1
|
Sun S, Wang Q, Wang X, Wu C, Zhang X, Bai J, Sun B. Dry torrefaction and continuous thermochemical conversion for upgrading agroforestry waste into eco-friendly energy carriers: Current progress and future prospect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167061. [PMID: 37714342 DOI: 10.1016/j.scitotenv.2023.167061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Agroforestry Waste (AW) is seen as a carbon neutral resource. However, the poor quality of AW reduced its potential application value. Even more unfortunately, chlorine in AW led to the formation of organic pollutants such as dioxins under higher temperatures. Alkali and alkaline earth metals (AAEMs) in ash may deepen the reaction degree. Co-pretreatment of dry torrefaction and de-ashing followed by thermochemical conversion is a promising technology, which can improve raw material quality, inhibit the release of organic pollutants and transform AW into eco-friendly energy carriers. In order to better understand the process, theoretical basis such as the structural characteristics, thermal properties and separation methods of structural components of AW are described in detail. In addition, dry torrefaction related reactors, process parameters, kinetic analysis models as well as the evaluation methods of torrefaction degree and environmental impact are systematically reviewed. The problem of ash accumulation caused by dry torrefaction can be well solved by de-ashing pretreatment. This paper provides a comprehensive discussion on the role of the two- and three-stage conversion technologies around dry torrefacion, de-ashing pretreatment and thermochemical conversion in products quality enhancement. Finally, the existing technical challenges, including suppression of gaseous pollutant release, harmless treatment and reuse of torrefaction liquid product (TPL) and reduction of torrefaction operating costs, are summarized and evaluated. The future research directions, such as vitrification of the reused TPL (after de-ashing or acid catalysis) and integration of oxidative torrefaction with thermochemical conversion technologies, are proposed.
Collapse
Affiliation(s)
- Shipeng Sun
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| | - Qing Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China.
| | - Xinmin Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| | - Chunlei Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| | - Xu Zhang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| | - Jingru Bai
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| | - Baizhong Sun
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| |
Collapse
|
2
|
Xu Y, Qi F, Yan Y, Sun W, Bai T, Lu N, Luo H, Liu C, Yuan B, Sheng Z, Liu T. The interaction of different chlorine-based additives with swine manure during pyrolysis: Effects on biochar properties and heavy metal volatilization. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:52-61. [PMID: 37406504 DOI: 10.1016/j.wasman.2023.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/22/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Poor properties and high concentrations of heavy metals are still major concerns of successful application of animal manure-derived biochar into the environment. This work thus proposed to add chlorine-based additives (Cl-additives, i.e., CaCl2, MgCl2, KCl, NaCl, and PVC, 50 g Cl/ kg) to improve biochar properties and enhance heavy metal volatilization during swine manure pyrolysis. The results showed that the addition of CaCl2 could improve the retention of carbon (C) by up to 13.1% during pyrolysis, whereas other Cl-additives had little effect on it. Moreover, CaCl2 could enhance the aromaticity of biochar, as indicated by lower H/C ratio than raw biochar. Pretreatment with CaCl2, MgCl2 and PVC reduced phosphorus (P) solubility but increased its bioavailability via the formation of chlorapatite (Ca5(PO4)3Cl). The CaCl2 was more effective for enhancing the volatilization efficiency of heavy metals than other Cl-additives, except for Pb that tended to react with the generated Ca5(PO4)3Cl to form more stable and less volatile Pb5(PO4)3Cl. However, high pyrolysis temperature (900℃) was essential for CaCl2 to simultaneously decrease the bioavailability of heavy metals. Our results indicated that co-pyrolysis of swine manure with CaCl2 is a promising strategy to increase C retention, P bioavailability, and volatilization of heavy metals, and, at higher temperature, reduce the bioavailability of biochar-born heavy metals.
Collapse
Affiliation(s)
- Yonggang Xu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake/ Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| | - Fangjie Qi
- Nanjing Institute of Soil Science, Chinese Academy of Sciences, 71 Beijing East Road, Nanjing, Jiangsu Province 210008, China; Global Centre for Environmental Research, Advanced Technology Center (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| | - Yubo Yan
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tianxia Bai
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Nan Lu
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
| | - Hong Luo
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
| | - Cong Liu
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
| | - Biao Yuan
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
| | - Zhenhuan Sheng
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Tingwu Liu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake/ Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an 223300, China
| |
Collapse
|
3
|
Naeem M, Imran M, Latif S, Ashraf A, Hussain N, Boczkaj G, Smułek W, Jesionowski T, Bilal M. Multifunctional catalyst-assisted sustainable reformation of lignocellulosic biomass into environmentally friendly biofuel and value-added chemicals. CHEMOSPHERE 2023; 330:138633. [PMID: 37030343 DOI: 10.1016/j.chemosphere.2023.138633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/14/2023]
Abstract
Rapid urbanization is increasing the world's energy demand, making it necessary to develop alternative energy sources. These growing energy needs can be met by the efficient energy conversion of biomass, which can be done by various means. The use of effective catalysts to transform different types of biomasses will be a paradigm change on the road to the worldwide goal of economic sustainability and environmental protection. The development of alternative energy from biomass is not easy, due to the uneven and complex components present in lignocellulose; accordingly, the majority of biomass is currently processed as waste. The problems may be overcome by the design of multifunctional catalysts, offering adequate control over product selectivity and substrate activation. Hence, this review describes recent developments involving various catalysts such as metallic oxides, supported metal or composite metal oxides, char-based and carbon-based substances, metal carbides and zeolites, with reference to the catalytic conversion of biomass including cellulose, hemicellulose, biomass tar, lignin and their derivative compounds into useful products, including bio-oil, gases, hydrocarbons, and fuels. The main aim is to provide an overview of the latest work on the use of catalysts for successful conversion of biomass. The review ends with conclusions and suggestions for future research, which will assist researchers in utilizing these catalysts for the safe conversion of biomass into valuable chemicals and other products.
Collapse
Affiliation(s)
- Muhammad Naeem
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Adnan Ashraf
- Department of Chemistry, The University of Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 54000, Pakistan
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdańsk, 80-233, Poland; EkoTech Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdańsk, 80-233, Poland
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland.
| |
Collapse
|
4
|
Zhang W, Wang Z, Ge T, Yang C, Song W, Li S, Ma R. Catalytic pyrolysis of corn straw for deoxygenation of bio-oil with different types of catalysts. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1018-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Yuan Y, Zhou M, Shi J, Zhang C, Zhang J, Rinklebe J, Yin W, Wang S, Wang X. The significant role of electron donating capacity and carbon structure of biochar to electron transfer of zerovalent iron. CHEMOSPHERE 2022; 287:132381. [PMID: 34606902 DOI: 10.1016/j.chemosphere.2021.132381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Herein, the major biochar properties were correlated with electron transfer of zerovalent iron (ZVI) and contribution of biomass constituents to biochar property was ascertained to optimize electron transfer of ZVI. To this end, five respective stalk-type and wood-type lignocellulosic biomasses were pyrolzed at 600 °C to prepare biochars to harbor ZVI (ZVI/BC). Thermogravimetric analysis demonstrated woody biomasses decomposed more intensively at higher temperature relative to stalky biomass. ZVI/BC were characterized with Raman, X-ray diffraction, and electrochemical analyses including electron donating capacity (EDC) and electron accepting capacity (EAC). Pearson correlation and partial least-squares (PLS) analyses confirmed that Cr(VI) reduction capacity was negatively related to Tafel corrosion potential and intensity ratio of ID/IG, but significantly positively-related to EDC of BC, in which EDC was a predominant attribute to contribute to reductive capacity toward Cr(VI) reduction. That is, greater EDC and higher graphitic carbon structure of biochar due to cellulose and hemicellulose components favor electron transfer of ZVI toward Cr(VI) reduction.
Collapse
Affiliation(s)
- Yangfan Yuan
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Min Zhou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Jun Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Changai Zhang
- School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Jian Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Jӧrg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Weiqin Yin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225127, Jiangsu, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China.
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225127, Jiangsu, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China.
| |
Collapse
|
6
|
Kartal F, Özveren U. An improved machine learning approach to estimate hemicellulose, cellulose, and lignin in biomass. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Chen H, Liu Z, Chen X, Chen Y, Dong Z, Wang X, Yang H. Comparative pyrolysis behaviors of stalk, wood and shell biomass: Correlation of cellulose crystallinity and reaction kinetics. BIORESOURCE TECHNOLOGY 2020; 310:123498. [PMID: 32422556 DOI: 10.1016/j.biortech.2020.123498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
In this study, the pyrolysis process of 20 kinds of biomass samples in 3 types (stalk-type, wood-type and shell-type) was investigated with thermogravimetric analyzer, and the correlation of biomass pyrolysis property with biomass chemical structure was put forward. The results showed that the pyrolysis of the 20 kinds of biomass can be classified by types as the pyrolysis of stalk-type biomass had an overlapping decomposition peak of hemicellulose and cellulose at 317 °C. However, the pyrolysis of wood-type and shell-type biomass showed two separated peaks at low temperature and the cellulose peak was higher in wood-type biomass (365 °C) compared to shell-type biomass (348 °C). The different pyrolysis process mentioned above could be due to the positive correlation between cellulose crystallinity and the decomposition temperature of cellulose as well as the activation energy at the decomposition stage of cellulose.
Collapse
Affiliation(s)
- Hanping Chen
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan, Hubei, People's Republic of China
| | - Zihao Liu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan, Hubei, People's Republic of China
| | - Xu Chen
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan, Hubei, People's Republic of China.
| | - Yingquan Chen
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan, Hubei, People's Republic of China
| | - Zhiguo Dong
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan, Hubei, People's Republic of China
| | - Xianhua Wang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan, Hubei, People's Republic of China
| | - Haiping Yang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan, Hubei, People's Republic of China
| |
Collapse
|
8
|
Kinetics of the Catalytic Thermal Degradation of Sugarcane Residual Biomass Over Rh-Pt/CeO2-SiO2 for Syngas Production. Catalysts 2020. [DOI: 10.3390/catal10050508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Thermochemical processes for biomass conversion are promising to produce renewable hydrogen-rich syngas. In the present study, model fitting methods were used to propose thermal degradation kinetics during catalytic and non-catalytic pyrolysis (in N2) and combustion (in synthetic air) of sugarcane residual biomass. Catalytic processes were performed over a Rh-Pt/CeO2-SiO2 catalyst and the models were proposed based on the Thermogravimetric (TG) analysis, TG coupled to Fourier Transformed Infrared Spectrometry (TG-FTIR) and TG coupled to mass spectrometry (TG-MS). Results showed three different degradation stages and a catalyst effect on product distribution. In pyrolysis, Rh-Pt/CeO2-SiO2 catalyst promoted reforming reactions which increased the presence of H2. Meanwhile, during catalytic combustion, oxidation of the carbon and hydrogen present in biomass favored the release of H2O, CO and CO2. Furthermore, the catalyst decreased the overall activation energies of pyrolysis and combustion from 120.9 and 154.9 kJ mol−1 to 107.0 and 138.0 kJ mol−1, respectively. Considering the positive effect of the Rh-Pt/CeO2-SiO2 catalyst during pyrolysis of sugarcane residual biomass, it could be considered as a potential catalyst to improve the thermal degradation of biomass for syngas production. Moreover, the proposed kinetic parameters are useful to design an appropriate thermochemical unit for H2-rich syngas production as a non-conventional energy technology.
Collapse
|
9
|
Xing J, Luo K, Wang H, Fan J. Estimating biomass major chemical constituents from ultimate analysis using a random forest model. BIORESOURCE TECHNOLOGY 2019; 288:121541. [PMID: 31150970 DOI: 10.1016/j.biortech.2019.121541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Chemical constituents are important properties for utilization of biomass, and experimental approaches are always expensive and time-consuming to determinate those properties. Here, a novel random forest (RF) model is developed for accurately predicting biomass major chemical constituents from the much-easier available ultimate analysis, and compared with the previous correlation as well as the experimental data. Two databases are constructed for training and application of the RF model from available literature. The training results show that the determination coefficients (R2) of the RF model predictions are 0.954, 0.933 and 0.968 for cellulose, hemicellulose and lignin, respectively. The application results show that the present RF model can give accurate predictions on chemical constituents for various biomasses with MAPE<20%, and R2 are 0.862, 0.904 and 0.962 for predictions of cellulose, hemicellulose and lignin, respectively. While the previous correlation only works for a narrow range used to develop the correlation, and gives unrealistic negative predictions with MAPE>500% for outside samples.
Collapse
Affiliation(s)
- Jiangkuan Xing
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Kun Luo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Haiou Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jianren Fan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|