the typical PHR and CTE domains. Phylogenetic analysis showed that the Hae-P-CRY was grouped together with other plant type CRYs from green algae and higher plants, which distinguished from other distinct groups. The transcriptional level of Hae-P-CRY was strongly decreased after 0-4 h under HL stress. In addition, the Hae-P-CRY gene was heterologously expressed in Escherichia coli BL21 (DE3) and successfully purified. The typical spectroscopic characteristics of plant type CRYs were present in Hae-P-CRY indicated that it may be an active enzyme, which provided valuable clue for further functional investigation in the green alga H. pluvialis. These results lay the foundation for further function and interaction protein identification involved in CRYs mediated signal pathway under HL stress in H. pluvialis.
Collapse
|
41
|
Zhuang Y, Jiang GL, Zhu MJ. Atmospheric and room temperature plasma mutagenesis and astaxanthin production from sugarcane bagasse hydrolysate by Phaffia rhodozyma mutant Y1. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Melatonin facilitates the coordination of cell growth and lipid accumulation in nitrogen-stressed Chlamydomonas reinhardtii for biodiesel production. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101786] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Zhao Y, Song X, Zhong DB, Yu L, Yu X. γ-Aminobutyric acid (GABA) regulates lipid production and cadmium uptake by Monoraphidium sp. QLY-1 under cadmium stress. BIORESOURCE TECHNOLOGY 2020; 297:122500. [PMID: 31796380 DOI: 10.1016/j.biortech.2019.122500] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
This study explored the effects of γ-aminobutyric acid (GABA) on the production of biomass and lipids and on the uptake of Cd2+ by microalgae under cadmium (Cd) stress. Compared with the control and Cd stress alone, 2.5 mM GABA increased the maximum lipid content (55.37%) by 49.37% and 9.42%, respectively. GABA application resulted in increased contents of protein and glutathione (GSH) and in upregulated activity of α-amylase but decreased contents of starch, reactive oxygen species (ROS) and Cd2+, with no effect on subsequent biodiesel quality. Additional analysis of GABA further indicated that increased cellular GABA contents could promote lipid synthesis and reduce Cd accumulation by regulating the expression levels of lipogenesis genes, ROS signalling and mineral nutrient uptake under Cd stress. Collectively, these findings show that GABA not only increases lipid production in microalgae but also is involved in the mechanisms by which microalgae respond to Cd stress.
Collapse
Affiliation(s)
- Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xueting Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Du-Bo Zhong
- Yunnan Yunce Quality Testing Co., Ltd, Kunming 650217, China
| | - Lei Yu
- College of Agronomy and Life Science, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming 650214, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
44
|
Chen JH, Wei D, Lim PE. Enhanced coproduction of astaxanthin and lipids by the green microalga Chromochloris zofingiensis: Selected phytohormones as positive stimulators. BIORESOURCE TECHNOLOGY 2020; 295:122242. [PMID: 31629282 DOI: 10.1016/j.biortech.2019.122242] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 05/03/2023]
Abstract
Phytohormones comprise a variety of trace bioactive compounds that can stimulate cell growth and promote metabolic shifts. In the present work, a two-stage screening strategy was innovatively established to identify positive phytohormones for enhancement of astaxanthin and lipid coproduction in microplate-based cultures of mixotrophic Chromochloris zofingiensis. The results showed that auxins were the most efficient stimulators for astaxanthin accumulation. The maximum content of 13.1 mg/g and yield of 89.9 mg/L were obtained using indole propionic acid (10 mg/L) and indoleacetic acid (7.8 mg/L), representing the highest levels of astaxanthin in this microalga reported to date. Total lipids with the highest content (64.5% DW) and productivity (445.7 mg/L/d) were coproduced with astaxanthin using indoleacetic acid. Statistical analysis revealed close relations between phytohormones and astaxanthin and lipid biosynthesis. This study provides a novel original strategy for improving astaxanthin and lipid coproduction in C. zofingiensis using the selected phytohormones as positive stimulators.
Collapse
Affiliation(s)
- Jun-Hui Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Research Institute for Food Nutrition and Human Health, Guangzhou, China.
| | - Phaik-Eem Lim
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Zhao Y, Xing H, Li X, Geng S, Ning D, Ma T, Yu X. Physiological and Metabolomics Analyses Reveal the Roles of Fulvic Acid in Enhancing the Production of Astaxanthin and Lipids in Haematococcus pluvialis under Abiotic Stress Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12599-12609. [PMID: 31644277 DOI: 10.1021/acs.jafc.9b04964] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, it was found that fulvic acid (FA) enhanced the contents of astaxanthin and lipids in Haematococcus pluvialis under high light and nitrogen starvation conditions by 2- and 1.2-fold, respectively. Meanwhile, the carbohydrate and chlorophyll contents were decreased by FA induction, whereas the levels of reactive oxygen species (ROS) and glutathione (GSH) as well as the expression of astaxanthin and lipid biosynthetic genes were increased. To further explore the interrelation between FA and the biosynthesis of astaxanthin and lipids, a metabolomics analysis of H. pluvialis by combined FA and abiotic stress exposure was conducted by using LC-MS/MS. The contents of some cytoprotective metabolites and signal molecules, including d-maltose, succinate, malic acid, melatonin (MT), and some amino acids, were increased under FA induction and abiotic stress conditions. These metabolites are intermediates in the TCA cycle and Calvin cycle, providing more precursors for the synthesis of astaxanthin and lipids. Moreover, the signal molecules might contribute to enhancing the abiotic stress tolerance. This study provided new insights into the regulatory mechanism of FA on astaxanthin and lipid accumulation in H. pluvialis.
Collapse
Affiliation(s)
- Yongteng Zhao
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming 650500 , China
| | - Hailiang Xing
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming 650500 , China
| | - Xingyu Li
- The First People's Hospital of Yunnan , Kunming 650100 , China
| | | | - Delu Ning
- Yunnan Academy of Forestry , Kunming 650051 , China
| | - Ting Ma
- Yunnan Academy of Forestry , Kunming 650051 , China
| | - Xuya Yu
- Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming 650500 , China
| |
Collapse
|
46
|
Ran W, Wang H, Liu Y, Qi M, Xiang Q, Yao C, Zhang Y, Lan X. Storage of starch and lipids in microalgae: Biosynthesis and manipulation by nutrients. BIORESOURCE TECHNOLOGY 2019; 291:121894. [PMID: 31387839 DOI: 10.1016/j.biortech.2019.121894] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/28/2023]
Abstract
Microalgae accumulate starch and lipid as storage metabolites under nutrient depletion, which can be used as sustainable feedstock for biorefinery. Omics analysis coupled with enzymatic and genetic verifications uncovered a partial picture of pathways and important enzymes or regulators related to starch and lipid biosynthesis as well as the carbon partitioning between them under nutrient depletion conditions. Depletion of macronutrients (N, P, and S) resulted in considerable enhancement of starch and/or lipid content in microalgae, but the accompanying declined photosynthesis hampered the achievements of high concentrations. This review summarized the current knowledge on the pathways and the committed steps as well as their carbon allocation involved in starch and lipid biosynthesis, and focused on the manipulation of different nutrients and the alleviation of oxidative stress for enhanced storage metabolites production. The biological and engineering approaches to cope with the conflict between biomass production and storage metabolites accumulation are proposed.
Collapse
Affiliation(s)
- Wenyi Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Haitao Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yinghui Liu
- Information Management Center of Sichuan University, Chengdu, Sichuan 610065, China
| | - Man Qi
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xianqiu Lan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
47
|
Ding W, Li Q, Han B, Zhao Y, Geng S, Ning D, Ma T, Yu X. Comparative physiological and metabolomic analyses of the hyper-accumulation of astaxanthin and lipids in Haematococcus pluvialis upon treatment with butylated hydroxyanisole. BIORESOURCE TECHNOLOGY 2019; 292:122002. [PMID: 31437797 DOI: 10.1016/j.biortech.2019.122002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
The major goal of this study was to explore the functions of butylated hydroxyanisole (BHA) combined with abiotic stress on the cultivation of the microalga Haematococcus pluvialis for astaxanthin and lipid production. Here, the effect of BHA on astaxanthin and lipid accumulation and physiological and metabolomic profiles was investigated. These results suggested that astaxanthin content was increased by 2.17-fold compared to the control. The lipid content was enhanced by 1.22-fold. BHA treatment simultaneously reduced carbohydrates and protein and delayed the decay of chlorophyll. Furthermore, metabolomic analysis demonstrated that BHA upregulated and activated the bioprocesses involved in cellular basal metabolism and signalling systems, such as glycolysis, the TCA cycle, amino acid metabolism and the phosphatidylinositol signalling system, thus enhancing astaxanthin and lipid accumulation. Altogether, this research shows the dramatic effects of BHA on algal metabolism in the regulation of key metabolic nodes and provides novel insights into microalgal regulation and metabolism.
Collapse
Affiliation(s)
- Wei Ding
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qingqing Li
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Benyong Han
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongteng Zhao
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | | | - Delu Ning
- Yunnan Academy of Forestry, Kunming 650051, China
| | - Ting Ma
- Yunnan Academy of Forestry, Kunming 650051, China
| | - Xuya Yu
- Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
48
|
M U N, Mehar JG, Mudliar SN, Shekh AY. Recent Advances in Microalgal Bioactives for Food, Feed, and Healthcare Products: Commercial Potential, Market Space, and Sustainability. Compr Rev Food Sci Food Saf 2019; 18:1882-1897. [PMID: 33336956 DOI: 10.1111/1541-4337.12500] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022]
Abstract
To combat food scarcity as well as to ensure nutritional food supply for sustainable living of increasing population, microalgae are considered as innovative sources for adequate nutrition. Currently, the dried biomass, various carotenoids, phycocyanin, phycoerythrin, omega fatty acids, and enzymes are being used as food additives, food coloring agents, and food supplements. Apart from nutritional importance, microalgae are finding the place in the market as "functional foods." When compared to the total market size of food and feed products derived from all the possible sources, the market portfolio of microalgae-based products is still smaller, but increasing steadily. On the other hand, the genetic modification of microalgae for enhanced production of commercially important metabolites holds a great potential. However, the success of commercial application of genetically modified (GM) algae will be defined by their safety to human health and environment. In view of this, the present study attempts to highlight the industrially important microalgal metabolites, their production, and application in food, feed, nutraceuticals, pharmaceuticals, and cosmeceuticals. The current and future market trends for microalgal products have been thoroughly discussed. Importantly, the safety pertaining to microalgae cultivation and consumption, and regulatory issues for GM microalgae have also been covered.
Collapse
Affiliation(s)
- Nethravathy M U
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Inst. (CFTRI), Mysore, 570020, India
| | - Jitendra G Mehar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Inst. (CFTRI), Mysore, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandeep N Mudliar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Inst. (CFTRI), Mysore, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ajam Y Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Inst. (CFTRI), Mysore, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
49
|
Liu YH, Alimujiang A, Wang X, Luo SW, Balamurugan S, Yang WD, Liu JS, Zhang L, Li HY. Ethanol induced jasmonate pathway promotes astaxanthin hyperaccumulation in Haematococcus pluvialis. BIORESOURCE TECHNOLOGY 2019; 289:121720. [PMID: 31271916 DOI: 10.1016/j.biortech.2019.121720] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Haematococcus pluvialis is a main biological resource for the antioxidant astaxanthin production, however, potential modulators and molecular mechanisms underpinning astaxanthin accumulation remain largely obscured. We discovered that provision of ethanol (0.4%) significantly triggered the cellular astaxanthin content up to 3.85% on the 4th day of treatment. Amongst, 95% of the accumulated astaxanthin was esterified, particularly enriched with monoesters. Ultrastructural analysis revealed that ethanol altered cell wall structure and physiological properties. Antioxidant analyses revealed that astaxanthin accumulation offset the ethanol induced oxidative stress. Ethanol treatment reduced carbohydrates while increased lipids and jasmonic acid production. Transcriptomic analysis uncovered that ethanol orchestrated the expression of crucial genes involved in carotenogenesis, e.g. PSY, BKT and CRTR-b were significantly upregulated. Moreover, methyl jasmonic acid synthesis was induced and played a major role in regulating the carotenogenic genes. The findings uncovered the novel viewpoint in the intricate transcriptional regulatory mechanisms of astaxanthin biosynthesis.
Collapse
Affiliation(s)
- Yu-Hong Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Adili Alimujiang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Shan-Wei Luo
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lin Zhang
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
50
|
Dong X, Han B, Zhao Y, Ding W, Yu X. Enhancing biomass, lipid production, and nutrient utilization of the microalga Monoraphidium sp. QLZ-3 in walnut shell extracts supplemented with carbon dioxide. BIORESOURCE TECHNOLOGY 2019; 287:121419. [PMID: 31078811 DOI: 10.1016/j.biortech.2019.121419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Microalgae are a promising biofuel resource, but their high cost and low productivity hinder their commercial applications. In the present study, Monoraphidium sp. QLZ-3 was cultivated in walnut shell extracts (WSE) supplemented with carbon dioxide (CO2). Biomass was enhanced from 0.40 g L-1 to 1.18 g L-1, and lipid content reached 49.54% in WSE-12% CO2 media. Biomass and lipid productivity reached 196.88 and 97.52 mg L-1 d-1, which were 1.33- and 1.57-fold higher than those of the control, respectively. The amount of carbohydrates increased, but the protein contents decreased. Furthermore, the application of CO2 promoted nutrient and polyphenol absorption and upregulated the expression levels of lipid biosynthetic genes of this WSE-cultivated alga. These results indicated that coupling WSE and CO2 could be an efficient strategy to enhance biofuel production by microalgae.
Collapse
Affiliation(s)
- Xunzan Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Benyong Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Wei Ding
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|