1
|
Li W, Wang L, Qiang X, Song Y, Gu W, Ma Z, Wang G. Design, construction and application of algae-bacteria synergistic system for treating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121720. [PMID: 38972186 DOI: 10.1016/j.jenvman.2024.121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The wastewater treatment technology of algae-bacteria synergistic system (ABSS) is a promising technology which has the advantages of low energy consumption, good treatment effect and recyclable high-value products. In this treatment technology, the construction of an ABSS is a very important factor. At the same time, the emergence of some new technologies (such as microbial fuel cells and bio-carriers, etc.) has further enriched constructing the novel ABSS, which could improve the efficiency of wastewater treatment and the biomass harvesting rate. Thus, this review focuses on the construction of a novel ABSS in wastewater treatment in order to provide useful suggestions for the technology of wastewater treatment.
Collapse
Affiliation(s)
- Weihao Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lijun Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xi Qiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yuling Song
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Wenhui Gu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Kumar A, Mishra S, Singh NK, Yadav M, Padhiyar H, Christian J, Kumar R. Ensuring carbon neutrality via algae-based wastewater treatment systems: Progress and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121182. [PMID: 38772237 DOI: 10.1016/j.jenvman.2024.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
The emergence of algal biorefineries has garnered considerable attention to researchers owing to their potential to ensure carbon neutrality via mitigation of atmospheric greenhouse gases. Algae-derived biofuels, characterized by their carbon-neutral nature, stand poised to play a pivotal role in advancing sustainable development initiatives aimed at enhancing environmental and societal well-being. In this context, algae-based wastewater treatment systems are greatly appreciated for their efficacy in nutrient removal and simultaneous bioenergy generation. These systems leverage the growth of algae species on wastewater nutrients-including carbon, nitrogen, and phosphorus-alongside carbon dioxide, thus facilitating a multifaceted approach to pollution remediation. This review seeks to delve into the realization of carbon neutrality through algae-mediated wastewater treatment approaches. Through a comprehensive analysis, this review scrutinizes the trajectory of algae-based wastewater treatment via bibliometric analysis. It subsequently examines the case studies and empirical insights pertaining to algae cultivation, treatment performance analysis, cost and life cycle analyses, and the implementation of optimization methodologies rooted in artificial intelligence and machine learning algorithms for algae-based wastewater treatment systems. By synthesizing these diverse perspectives, this study aims to offer valuable insights for the development of future engineering applications predicated on an in-depth understanding of carbon neutrality within the framework of circular economy paradigms.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Saurabh Mishra
- Institute of Water Science and Technology, Hohai University, Nanjing China, 210098, China.
| | - Nitin Kumar Singh
- Department of Chemical Engineering, Marwadi University, Rajkot, Gujarat, India.
| | - Manish Yadav
- Central Mine Planning and Design Institute Limite, Bhubaneswar, India.
| | | | - Johnson Christian
- Environment Audit Cell, R. D. Gardi Educational Campus, Rajkot, Gujarat, India.
| | - Rupesh Kumar
- Jindal Global Business School (JGBS), O P Jindal Global University, Sonipat, 131001, Haryana, India.
| |
Collapse
|
3
|
Garieri T, Allen DG, Gao W, Liao B. A review of emerging membrane-based microalgal-bacterial processes for wastewater treatment: Process configurations, biological and membrane performance, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172141. [PMID: 38580119 DOI: 10.1016/j.scitotenv.2024.172141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Microalgal-bacterial (MB) consortia create an excellent eco-system for simultaneous COD/BOD and nutrients (N and P) removals in a single step with significant reduction in or complete elimination of aeration and carbonation in the biological wastewater treatment processes. The integration of membrane separation technology with the MB processes has created a new paradigm for research and development. This paper focuses on a comprehensive and critical literature review of recent advances in these emerging processes. Novel membrane process configurations and process conditions affecting the biological performance of these novel systems have been systematically reviewed and discussed. Membrane fouling issues and control of MB biofilm formation and thickness associated with these emerging suspended growth or immobilized biofilm processes are addressed and discussed. The research gaps, challenges, outlooks of these emerging processes are identified and discussed in-depth. The findings from the literature suggest that the membrane-based MB processes are advanced biotechnologies with a significant reduction in energy consumption and process simplification and high process efficiency that are not achievable with current technologies in wastewater treatment. There are endless opportunities for research and development of these novel and emerging membrane-based MB processes.
Collapse
Affiliation(s)
- Teralyn Garieri
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - D Grant Allen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Wa Gao
- Department of Civil Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
4
|
Li Y, Wu X, Liu Y, Taidi B. Immobilized microalgae: principles, processes and its applications in wastewater treatment. World J Microbiol Biotechnol 2024; 40:150. [PMID: 38548998 DOI: 10.1007/s11274-024-03930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/16/2024] [Indexed: 04/02/2024]
Abstract
Microalgae have emerged as potential candidates for biomass production and pollutant removal. However, expensive biomass harvesting, insufficient biomass productivity, and low energy intensity limit the large-scale production of microalgae. To break through these bottlenecks, a novel technology of immobilized microalgae culture coupled with wastewater treatment has received increasing attention in recent years. In this review, the characteristics of two immobilized microalgae culture technologies are first presented and then their mechanisms are discussed in terms of biofilm formation theories, including thermodynamic theory, Derjaguin-Landau-Verwei-Overbeek theory (DLVO) and its extended theory (xDLVO), as well as ionic cross-linking mechanisms in the process of microalgae encapsulated in alginate. The main factors (algal strains, carriers, and culture conditions) affecting the growth of microalgae are also discussed. It is also summarized that immobilized microalgae show considerable potential for nitrogen and phosphorus removal, heavy metal removal, pesticide and antibiotic removal in wastewater treatment. The role of bacteria in the cultivation of microalgae by immobilization techniques and their application in wastewater treatment are clarified. This is economically feasible and technically superior. The problems and challenges faced by immobilized microalgae are finally presented.
Collapse
Affiliation(s)
- Yanpeng Li
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang`an University, Xi`an, 710054, People's Republic of China.
| | - Xuexue Wu
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China
| | - Yi Liu
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China
| | - Behnam Taidi
- LGPM, CentraleSupélec, Université Paris Saclay, 3 rue Joliot-Curie, 91190, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Ren Z, Fu R, Sun L, Li H, Bai Z, Tian Y, Zhang G. Unraveling biological behavior and influence of magnetic iron-based nanoparticles in algal-bacterial systems: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169852. [PMID: 38190907 DOI: 10.1016/j.scitotenv.2023.169852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
Magnetic iron-based nanoparticles have been found to stimulate algae growth and harvest, repair disintegrated particles and improve stability, and facilitate operation in extreme environments, which help improve the wide application of algal-bacterial technology. Nevertheless, up to now, no literature collected to systematically review the research progress of on the employment of magnetic iron-based nanoparticles in the algal-bacterial system. This review summarizes the special effects (e.g., size effect, surface effect and biological effect) and corresponding properties of magnetic iron-based nanoparticles (e.g., magnetism, adsorption, electricity, etc.), which is closely related to biological effects and algal-bacterial behaviors. Additionally, it was found that magnetic iron-based nanoparticles offer remarkable impacts on improving the growth and metabolism of algal-bacterial consortia and the mechanisms mainly include its possible iron uptake pathways in bacteria and/or algae cells, as well as the magnetic biological effect of magnetic iron-based nanoparticles on algae-bacteria growth. Furthermore, in terms of the mechanism for establishing the algae-bacteria symbiotic relationship, the most recent works reveal that the charge effect, material transfer and signal transmission of magnetic iron-based nanoparticles possess a large array of potential mechanisms by which it can affect the establishment of algal-bacterial symbiosis. This discussion is expected to promote the progress of magnetic iron-based nanoparticles, as an eco-friendly, convenient and cost-effective technology that can be applied in algal-bacterial wastewater treatment fields.
Collapse
Affiliation(s)
- Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ruiyao Fu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Li Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Huixue Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zijia Bai
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Zhou Y, Li X, Chen J, Wang F. Treatment of antibiotic-containing wastewater with self-suspended algae-bacteria symbiotic particles: Removal performance and reciprocal mechanism. CHEMOSPHERE 2023; 323:138240. [PMID: 36841454 DOI: 10.1016/j.chemosphere.2023.138240] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Emerging contaminants such as antibiotics in wastewater have posed a challenge on conventional biological treatment processes. Algae-bacteria symbiotic mode could improve the performance of biological treatment processes. Self-suspended algae-bacteria symbiotic particles (ABSPs) were prepared with Chlorella vulgaris and Bacillus subtilis using the sol-gel method and hollow glass microspheres in this study. The removal effect of nitrogen and phosphorus as well as the feedback mechanism of ABSPs under tetracycline stress were investigated through three-cycles wastewater treatment experiments. The antioxidant enzyme activity and phycosphere extracellular polymeric substance (EPS) content were identified as well. The results indicated that the removal rates of NH4+-N, TP, COD, and tetracycline in the ABSPs group finally reached 96.18%, 95.44%, 81.36%, and 74.20%, respectively, which were higher than the single algae group apparently. The phycosphere EPS content increased by 20.41% and algae cell structure maintained integrity in ABSPs group as compared with that in single algae group. This study demonstrates that the self-suspended ABSPs can improve contaminants removal performance and alleviate the antioxidant stress response of algae through algal-bacterial reciprocity mechanism.
Collapse
Affiliation(s)
- Yuhang Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xinjie Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiaqi Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fan Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
7
|
Wang R, You H, Li Z, Xie B, Qi S, Zhu J, Qin Q, Wang H, Sun J, Ding Y, Jia Y, Liu F. A novel reduced graphene oxide/polypyrrole conductive ceramic membrane enhanced electric field membrane bioreactor: Mariculture wastewater treatment performance and membrane fouling mitigation. BIORESOURCE TECHNOLOGY 2023; 376:128917. [PMID: 36934909 DOI: 10.1016/j.biortech.2023.128917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
A novel electric field membrane bioreactor (EMBR) for mariculture wastewater treatment utilizing reduced graphene oxide/polypyrrole ceramic membrane (rGO/PPy CM) was constructed and compared with MBRs using CM support and rGO/PPy CM. EMBR (rGO/PPy) obtained the highest pollutant removal rates (84.99% for TOC, 85.98% for NH4+-N), the lowest average membrane fouling rate (2.42 kPa/d) and pollutant adhesion performance by characterization. Meanwhile, the specific fluxes of characteristic foulants in EMBR were enhanced, and the total resistances were reduced by 8.12% to 62.46%. The underlying mechanisms included reduced attraction energy and improved electrostatic repulsion between contaminants in EMBR and membrane by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, DLVO model and force analysis. Therefore, this study complemented the understanding of antifouling effect and mechanism in EMBR by interaction energy and force analysis of characteristic pollutants. These findings also provided new insights into the application of EMBR for mariculture wastewater treatment.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Zhipeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Binghan Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Shaojie Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiqing Qin
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Han Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinxu Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen 518055, China
| | - Yi Ding
- Marine College, Shandong University, Weihai 264209, China
| | - Yuhong Jia
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Feng Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| |
Collapse
|
8
|
Khan S, Das P, Abdulquadir M, Thaher M, Al-Ghasal G, Hafez Mohammed Kashem A, Faisal M, Sayadi S, Al-Jabri H. Pilot-scale crossflow ultrafiltration of four different cell-sized marine microalgae to assess the ultrafiltration performance and energy requirements. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Tang Y, Zhang B, Li Z, Deng P, Deng X, Long H, Wang X, Huang K. Overexpression of the sulfate transporter-encoding SULTR2 increases chromium accumulation in Chlamydomonas reinhardtii. Biotechnol Bioeng 2023; 120:1334-1345. [PMID: 36776103 DOI: 10.1002/bit.28350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Hexavalent chromium [Cr(Ⅵ)] is a highly toxic contaminant in aquatic systems, and microalgae represent promising bioremediators of metal-containing wastewater. However, the metal-binding capacity of algal cells is limited. Therefore, we improved the cellular Cr(Ⅵ) biosorption capacity of Chlamydomonas reinhardtii by overexpressing the sulfate transporter gene SULTR2. SULTR2 was predominantly located in the cytoplasm of the cell, and few proteins mobilized to the cell membrane as a Cr transporter under Cr stress conditions. Intracellular Cr accumulation was almost doubled in SULTR2-overexpressing transgenic strains after exposure to 30 μM K2 Cr2 O7 for 4 d. Alginate-based immobilization increased the rate of Cr removal from 43.81% to 88.15% for SULTR2-overexpressing transgenic strains after exposure to 10 μM K2 Cr2 O7 for 6 d. The immobilized cells also displayed a significant increase in nutrient removal efficiency compared to that of free-swimming cells. Therefore, SULTR2 overexpression in algae has a great potential for the bioremediation of Cr(Ⅵ)-containing wastewater.
Collapse
Affiliation(s)
- Yuxin Tang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Baolong Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhaoyang Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Deng
- Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xun Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
10
|
Díaz V, Antiñolo L, Poyatos Capilla JM, Almécija MC, Muñío MDM, Martín-Pascual J. Nutrient Removal and Membrane Performance of an Algae Membrane Photobioreactor in Urban Wastewater Regeneration. MEMBRANES 2022; 12:membranes12100982. [PMID: 36295741 PMCID: PMC9610028 DOI: 10.3390/membranes12100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 05/12/2023]
Abstract
The increase in industry and population, together with the need for wastewater reuse, makes it necessary to implement new technologies in the circular economy framework. The aim of this research was to evaluate the quality of the effluent of an algae membrane photobioreactor for the treatment of the effluent of an urban wastewater treatment plant, to characterise the ultrafiltration membranes, to study the effectiveness of a proposed cleaning protocol, and to analyse the performance of the photobioreactor. The photobioreactor operated under two days of hydraulic retention times feed with the effluent from the Los Vados wastewater treatment plant (WWTP) (Granada, Spain). The microalgae community in the photobioreactor grew according to the pseudo-second-order model. The effluent obtained could be reused for different uses of diverse quality with the removal of total nitrogen and phosphorus of 56.3% and 64.27%, respectively. The fouling of the polyvinylidene difluoride ultrafiltration membrane after 80 days of operation was slight, increasing the total membrane resistance by approximately 22%. Moreover, the higher temperature of the medium was, the lower intrinsic resistance of the membrane. A total of 100% recovery of the membrane was obtained in the two-phase cleaning protocol, with 42% and 58%, respectively.
Collapse
Affiliation(s)
- Verónica Díaz
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - Laura Antiñolo
- Department of Civil Engineering, University of Granada, 18071 Granada, Spain
| | | | | | - María del Mar Muñío
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - Jaime Martín-Pascual
- Department of Civil Engineering, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-24-61-55
| |
Collapse
|
11
|
Constructing (reduced) graphene oxide enhanced polypyrrole /ceramic composite membranes for water remediation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Membrane distillation treatment of landfill leachate: Characteristics and mechanism of membrane fouling. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Sun Y, Chang H, Zhang C, Xie Y, Ho SH. Emerging biological wastewater treatment using microalgal-bacterial granules: A review. BIORESOURCE TECHNOLOGY 2022; 351:127089. [PMID: 35358672 DOI: 10.1016/j.biortech.2022.127089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Aiming at deepening the understanding of the formation and evolution of emerging microalgal-bacterial granule (MBG)-based wastewater treatment systems, the recent advances regarding the formation processes, transfer phenomena, innovative bioreactors development and wastewater treatment performance of MBG-based systems are comprehensively reviewed in this work. Particularly, the successful establishments of MBG-based systems with various inocula are summarized. Besides, as the indispensable factors for biochemical reactions in MBGs, the light and substrates (organic matters, inorganic nutrients, etc) need to undergo complicated and multi-scale transfer processes before being assimilated by microorganisms within MBGs. Therefore, the involved transfer phenomena and mechanisms in MBG-based bioreactors are critically discussed. Subsequently, some recent advances of MBG-based bioreactors, the application of MBG-based systems in treating various synthetic and real wastewater, and the future development directions are discussed. In short, this review helps in promoting the development of MBG-based systems by presenting current research status and future perspectives.
Collapse
Affiliation(s)
- Yahui Sun
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Youping Xie
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
14
|
Managing the Effluents of Anaerobic Fermentations by Bioprocess Schemes Involving Membrane Bioreactors and Bio-Electrochemical Systems: A Mini-Review. ENERGIES 2022. [DOI: 10.3390/en15051643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Anaerobic bioprocesses, such as anaerobic digestion and dark fermentation, provide energy carriers in the form of methane and hydrogen gases, respectively. However, their wastewater-type residues, that is, the fermentation effluents, must be treated carefully due to the incomplete and non-selective conversion of organic matter fed to the actual system. For these reasons, the effluents contain various secondary metabolites and unutilized substrate, in most cases. Only a fraction of anaerobic effluents can be directly applied for fertilization under a moderate climate. Conventional wastewater treatment technologies may be used to clean the remainder, but that approach leads to a net loss of energy and of potentially useful agricultural input materials (organic carbon and NPK fertilizer substitutes). The rationale of this paper is to provide an overview of promising new research results in anaerobic effluent management strategies as a part of technological downstream that could fit the concept of new-generation biorefinery schemes aiming towards zero-waste discharge, while keeping in mind environmental protection, as well as economical perspectives. According to the literature, the effluents of the two above processes can be treated and valorized relying either on membrane bioreactors (in case of anaerobic digestion) or bio-electrochemical apparatus (for dark fermentation). In this work, relevant findings in the literature will be reviewed and analyzed to demonstrate the possibilities, challenges, and useful technical suggestions for realizing enhanced anaerobic effluent management. Both membrane technology and bio-electrochemical systems have the potential to improve the quality of anaerobic effluents, either separately or in combination as an integrated system.
Collapse
|
15
|
Min KH, Kim DH, Ki MR, Pack SP. Recent progress in flocculation, dewatering, and drying technologies for microalgae utilization: Scalable and low-cost harvesting process development. BIORESOURCE TECHNOLOGY 2022; 344:126404. [PMID: 34826566 DOI: 10.1016/j.biortech.2021.126404] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Microalgal research has made significant progress in terms of the high-value-added industrial application of microalgal biomass and its derivatives. However, cost-effective techniques for producing, harvesting, and processing microalgal biomass on a large scale still need to be fully explored in order to optimize their performance and achieve commercial robustness. In particular, technologies for harvesting microalgae are critical in the practical process as they require excessive energy and equipment costs. This review focuses on microalgal flocculation, dewatering, and drying techniques and specifically covers the traditional approaches and recent technological progress in harvesting microalgal biomass. Several aspects, including the characteristics of the target microalgae and the type of final value-added products, must be considered when selecting the appropriate harvesting technique. Furthermore, considerable aspects and possible future directions in flocculation, dewatering, and drying steps are proposed to develop scalable and low-cost microalgal harvesting systems.
Collapse
Affiliation(s)
- Ki Ha Min
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
16
|
Nazos TT, Ghanotakis DF. Biodegradation of phenol by alginate immobilized Chlamydomonas reinhardtii cells. Arch Microbiol 2021; 203:5805-5816. [PMID: 34528110 DOI: 10.1007/s00203-021-02570-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
Abstract
In the present work, the biodegradation of phenol by alginate immobilized Chlamydomonas reinhardtii cells was investigated. Immobilized Chlamydomonas reinhardtii could remove up to 1300 μmol/L of phenol within 10 days of cultivation. Metabolic activity was demonstrated by the extracellular release of catechol. Beads prepared at high concentrations of alginate (5-6% w/v) were found to protect microalgae against the strong inhibitory effects of phenol on the photosynthetic apparatus. Cells immobilized in beads of higher concentrations of alginate exhibited higher metabolic efficiencies compared to those prepared by lower alginate concentrations. Lower alginate concentrations (3-4% w/v) led to increased cell leakage, while the presence of phenol in the medium had the opposite effect in all alginate concentrations. Resuspension of immobilized microalgae in a medium containing a growth-promoting substrate, led to colony formation only on the external surface of alginate beads, indicating that acetic acid and consequently phenol, could not penetrate the internal of alginate beads. The significance of the work is that alginate immobilized Chlamydomonas substantially minimize the required volume of the aqueous medium and improve the economics and commercial application prospects of the process.
Collapse
Affiliation(s)
- Theocharis T Nazos
- Department of Chemistry, University of Crete, Vasilika Voutes, 70013, Heraklion, Crete, Greece
| | - Demetrios F Ghanotakis
- Department of Chemistry, University of Crete, Vasilika Voutes, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
17
|
Corpuz MVA, Borea L, Senatore V, Castrogiovanni F, Buonerba A, Oliva G, Ballesteros F, Zarra T, Belgiorno V, Choo KH, Hasan SW, Naddeo V. Wastewater treatment and fouling control in an electro algae-activated sludge membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147475. [PMID: 33971601 DOI: 10.1016/j.scitotenv.2021.147475] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The effect of addition of algae to activated sludge as active biomass in membrane bioreactors (MBRs) and electro-MBRs (e-MBRs) for wastewater remediation was examined in this study. The performances of Algae-Activated Sludge Membrane Bioreactor (AAS-MBR) and electro Algae-Activated Sludge Membrane Bioreactor (e-AAS-MBR) were compared to those observed in conventional MBR and e-MBR, which were previously reported and utilized activated sludge as biomass. The effect of application of electric field was also examined by the comparison of performances of e-AAS-MBR and AAS-MBR. Similar chemical oxygen demand (COD) reduction efficiencies of AAS-MBR, e-AAS-MBR, MBR, and e-MBR (98.35 ± 0.35%, 99.12 ± 0.08%, 97.70 ± 1.10%, and 98.10 ± 1.70%, respectively) were observed. The effect of the algae-activated sludge system was significantly higher in the nutrient removals. Ammoniacal nitrogen (NH3-N) removal efficiencies of AAS-MBR and e-AAS-MBR were higher by 43.89% and 26.61% than in the conventional MBR and e-MBR, respectively. Phosphate phosphorous (PO43--P) removals were also higher in AAS-MBR and e-AAS-MBR by 6.43% and 2.66% than those in conventional MBR and e-MBR. Membrane fouling rates in AAS-MBR and e-AAS-MBR were lower by 57.30% and 61.95% than in MBR and e-MBR, respectively. Lower concentrations of fouling substances were also observed in the reactors containing algae-activated sludge biomass. Results revealed that addition of algae improved nutrient removal and membrane fouling mitigation. The study also highlighted that the application of electric field in the e-AAS-MBR enhanced organic contaminants and nutrients removal, and fouling rate reduction.
Collapse
Affiliation(s)
- Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Laura Borea
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Vincenzo Senatore
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Fabiano Castrogiovanni
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy; Inter-University Centre for Prediction and Prevention of Relevant Hazards (Centro Universitario per la Previsione e Prevenzione Grandi Rischi, C.U.G.RI.), Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Giuseppina Oliva
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines; Department of Chemical Engineering, College of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University (KNU), 80 Daehak-ro, Bukgu, Daegu 41566, Republic of Korea
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy.
| |
Collapse
|
18
|
Zhang H, Gong W, Jia B, Zeng W, Li G, Liang H. Nighttime aeration mode enhanced the microalgae-bacteria symbiosis (ABS) system stability and pollutants removal efficiencies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140607. [PMID: 32659554 DOI: 10.1016/j.scitotenv.2020.140607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/03/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Utilizing external aeration to enhance the performance of microalgae-bacteria symbiosis (ABS) system has been extensively studied. However, inappropriate aeration damaged ABS system stability. A nighttime aeration mode (NA-ABS) in different aeration intensities (20, 50, 100 mL/min) was adopted to compare to continuous aeration microalgae-bacteria symbiosis (CA-ABS) mode and no-aerated mode on pollutants removal efficiencies and system stability. Results showed that NA-ABS system performed better on total organic carbon (TOC), NH4+-N, total nitrogen (TN) and PO43- removal than CA-ABS system, especially under the aeration intensity of 20 mL/min (NAI20), with the removal efficiencies of 96.59%, 99.18%, 90.30% and 89.16%, respectively. These results were because NA-ABS system prevented CO2 stripping and provided more dissolved inorganic carbon (DIC) for the microalgae growth. Furthermore, less CO2 stripping released the competition between microalgae and autotrophic bacteria for the DIC, leading to a more stable ABS system during long-term operation. This paper suggested that NA-ABS system would provide some new insights into ABS system and be helpful for further study.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Baohui Jia
- Department of Civil Engineering, The University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Weichen Zeng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| |
Collapse
|
19
|
Characteristics of an immobilized microalgae membrane bioreactor (iMBR): Nutrient removal, microalgae growth, and membrane fouling under continuous operation. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Deniz I. Scaling-up of Haematococcus pluvialis production in stirred tank photobioreactor. BIORESOURCE TECHNOLOGY 2020; 310:123434. [PMID: 32344237 DOI: 10.1016/j.biortech.2020.123434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study was to evaluate three most common scale-up criteria for Haematococcus pluvialis production from cultivation bottles to 2 and 10 L of stirred tank PBRs. Constant volumetric power input (P/V) was found to be the most suitable criterion for H. pluvialis production. Total carotenoid amount per biomass concentration in 2 L and 10 L stirred tank PBRs were determined to be 4.57 mg/g and 4.77 mg/g, respectively. Antioxidant activity of total carotenoids extracted from H. pluvialis was also higher at constant P/V criterion where 46.91% inhibition rate with a total phenolic content of 11.76 mg gallic acid/L was achieved. Obtained results could be used to expand the bioproduction of H. pluvialis and its extracts in commercial scale.
Collapse
Affiliation(s)
- Irem Deniz
- Manisa Celal Bayar University, Faculty of Engineering, Department of Bioengineering, 45119 Manisa, Turkey.
| |
Collapse
|
21
|
Lu W, Asraful Alam M, Liu S, Xu J, Parra Saldivar R. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO 2 from livestock farms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135247. [PMID: 31839294 DOI: 10.1016/j.scitotenv.2019.135247] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Development of renewable and clean energy as well as bio-based fine chemicals technologies are the keys to overcome the problems such as fossil depletion, global warming, and environment pollution. To date, cultivation of microalgae using wastewater is regarded as a promising approach for simultaneous nutrients bioremediation and biofuels production due to their high photosynthesis efficiency and environmental benefits. However, the efficiency of nutrients removal and biomass production strongly depends on wastewater properties and microalgae species. Moreover, the high production cost is still the largest limitation to the commercialization of microalgae biofuels. In this review paper, the state-of-the-art algae species employed in livestock farm wastes have been summarized. Further, microalgae cultivation systems and impact factors in livestock wastewater to microalgae growth have been thoroughly discussed. In addition, technologies reported for microalgal biomass harvesting and CO2 mass transfer enhancement in the coupling process were presented and discussed. Finally, this article discusses the potential benefits and challenges of coupling nutrient bioremediation, CO2 capture, and microalgal production. Possible engineering measures for cost-effective nutrients removal, carbon fixation, microalgal biofuels and bioproducts production are also proposed.
Collapse
Affiliation(s)
- Weidong Lu
- School of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China; Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, United States
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, United States
| | - Jinliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Roberto Parra Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| |
Collapse
|
22
|
Hu X, Meneses YE, Aly Hassan A. Integration of sodium hypochlorite pretreatment with co-immobilized microalgae/bacteria treatment of meat processing wastewater. BIORESOURCE TECHNOLOGY 2020; 304:122953. [PMID: 32087541 DOI: 10.1016/j.biortech.2020.122953] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Wastewater with 0.2, 0.4, 0.8, 1.0 mg/L free chlorine was biologically treated using co-immobilized microalgae/bacteria. In contrast, non-pretreated wastewater was treated with beads (control) and blank beads (blank) under the same operating condition. Results showed that NaClO pretreatment removed 8-33% total nitrogen (TN), 31-45% true color and 0.7-2.5 log CFU/mL aerobic-bacteria. At the end of treatment, maximum algal biomass (2,027 dry weight mg/L) was achieved with 0.2 mg/L free chlorine. Bacterial growth in wastewater was decreased by NaClO pretreatment before reaching 7.2-7.7 log CFU/mL on the fifth day. Beads with microorganisms (control) removed 15% more chemical-oxygen-demand (COD), 16% more TN, and 13% more total phosphate (PO43-) than blank. Pretreatment with 0.2 mg/L free chlorine increased TN removal from 75% to 80% while pollutants removal was substantially decreased with 0.4-1.0 mg/L free chlorine. Considering algal biomass growth and pollutants removal, 0.2 mg/L free chlorine pretreatment was recommended for microalgae/bacteria co-immobilized system.
Collapse
Affiliation(s)
- Xinjuan Hu
- Department of Food Science and Technology, Food Processing Center, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, United States
| | - Yulie E Meneses
- Department of Food Science and Technology, Food Processing Center, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, United States; Daugherty Water for Food Global Institute, Nebraska Innovation Campus, University of Nebraska-Lincoln, Lincoln, NE 68588-6204, United States.
| | - Ashraf Aly Hassan
- Department of Civil and Environmental Engineering and National Water Center, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates; Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0531, United States
| |
Collapse
|
23
|
Lee H, Jeong D, Im S, Jang A. Optimization of alginate bead size immobilized with Chlorella vulgaris and Chlamydomonas reinhardtii for nutrient removal. BIORESOURCE TECHNOLOGY 2020; 302:122891. [PMID: 32008861 DOI: 10.1016/j.biortech.2020.122891] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Photo-bioreactor experiments using three different size beads (2.0, 3.5, and 5.0 mm) immobilized with two different types of microalgae namely Chlorella vulgaris and Chlamydomonas reinhardtii were conducted to evaluate the nutrient removal efficiency. The highest nutrient removal was obtained at gel bead pore size of 3.5 mm for both species of C. vulgaris and Ch. reinhardtii. 95% removal of T-N and complete reduction of T-P were achieved within 3 stages of treatment in photo-bioreactors containing 20% algal bead volume fraction. Moreover, the results observed by confocal laser scanning microscopy (CLSM) using SYTOX red dye and SYTOX green dye in alginate beads indicated that the effective depth of C. vulgaris and Ch. reinhardtii was about 3.6 mm and 3.0 mm, respectively. This optimized cell immobilization technology would accelerate the nutrient uptake rate of microalgae for improving efficiency of wastewater treatment systems.
Collapse
Affiliation(s)
- Hyunkuk Lee
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Dawoon Jeong
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea; Institute of Environmental Research, Kangwon National University, 1, Gangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - SungJu Im
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea.
| |
Collapse
|
24
|
Gong W, Fan Y, Xie B, Tang X, Guo T, Luo L, Liang H. Immobilizing Microcystis aeruginosa and powdered activated carbon for the anaerobic digestate effluent treatment. CHEMOSPHERE 2020; 244:125420. [PMID: 31790994 DOI: 10.1016/j.chemosphere.2019.125420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
The environment pollution caused by livestock anaerobic digestate effluent (ADE) is becoming increasingly severe recently. In this study, immobilized technology, embedding Microcystis aeruginosa (MA) and powdered activated carbon (PAC) with sodium alginate (SA), was employed to investigate the removal performance of nitrogen (N), phosphorus (P) and dissolved organic matter (DOM) in the treatment of ADE solution. Initially, orthogonal experiment was carried out to achieve the optimal conditions of the beads fabrication with the concentration of imbedding agents (PAC-SA) of 5% (w/w) and the ratio of microalgae and imbedding agents was 1:1 (v/v). The results indicated that the total nitrogen (TN), total phosphorus (TP) and total organic carbon (TOC) can be efficiently removed under the optimal operation conditions, with average removals of 91.88 ± 2.91% in TN, 98.24 ± 0.12 in TP and 78.31 ± 1.57% in TOC, respectively. Moreover, the fluorescence excitation-mission matrix (EEM) results illustrated that IMA-PAC beads joined system can efficiently diminish the concentrations of protein-like compounds and humic substances. Therefore, the organic contaminants and nutrients (i.e. N and P) can be efficiently removed in IMA-PAC beads joined system, which would contribute to developing new strategies for the treatment of ADE solution and nutrient recycle.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, Heilongjiang, Harbin, 150030, China.
| | - Yuhui Fan
- School of Engineering, Northeast Agricultural University, Heilongjiang, Harbin, 150030, China
| | - Binghan Xie
- School of Environment, Harbin Institute of Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Heilongjiang, Harbin, 150090, China
| | - Xiaobin Tang
- School of Environment, Harbin Institute of Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Heilongjiang, Harbin, 150090, China
| | - Tiecheng Guo
- School of Environment, Harbin Institute of Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Heilongjiang, Harbin, 150090, China
| | - Lina Luo
- School of Engineering, Northeast Agricultural University, Heilongjiang, Harbin, 150030, China
| | - Heng Liang
- School of Environment, Harbin Institute of Technology, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Heilongjiang, Harbin, 150090, China
| |
Collapse
|
25
|
Yan Z, Yang H, Qu F, Zhang H, Rong H, Yu H, Liang H, Ding A, Li G, Van der Bruggen B. Application of membrane distillation to anaerobic digestion effluent treatment: Identifying culprits of membrane fouling and scaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:880-889. [PMID: 31255825 DOI: 10.1016/j.scitotenv.2019.06.307] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Membrane distillation (MD) has great potential in the treatment of high-salinity and low-biodegradability wastewater, but membrane fouling restricts its real applications. In this work, MD was applied to treat anaerobic digestion effluent, and the feed pH was adjusted to investigate the membrane organic fouling and inorganic scaling. The results show that the fouling of MD membranes during the treatment of anaerobic digestion effluent was substantially alleviated at a low feed pH (pH=5). Scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) were used to characterize the fouled membranes. The MD membrane scaling was primarily attributed to the deposition of calcium-, magnesium-, phosphate-, and silicon-related inorganic compounds during the treatment of cow dung anaerobic digestion effluent. Feed acidification significantly decreased inorganic scaling as well as fouling by organic matter, and organic fouling dominated the fouling process in the low-pH environment. By comparing the components in acid and alkaline cleaning solutions, it was found that the deposition of organics on the membranes via adsorption to inorganic scaling was the primary cause of more severe organic fouling with increasing feed pH. Hence, restricting inorganic scaling could be an effective way to control MD membrane fouling by organics during treatment of anaerobic digestion effluent.
Collapse
Affiliation(s)
- Zhongsen Yan
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China; Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Haiyang Yang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Huarong Yu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, PR China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium; Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
26
|
Gong W, Xie B, Deng S, Fan Y, Tang X, Liang H. Enhancement of anaerobic digestion effluent treatment by microalgae immobilization: Characterized by fluorescence excitation-emission matrix coupled with parallel factor analysis in the photobioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:105-113. [PMID: 31075577 DOI: 10.1016/j.scitotenv.2019.04.440] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The bacterial-microalgal consortium has been investigated to anaerobic digestion effluent (ADE) treatment in the photobioreactor (PBR). However, the high concentrations of nutrients reduced the ADE treatment efficiency and the transformation of organic pollutants in PBR was still unclear. In this study, two-sequencing batch PBRs were operated with suspended Microcystis aeruginosa (M. aeruginosa, SMA) and immobilized M. aeruginosa (IMA) to compare the ADE treatment performance. Fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) was conducted to identify organics degradations. The results showed that the proportion of living M. aeruginosa cell (86.4%) in PBR (IMA) was highly significant (p < 0.05) higher than that in PBR (SMA) (75.2%). This indicated immobilized microalgae beads enhanced the resistance to the high concentration of nutrients in PBR (IMA). EEM-PARAFAC analysis displayed the biodegradation order in the bacterial-microalgal consortium system was humic-like substances > tyrosine-like substances > tryptophan-like substances. The removals of humic-like matters (94.05 ± 0.92%) and tyrosine-like matters (91.13 ± 2.49%) in PBR (IMA) were significantly (p < 0.01) higher than those in PBR (SMA). Notably, the average removals of nutrients in PBR (IMA) were significantly (p < 0.05) higher than those in PBR (SMA). This result verified that microalgae immobilization benefitted nutrients removals with 93.05 ± 1.45% of NH4+-N and complete PO43--P removal in PBR (IMA). Moreover, the enrichment of functional genera Flavobacterium and Opitutus contributed to decreasing the organics loadings and strengthening the ADE treatment performance. Therefore, this study verified microalgae immobilization enhanced the actual ADE treatment. Additionally, fluorescent organic pollutants degradations were further evaluated by EEM-PARAFAC analysis in the bacterial-microalgal consortium.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China.
| | - Binghan Xie
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; National University of Singapore Environmental Research Institute, National University of Singapore, 5A Engineering Dr. 1, Singapore 117411, Singapore
| | - Shihai Deng
- National University of Singapore Environmental Research Institute, National University of Singapore, 5A Engineering Dr. 1, Singapore 117411, Singapore; School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Yuhui Fan
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
27
|
Srinuanpan S, Cheirsilp B, Boonsawang P, Prasertsan P. Immobilized oleaginous microalgae as effective two-phase purify unit for biogas and anaerobic digester effluent coupling with lipid production. BIORESOURCE TECHNOLOGY 2019; 281:149-157. [PMID: 30818266 DOI: 10.1016/j.biortech.2019.02.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Oleaginous microalga Scenedesmus sp. was immobilized in alginate-gel beads and applied as two-phase purify unit for biogas and anaerobic digester effluent from palm oil mill. Optimal microalgal cell concentration and bead volume ratio were 106 cells mL-1 and 25% v/v, respectively. The use of 20% effluent and light intensity at 128 µmol·proton·m-2 s-1 most promoted CO2 removal by immobilized microalgae and achieved the maximum CO2 removal rate of 4.63 kg-CO2 day-1 m-3. This process upgraded methane content in biogas (>95%) and completely remove nitrogen and phosphorus in the effluent. After process operation, 2.98 g L-1 microalgal biomass with 35.92% lipid content were recovered by simple sieving method. Microalgal lipids are composed of C16-C18 (>98%) with prospect high cetane number and short ignition delay time. This study has shown the promising biorefinery concept which is effective not only in CO2 fixation, biogas upgrading and pollutant removal but also cost-effective production of microalgae-based biofuel.
Collapse
Affiliation(s)
- Sirasit Srinuanpan
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Benjamas Cheirsilp
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Piyarat Boonsawang
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Poonsuk Prasertsan
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
28
|
Yu H, Kim J, Lee C. Potential of mixed-culture microalgae enriched from aerobic and anaerobic sludges for nutrient removal and biomass production from anaerobic effluents. BIORESOURCE TECHNOLOGY 2019; 280:325-336. [PMID: 30780092 DOI: 10.1016/j.biortech.2019.02.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
This study examines the potential of the mixed-culture microalgal consortia enriched from aerobic sludge (AeS) and anaerobic sludge (AnS) with regard to nutrient removal and biomass production from four different anaerobic digestion (AD) effluents. Both the inocula achieved the complete removal of the NH4+-N (initial concentration of 40 mg/L) within 14 days from all the effluents. The AeS cultures showed faster and greater microalgal growth, although the NH4+-N removal rate was comparable or higher in the case of the AnS cultures. Further, the AeS and AnS cultures showed significantly different lipid production characteristics in terms of the fatty acid composition and the response to nitrogen deficiency. Nitrogen starvation caused changes in the microbial community structures in all the experimental cultures, which may have influenced the lipid metabolism and the microalgal growth. The overall results suggest that both the inocula exhibit good potential with regard to the treatment of AD effluents.
Collapse
Affiliation(s)
- Hyeonjung Yu
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Jaai Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|