1
|
Yu S, Chen Z, Li M, Qiu S, Lv Z, Ge S. Principles, challenges, and optimization of indigenous microalgae-bacteria consortium for sustainable swine wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 406:131055. [PMID: 38944316 DOI: 10.1016/j.biortech.2024.131055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Indigenous microalgae-bacteria consortium (IMBC) offers significant advantages for swine wastewater (SW) treatment including enhanced adaptability and resource recovery. In this review, the approaches for enriching IMBC both in situ and ex situ were comprehensively described, followed by symbiotic mechanisms for IMBC which involve metabolic cross-feeding and signal transmission. Strategies for enhancing treatment efficiencies of SW-originated IMBC were then introduced, including improving SW quality, optimizing system operating conditions, and adjusting microbial activities. Recommendations for maximizing treatment efficiencies were particularly proposed using a decision tree approach. Moreover, removal/recovery mechanisms for typical pollutants in SW using IMBC were critically discussed. Ultimately, a technical route termed SW-IMBC-Crop-Pig was proposed, to achieve a closed-loop economy for pig farms by integrating SW treatment with crop cultivation. This review provides a deeper understanding of the mechanism and strategies for IMBC's resource recovery from SW.
Collapse
Affiliation(s)
- Sheng Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| | - Zhe Lv
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
2
|
Wang H, Luo L, Yan B, Luo S. Mechanism of microplastics effects on the purification of heavy metals in piggery effluents by microalgae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124028. [PMID: 38677456 DOI: 10.1016/j.envpol.2024.124028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/02/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Microalgae is an effective bioremediation technique employed for treating piggery effluent. However, there is insufficient study on how the presence of microplastics (MPs) in wastewater affects the ability of microalgae to remove heavy metals from piggery effluent. This study aims to investigate the influence of two prevalent heavy metals found in piggery wastewater, Cu2+ (2 mg/L) and Zn2+ (2 mg/L), on their removal by microalgae (Desmodesmus sp. CHX1) in the presence of four types of MPs: polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), and polyethylene terephthalate (PET). The results revealed that smaller particle size MPs promoted chlorophyll accumulation, while larger particles inhibits it. Additionally, higher concentrations of MPs promoted chlorophyll accumulation, while lower concentrations inhibited it. As for heavy metals, the presence of microplastics reduced the removal efficiency of Cu2+ and Zn2+ by Desmodesmus sp. CHX1. The highest inhibition of Cu2+ was 30%, 10%, 19%, and 16% of the control (CK), and the inhibition of Zn2+ was 7%, 4%, 4%, and 13%, respectively, under the treatments of PE, PVC, PP and PET MPs. Furthermore, Desmodesmus sp. CHX1 can secrete more extracellular polymeric substances (EPS) and form heterogeneous aggregates with MPs to counteract their pressure. These findings elucidate the impact of MPs on microalgae in bioremediation settings and offer useful insights into the complex relationships between microalgae, MPs, and heavy metals in the environment.
Collapse
Affiliation(s)
- Huimin Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Longzao Luo
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao, 334001, China
| | - Binghua Yan
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Shuang Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China; Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark.
| |
Collapse
|
3
|
Bucci P, Marcos Montero EJ, García-Depraect O, Zaritzky N, Caravelli A, Muñoz R. Assessment of the performance of a symbiotic microalgal-bacterial granular sludge reactor for the removal of nitrogen and organic carbon from dairy wastewater. CHEMOSPHERE 2024; 351:141250. [PMID: 38242520 DOI: 10.1016/j.chemosphere.2024.141250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Cheese whey (CW) is a nutrient deficient dairy effluent, which requires external nutrient supplementation for aerobic treatment. CW, supplemented with ammonia, can be treated using aerobic granular sludge (AGS) in a sequencing batch reactor (SBR). AGS are aggregates of microbial origin that do not coagulate under reduced hydrodynamic shear and settle significantly faster than activated sludge flocs. However, granular instability, slow granulation start-up, high energy consumption and CO2 emission have been reported as the main limitations in bacterial AGS-SBR. Algal-bacterial granular systems have shown be an innovative alternative to improve these limitations. Unfortunately, algal-bacterial granular systems for the treatment of wastewaters with higher organic loads such as CW have been poorly studied. In this study, an algal-bacterial granular system implemented in a SBR (SBRAB) for the aerobic treatment of ammonia-supplemented CW wastewaters was investigated and compared with a bacterial granular reactor (SBRB). Mass balances were used to estimate carbon and nitrogen (N) assimilation, nitrification and denitrification in both set-ups. SBRB exhibited COD and ammonia removal of 100% and 94% respectively, high nitrification (89%) and simultaneous nitrification-denitrification (SND) of 23% leading to an inorganic N removal of 30%. The efficient algal-bacterial symbiosis in granular systems completely removed COD and ammonia (100%) present in the dairy wastewater. SBRAB microalgae growth could reduce about 20% of the CO2 emissions produced by bacterial oxidation of organic compounds according to estimates based on synthesis reactions of bacterial and algal biomass, in which the amount of assimilated N determined by mass balance was taken into account. A lower nitrification (75%) and minor loss of N by denitrifying activity (<5% Ng, SND 2%) was also encountered in SBRAB as a result of its higher biomass production, which could be used for the generation of value-added products such as biofertilizers and biostimulants.
Collapse
Affiliation(s)
- Paula Bucci
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 116 s/N, La Plata, Buenos Aires, Argentina
| | - Enrique José Marcos Montero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - Noemí Zaritzky
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 116 s/N, La Plata, Buenos Aires, Argentina; Facultad de Ingeniería, Universidad Nacional de la Plata, Argentina
| | - Alejandro Caravelli
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 116 s/N, La Plata, Buenos Aires, Argentina
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain.
| |
Collapse
|
4
|
Wu X, Ye M, Wang J, Wu F, Liu C, Li Z, Lin D, Yang R. Adsorption characteristics and mechanism of ammonia nitrogen and phosphate from biogas slurry by Ca2+-modified soybean straw biochar. PLoS One 2023; 18:e0290714. [PMID: 37624822 PMCID: PMC10456179 DOI: 10.1371/journal.pone.0290714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
The utilization of biogas slurry is critical for the sustainable development of animal husbandry. Biomass carbon adsorption is a feasible method for the recycling of nutrients from biogas slurry. However, research on the co-adsorption of ammonia nitrogen and phosphate is scarce. Herein, soybean straw was utilized as the raw material to prepare Ca2+-modified biochar (CaSSB), which was investigated for its ammonia nitrogen and phosphate adsorption mechanisms. Compared with natural biochar (SSB), CaSSB possesses a high H/C ratio, larger surface area, high porosity and various functional groups. Ca2+-modified soybean straw biochar exhibited excellent adsorption performance for NH4+-N (103.18 mg/g) and PO43--P (9.75 mg/g) at pH = 6, using an adsorbent dosage of 2 g/L. The experimental adsorption data of ammonia nitrogen by CaSSB corresponded to pseudo-second-order kinetics and the Langmuir isotherm model, suggesting that the adsorption process was homogeneous and that electrostatic attraction might be the primary adsorption mechanism. Meanwhile, the adsorption of phosphate conformed to pseudo-second-order kinetics and the Langmuir-Freundlich model, whose mechanism might be attributed to ligand exchange and chemical precipitation. These results reveal the potential of CaSSBs as a cost-effective, efficient adsorbent for the recovery of ammonium and phosphate from biogas slurry.
Collapse
Affiliation(s)
- Xiaomei Wu
- Agricultural Engineering Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meifeng Ye
- Agricultural Engineering Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Jinglong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Feilong Wu
- Agricultural Engineering Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Cenwei Liu
- Institute of Agricultural Ecology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Zhangting Li
- Agricultural Engineering Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Daiyan Lin
- Agricultural Engineering Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Rilong Yang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Luo L, Lin X, Li M, Liao X, Zhang B, Hu Y, Wang Y, Huang Y, Peng C. Influencing factors for nutrient removal from piggery digestate by coupling microalgae and electric field. ENVIRONMENTAL TECHNOLOGY 2023; 44:2244-2253. [PMID: 34986738 DOI: 10.1080/09593330.2022.2026485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/18/2021] [Indexed: 06/04/2023]
Abstract
Microalgae show great potential for nutrient removal from piggery digestate. However, full-strength piggery digestate have been found to severely inhibit microalgal growth. In this study, microalgae were coupled into the electric field (EF)system to form an electric field-microalgae system (EFMS). The effects of EF characteristics and environmental conditions on the growth of Desmodesmus sp. CHX1 and the removal of nitrogen and phosphorus in EFMS were explored. The results indicated that the optimal EF parameters for forming a fine EFMS were electrode of Zn (anode)/graphite (cathode), electric frequency of three times per day (10 min/time) and voltage of 12 V. The suitable light intensity and microalgae inoculation concentration for the EFMS were 180 μmol photons/(m2·s) and 0.2 g/L, respectively. Ammonium nitrogen and total phosphorus removal efficiencies were 65.38% and 96.16% in the piggery digestate by EFMS under optimal conditions. These results indicate that EFMS is a promising technology for nutrient removal from piggery digestate.
Collapse
Affiliation(s)
- Longzao Luo
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao, People's Republic of China
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
- Zhejiang Zone-King Environmental Science & Technology Co., Ltd., Hangzhou, People's Republic of China
| | - Xiaoai Lin
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao, People's Republic of China
| | - Miao Li
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao, People's Republic of China
| | - Xing Liao
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao, People's Republic of China
| | - Bangxi Zhang
- Institute of Agricultural Resources and Environment, Guizhou Academy of Agricultural Sciences, Guiyang, People's Republic of China
| | - Yujie Hu
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao, People's Republic of China
| | - Yufeng Wang
- Zhejiang Zone-King Environmental Science & Technology Co., Ltd., Hangzhou, People's Republic of China
| | - Yan Huang
- Zhejiang Zone-King Environmental Science & Technology Co., Ltd., Hangzhou, People's Republic of China
| | - Changsheng Peng
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
6
|
Chen CY, Kuan SP, Nagarajan D, Chen JH, Ariyadasa TU, Chang JS. A novel two-stage process for the effective treatment of swine wastewater using Chlorella sorokiniana AK-1 based algal-bacterial consortium under semi-continuous operation. BIORESOURCE TECHNOLOGY 2022; 365:128119. [PMID: 36252751 DOI: 10.1016/j.biortech.2022.128119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
This study aimed at developing an eco-friendly and effective treatment for swine wastewater (SWW) using a designer microalgae-bacteria consortium. A functional algal bacterial consortium was developed with SWW-derived bacteria and Chlorella sorokiniana AK-1. Light intensity (300 µmol/m2/s) and inoculum size (0.15 and 0.2 g/L for microalgae and bacteria) were optimized. Semi-batch operation treating 50 % SWW resulted in a COD, BOD, TN, and TP removal efficiency of 81.1 ± 0.9 %, 97.0 ± 0.7 %, 90.6 ± 1.6 % and 91.3 ± 1.1 %, respectively. A novel two-stage process with an initial bacterial start-up stage followed by microalgal inoculation was applied for attaining stable organic carbon removal, in addition to satisfactory TN and TP removal. Full strength SWW was treated with this strategy with COD, BOD, TN, and TP removal efficiencies of 72.1 %, 94.9 %, 88 %, and 94.6 %, respectively. The biomass consisted of 36 % carbohydrates, indicating a potential feedstock for biochar production. In addition, the effluent met the standards for effluent discharge in Taiwan.
Collapse
Affiliation(s)
- Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ping Kuan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jih-Heng Chen
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Thilini U Ariyadasa
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
7
|
Sun X, Li X, Tang S, Lin K, Zhao T, Chen X. A review on algal-bacterial symbiosis system for aquaculture tail water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157620. [PMID: 35901899 DOI: 10.1016/j.scitotenv.2022.157620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Aquaculture is one of the fastest growing fields of global food production industry in recent years. To maintain the ecological health of aquaculture water body and the sustainable development of aquaculture industry, the treatment of aquaculture tail water (ATW) is becoming an indispensable task. This paper discussed the demand of environmentally friendly and cost-effective technologies for ATW treatment and the potential of algal-bacterial symbiosis system (ABSS) in ATW treatment. The characteristics of ABSS based technology for ATW treatment were analyzed, such as energy consumption, greenhouse gas emission, environmental adaptability and the possibility of removal or recovery of carbon, nitrogen and phosphorus as resource simultaneously. Based on the principle of ABSS, this paper introduced the key environmental factors that should be paid attention to in the establishment of ABSS, and then summarized the species of algae, bacteria and the proportion of algae and bacteria commonly used in the establishment of ABSS. Finally, the reactor technologies and the relevant research gaps in the establishment of ABSS were reviewed and discussed.
Collapse
Affiliation(s)
- Xiaoyan Sun
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082 Zhuhai, China.
| | - Xiaopeng Li
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China
| | - Shi Tang
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China
| | - Kairong Lin
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082 Zhuhai, China
| | - Tongtiegang Zhao
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082 Zhuhai, China
| | - Xiaohong Chen
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Center for Water Resources and Environment Research, Sun Yat-sen University, 510275 Guangzhou, China
| |
Collapse
|
8
|
Jiang Q, Chen H, Fu Z, Fu X, Wang J, Liang Y, Yin H, Yang J, Jiang J, Yang X, Wang H, Liu Z, Su R. Current Progress, Challenges and Perspectives in the Microalgal-Bacterial Aerobic Granular Sludge Process: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13950. [PMID: 36360829 PMCID: PMC9655209 DOI: 10.3390/ijerph192113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Traditional wastewater treatment technologies have become increasingly inefficient to meet the needs of low-consumption and sustainable wastewater treatment. Researchers are committed to seeking new wastewater treatment technologies, to reduce the pressure on the environment caused by resource shortages. Recently, a microalgal-bacterial granular sludge (MBGS) technology has attracted widespread attention due to its high efficiency wastewater treatment capacity, low energy consumption, low CO2 emissions, potentially high added values, and resource recovery capabilities. This review focused primarily on the following aspects of microalgal-bacterial granular sludge technology: (1) MBGS culture and maintenance operating parameters, (2) MBGS application in different wastewaters, (3) MBGS additional products: biofuels and bioproducts, (4) MBGS energy saving and consumption reduction: greenhouse gas emission reduction, and (5) challenges and prospects. The information in this review will help us better understand the current progress and future direction of the MBGS technology development. It is expected that this review will provide a sound theoretical basis for the practical applications of a MBGS technology in environmentally sustainable wastewater treatment, resource recovery, and system optimization.
Collapse
Affiliation(s)
- Qianrong Jiang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Honglei Chen
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zeding Fu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xiaohua Fu
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiacheng Wang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yingqi Liang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hailong Yin
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Junbo Yang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jie Jiang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xinxin Yang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - He Wang
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| | - Rongkui Su
- Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
9
|
Li S, Qu W, Chang H, Li J, Ho SH. Microalgae-driven swine wastewater biotreatment: Nutrient recovery, key microbial community and current challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129785. [PMID: 36007366 DOI: 10.1016/j.jhazmat.2022.129785] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
As a promising technology, the microalgae-driven strategy can achieve environmentally sustainable and economically viable swine wastewater treatment. Currently, most microalgae-based research focuses on remediation improvement and biomass accumulation, while information on the removal mechanisms and dominant microorganisms is emerging but still limited. In this review, the major removal mechanisms of pollutants and pathogenic bacteria are systematically discussed. In addition, the bacterial and microalgal community during the swine wastewater treatment process are summarized. In general, Blastomonas, Flavobacterium, Skermanella, Calothrix and Sedimentibacter exhibit a high relative abundance. In contrast to the bacterial community, the microalgal community does not change much during swine wastewater treatment. Additionally, the effects of various parameters (characteristics of swine wastewater and cultivation conditions) on microalgal growth and current challenges in the microalgae-driven biotreatment process are comprehensively introduced. This review stresses the need to integrate bacterial and microalgal ecology information into the conventional design of full-scale swine wastewater treatment systems and operations. Herein, future research needs are also proposed, which will facilitate the development and operation of a more efficient microalgae-based swine wastewater treatment process.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wenying Qu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Junfeng Li
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
10
|
Mu R, Jia Y, Qi F, Guo Q, Qin X, Ma G, Meng Q, Yu G. Microalgal-bacterial consortia for efficient wastewater treatment: Optimization using response surface methodology. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10756. [PMID: 35918066 DOI: 10.1002/wer.10756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The performance of microalgal-bacterial consortia in wastewater treatment and biomass production needs to be further optimized to meet increasingly stringent effluent standards and operating costs. Besides, due to uncontrollability of ambient conditions, it is generally believed that operating conditions (e.g., aeration) respond to ambient conditions (e.g., illumination). Therefore, response surface methodology (RSM) based on Box-Behnken design was used in this study to analyze the removal of chemical oxygen demand (COD), NH3 -N and TP, and algal biomass of the microalgal-bacterial consortia within 48 h. The results showed that under medium illumination intensity (5000 lx), photoperiod (12:12) and aeration rate (0.55 L min -1 ), the removal efficiency of COD, NH3 -N and TP was the highest, and the maximal biomass growth rates were 95.43%, 95.49%, 89.42% and 99.63%, respectively. However, as the limited critical removal requirements of TP, the effluent standards can only be achieved within the small illumination intensity and photoperiod available range, even under medium aeration conditions, which means that under fixed operating conditions, the effective operation range will be very limited. In addition, based on RSM and differential equation analysis, the further study indicated that the effective treatment range can be greatly expanded within aeration responding, which meets the discharge standard of pollutants in China. PRACTITIONER POINTS: Illumination was responded by aeration for optimizing performance of microalgal-bacterial consortium for wastewater treatment and biomass productivity. The strategy of optimization was based on response surface methodology. The maximum effect on wastewater treatment and biomass productivity was based on partial differential equations and quadratic inhomogeneous equations. Limited to critical TP-removal requirements, effluent standards can meet only in the small-usable range of illumination, under medium aeration.
Collapse
Affiliation(s)
- Ruimin Mu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yantian Jia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Feng Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Qingyang Guo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Xiaowen Qin
- Shandong Institute of Metrology, Jinan, China
| | - Guixia Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Qianya Meng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Gejiang Yu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| |
Collapse
|
11
|
Zhang B, Liu L, Lin X, Xu Z, Luo W, Luo L. Response surface methodology to optimize self-flocculation harvesting of microalgae Desmodesmus sp.CHX1. ENVIRONMENTAL TECHNOLOGY 2022; 43:2647-2655. [PMID: 33599565 DOI: 10.1080/09593330.2021.1892831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
This study aims to optimize the self-flocculation ability of microalgae Desmodesmus sp. CHX1 by the response surface methodology (RSM). Key parameters (i.e. pH, temperature and flocculation time) that significantly affected the Desmodesmus sp.CHX1 flocculation were determined. Results show that the flocculation efficiency of Desmodesmus sp.CHX1 increased in response to the prolonged settling time, particularly within the first 6 h, given the secretion of extracellular polymers. The RSM result suggested that both temperature and time exerted more significant effects on flocculation efficiency than solution pH. In specific, the maximum flocculation efficiency could reach 94.0% under the optimal conditions with the temperature, time and pH of 12.37°C, 6.96 h and 7.98, respectively. Validation experiments further indicated the reliability of the optimal parameter conditions.
Collapse
Affiliation(s)
- Bangxi Zhang
- Institute of Agricultural Resources and Environment, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Linhai Liu
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao, China
| | - Xiaoai Lin
- College of Life Science, Shangrao Normal University, Shangrao, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Longzao Luo
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao, China
| |
Collapse
|
12
|
Luo L, Li M, Luo S, Kumar Awasthi M, Lin X, Liao X, Peng C, Yan B. Enhanced removal of humic acid from piggery digestate by combined microalgae and electric field. BIORESOURCE TECHNOLOGY 2022; 347:126668. [PMID: 34998925 DOI: 10.1016/j.biortech.2021.126668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Microalgae technology is a promising method for treating piggery digestate, while its removal ability of humic acids (HAs) is poor. Here, an electric field-microalgae system (EFMS) was used to improve the removal of HAs from the piggery digestate. Results indicated that the removal of HAs by EFMS relied on the initial concentration of HAs, electrical intensity, the initial inoculation concentration of microalgae and pH. Values of these parameters were optimized as electrical intensity of 1.2 V/cm, microalgae initial inoculation concentration of 0.1 g/L and pH 5.0. The HAs removal efficiency by EFMS (55.38%) was 13% and 38% higher than that by single electric field and microalgal technology. It was observed that oxidation, coagulation and assimilation contributed to the removal of HAs, suggesting that EFMS could serve as an attractive and cost-effective technique for the removal of HAs from the piggery digestate.
Collapse
Affiliation(s)
- Longzao Luo
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China; The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Miao Li
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China
| | - Shuang Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xiaoai Lin
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China
| | - Xing Liao
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China
| | - Changsheng Peng
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
13
|
Kumar A, Verma LM, Sharma S, Singh N. Overview on agricultural potentials of biogas slurry (BGS): applications, challenges, and solutions. BIOMASS CONVERSION AND BIOREFINERY 2022; 13:1-41. [PMID: 35004124 PMCID: PMC8725965 DOI: 10.1007/s13399-021-02215-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 06/01/2023]
Abstract
The residual slurry obtained from the anaerobic digestion (AD) of biogas feed substrates such as livestock dung is known as BGS. BGS is a rich source of nutrients and bioactive compounds having an important role in establishing diverse microbial communities, accelerating nutrient use efficiency, and promoting overall soil and plant health management. However, challenges such as lower C/N transformation rates, ammonia volatilization, high pH, and bulkiness limit their extensive applications. Here we review the strategies of BGS valorization through microbial and organomineral amendments. Such cohesive approaches can serve dual purposes viz. green organic inputs for sustainable agriculture practices and value addition of biomass waste. The literature survey has been conducted to identify the knowledge gaps and critically analyze the latest technological interventions to upgrade the BGS for potential applications in agriculture fields. The major points are as follows: (1) Bio/nanotechnology-inspired approaches could serve as a constructive platform for integrating BGS with other organic materials to exploit microbial diversity dynamics through multi-substrate interactions. (2) Advancements in next-generation sequencing (NGS) pave an ideal pathway to study the complex microflora and translate the potential information into bioprospecting of BGS to ameliorate existing bio-fertilizer formulations. (3) Nanoparticles (NPs) have the potential to establish a link between syntrophic bacteria and methanogens through direct interspecies electron transfer and thereby contribute towards improved efficiency of AD. (4) Developments in techniques of nutrient recovery from the BGS facilities' negative GHGs emissions and energy-efficient models for nitrogen removal. (5) Possibilities of formulating low-cost substrates for mass-multiplication of beneficial microbes, bioprospecting of such microbes to produce bioactive compounds of anti-phytopathogenic activities, and developing BGS-inspired biofertilizer formulations integrating NPs, microbial inoculants, and deoiled seed cakes have been examined.
Collapse
Affiliation(s)
- Ajay Kumar
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
- Department of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, UP 201012 India
| | - Lahur Mani Verma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
| | - Satyawati Sharma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
| | - Neetu Singh
- Department of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, UP 201012 India
| |
Collapse
|
14
|
Qi F, Jia Y, Mu R, Ma G, Guo Q, Meng Q, Yu G, Xie J. Convergent community structure of algal-bacterial consortia and its effects on advanced wastewater treatment and biomass production. Sci Rep 2021; 11:21118. [PMID: 34702904 PMCID: PMC8548336 DOI: 10.1038/s41598-021-00517-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/06/2021] [Indexed: 11/08/2022] Open
Abstract
Microalgal-bacterial consortium is an effective way to meet increasingly stringent standards in wastewater treatment. However, the mechanism of wastewater removal effect has not been properly explained in community structure by phycosphere. And little is known about that the concept of macroecology was introduced into phycosphere to explain the phenomenon. In the study, the algal-bacterial consortia with different ratios of algae and sludge were cultured in same aerobic wastewater within 48 h in photobioreactors (PSBRs). Community structure at start and end was texted by metagenomic analysis. Bray-Curtis similarities analysis based on microbial community showed that there was obvious convergent succession in all consortia, which is well known as "convergence" in macroecology. The result showed that Bray-Curtis similarities at End (overall above 0.88) were higher than these at Start (almost less than 0.66). In terms of community structure, the consortium with 5:1 ratio at Start are the more similar with the consortia at End by which the maximum removal of total dissolved nitrogen (TDN, 73.69%), total dissolved phosphorus (TDP, 94.40%) and NH3-N (93.26%) in wastewater treatment process and biomass production (98.2%) higher than other consortia, according with climax community in macroecology with the highest resource utilization than other communities. Therefore, the macroecology can be introduced into phycosphere to explain the consortium for advanced wastewater treatment and optimization community structure. And the study revealed a novel insight into treatment effect and community structure of algal-bacterial consortia for advanced wastewater treatment, a new idea for to shortening the culture time of consortium and optimize predicting their ecological community structure and predicting ecological community.
Collapse
Affiliation(s)
- Feng Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Yantian Jia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Ruimin Mu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Guixia Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Qingyang Guo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Qianya Meng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Gejiang Yu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Jun Xie
- Shandong Provincial Eco-Environment Monitoring Center, Jinan, China
| |
Collapse
|
15
|
Luo L, Luo S, Wang H, Hu K, Lin X, Liu L, Yan B. Effect of nano-TiO 2 on humic acid utilization from piggery biogas slurry by microalgae. BIORESOURCE TECHNOLOGY 2021; 337:125414. [PMID: 34174768 DOI: 10.1016/j.biortech.2021.125414] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Resource recovery from piggery biogas slurry has become an inevitable demand for sustainable development of pig industry. Microalgae show great potential in recovering nitrogen and phosphorus from piggery slurry, but struggle to utilize organic pollutants, as most of them are inert components (e.g., humic acids, HAs). In this study, nano-TiO2 was used to enhance the utilization of HAs by microalgae from piggery biogas slurry. Results showed that the optimal conditions for microalgal growth and HAs removal by the microalgae-TiO2 coupling system were TiO2 dosage of 0.30 g/L, microalgal inoculation concentration of 0.40 g/L, light intensity of 360 µmol photon/(m2·s) and temperature of 30 °C, with the microalgal chlorophyll concentration of 6.51 mg/L and HAs removal efficiency of 50.14%. Analysis of HAs composition variations in the piggery biogas slurry indicated that the decrease of HAs was caused by their decomposition into small molecules under the photocatalytic reactions of TiO2.
Collapse
Affiliation(s)
- Longzao Luo
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China
| | - Shuang Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Huimin Wang
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China
| | - Kexin Hu
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China
| | - Xiaoai Lin
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Linhai Liu
- School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
16
|
Qu W, Zhang C, Chen X, Ho SH. New concept in swine wastewater treatment: development of a self-sustaining synergetic microalgae-bacteria symbiosis (ABS) system to achieve environmental sustainability. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126264. [PMID: 34118545 DOI: 10.1016/j.jhazmat.2021.126264] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Much attention has been paid to developing methods capable of synchronous removal of pollutants from swine wastewater. Due to the natural symbiotic interactions between microalgae and bacteria, the microalgae-bacteria symbiosis (ABS) system has been found to have potential for treating wastewater. However, the corresponding biological mechanisms in the ABS system and the role of dynamic microbial community evolution in pollutant removal systems remain poorly understood. Therefore, we investigate the potential of an ABS system for pollutant removal applications and analyze the bacterial consortium symbiotically combined with Chlorella sp. MA1 and Coelastrella sp. KE4. The NH4+-N and PO43--P removal efficiencies were significantly increased from 12.79% to 99.52% and 35.66% to 96.06% due to biotic interactions between the microalgae and bacteria. The abundance of bacterial taxa and genes related to oxidative stress, cell growth and nitrogen transfer were found to increase in response to photosynthesis, respiration and NH4+-N uptake. Furthermore, pathogen inactivation was induced via microalgae, co-driven by microbial succession under high dissolved oxygen conditions. In this microalgae-enhanced ABS system, the interactions between microalgae and bacteria are established for pathogens elimination and nitrogen cycling, verifying that the ABS system is an effective and environmentally sustainable swine wastewater treatment method.
Collapse
Affiliation(s)
- Wenying Qu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
17
|
Mu R, Jia Y, Ma G, Liu L, Hao K, Qi F, Shao Y. Advances in the use of microalgal-bacterial consortia for wastewater treatment: Community structures, interactions, economic resource reclamation, and study techniques. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1217-1230. [PMID: 33305497 DOI: 10.1002/wer.1496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The rise in living standards has generated a demand for higher aquatic environmental quality. The microalgal community and the surrounding organic molecules, environmental factors, and microorganisms, such as bacteria, are together defined as the phycosphere. The bacteria in the phycosphere can form consortia with microalgae through various forms of interaction. The study of the species in these consortia and their relative proportions is of great significance in determining the species and strains of stable algae that can be used in sewage treatment. This article summarizes the following topics: the interactions between microalgae and bacteria that are required to establish consortia; how symbiosis between algae and bacteria is established; microalgal competition with bacteria through inhibition and anti-inhibition strategies; the influence of environmental factors on microalgal-bacterial aggregates, such as illumination conditions, pH, dissolved oxygen, temperature, and nutrient levels; the application of algal-bacterial aggregates to enhance biomass production and nutrient reuse; and techniques for studying the community structure and interactions of algal-bacterial consortia, such as microscopy, flow cytometry, and omics. PRACTITIONER POINTS: Community structures in microalgal-bacterial consortia in wastewater treatment. Interactions between algae and bacteria in wastewater treatment. Effects of ecological factors on the algal-bacterial community in wastewater treatment. Economically recycling resources from algal-bacterial consortia based on wastewater. Technologies for studying microalgal-bacterial consortia in wastewater treatment.
Collapse
Affiliation(s)
- Ruimin Mu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yantian Jia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Guixia Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | | | - Kaixuan Hao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Feng Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yuanyuan Shao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| |
Collapse
|
18
|
Li B, Jing F, Hu Z, Liu Y, Xiao B, Guo D. Simultaneous recovery of nitrogen and phosphorus from biogas slurry by Fe-modified biochar. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101213] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Vučić V, Müller S. New developments in biological phosphorus accessibility and recovery approaches from soil and waste streams. Eng Life Sci 2021; 21:77-86. [PMID: 33716607 PMCID: PMC7923555 DOI: 10.1002/elsc.202000076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 01/18/2023] Open
Abstract
Phosphorus (P) is a non-renewable resource and is on the European Union's list of critical raw materials. It is predicted that the P consumption peak will occur in the next 10 to 20 years. Therefore, there is an urgent need to find accessible sources in the immediate environment, such as soil, and to use alternative resources of P such as waste streams. While enormous progress has been made in chemical P recovery technologies, most biological technologies for P recovery are still in the developmental stage and are not reaching industrial application. Nevertheless, biological P recovery could offer good solutions as these technologies can return P to the human P cycle in an environmentally friendly way. This mini-review provides an overview of the latest approaches to make P available in soil and to recover P from plant residues, animal and human waste streams by exploiting the universal trait of P accumulation and P turnover in microorganisms and plants.
Collapse
Affiliation(s)
- Vedran Vučić
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research ‐ UFZDepartment Environmental MicrobiologyLeipzigGermany
| | - Susann Müller
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research ‐ UFZDepartment Environmental MicrobiologyLeipzigGermany
| |
Collapse
|
20
|
Zhang W, Zhao C, Cao W, Sun S, Hu C, Liu J, Zhao Y. Removal of pollutants from biogas slurry and CO 2 capture in biogas by microalgae-based technology: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28749-28767. [PMID: 32468373 DOI: 10.1007/s11356-020-09282-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Recent research interest has focused on microalgae cultivation for biogas slurry purification and biogas upgrading due to the requirement of high efficiency for nutrient uptake and CO2 capture, with economic feasibility and environmental benefits. Numerous studies have suggested that biogas slurry purification and biogas upgrading can occur simultaneously via microalgae-based technology. However, there is no comprehensive review on this technology with respect to the nutrient removal from biogas slurry and biogas upgrading. This article summarizes microalgal cultivation with biogas slurry and biogas from anaerobic digestion. The parameters, techniques, and modes of microalgae cultivation have been discussed in detail to achieve high efficiency in biogas slurry purification and biogas upgrading. In addition, the evaluation of energy efficiency and safety has also been explored. Compared with mono-cultivation of microalgae and co-cultivation of microalgae and bacteria, microalgae-fungi symbiosis has demonstrated greater development prospect and higher energy efficiency and the energy consumption for pollutants and CO2 removal were 14.2-39.0% · USD-1 and 19.9-23.3% · USD-1, respectively. Further, a sustainable recycling scheme is proposed for the purification of biogas slurry from anaerobic digestion process and biogas upgrading via microalgae-based technology.
Collapse
Affiliation(s)
- Wenguang Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130012, People's Republic of China
| | - Chunzhi Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 200235, People's Republic of China
| | - Weixing Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Shiqing Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Juan Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| |
Collapse
|
21
|
Qu W, Loke Show P, Hasunuma T, Ho SH. Optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomonas sp. QWY37 used for cell-displayed bioethanol production. BIORESOURCE TECHNOLOGY 2020; 305:123072. [PMID: 32163881 DOI: 10.1016/j.biortech.2020.123072] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along with high pollutant removal efficiencies (chemical oxygen demand: 81%, total nitrogen: 96%, total phosphate: nearly 100%) by optimizing culture conditions and using an appropriate operation strategy. Through a cell-displayed technology that utilizes combined engineered system, a maximum microalgal bioethanol yield of 61 g/L was achieved. This is the first report demonstrating the highest microalgal carbohydrate productivity using swine wastewater without any pretreatments associated with direct high-density bioethanol production from the subsequent microalgal biomass. This work may represent a breakthrough in achieving feasible microalgal bioethanol conversion from real swine wastewater.
Collapse
Affiliation(s)
- Wenying Qu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Pau Loke Show
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor Darul Ehsan, Malaysia
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe 657-8501, Japan
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
22
|
Campus Sewage Treatment by Golenkinia SDEC-16 and Biofuel Production under Monochromic Light. J CHEM-NY 2020. [DOI: 10.1155/2020/5029535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The integration of microalgal cultivation in wastewater can fulfill the dual roles of pollutant degradation and biomass output. Meanwhile, the LED lights with different wavelengths have a great effect on the growth and metabolism of microalgae. In this study, Golenkinia SDEC-16, a strain isolated for biofuel production, was evaluated to verify its potentials for campus sewage treatment and lipid accumulation under the red, green, and blue lights. The results indicated that the treated campus sewage met the first grade level in the Chinese pollutant discharge standards for municipal wastewater treatment plants within seven days under both red and blue light. The green light failed to exhibit excellent performance in nutrient removal, but facilitated the lipid synthesis as high as 42.99 ± 3.48%. The increased lipid content was achieved along with low biomass accumulation owing to low effective light utilization, indicating that the green light could be merely used as a stimulus strategy. The red light benefited the photosynthesis of Golenkinia SDEC-16, with the maximal biomass concentration of 0.80 ± 0.03 g/L and lipid content of 36.90 ± 3.62%, which can attain the optimal balance between biomass production and lipid synthesis.
Collapse
|