1
|
Mushtaq Q, Ishtiaq U, Joly N, Martin P, Qazi J. Investigation and characterization of changes in potato peels by thermochemical acidic pre-treatment for extraction of various compounds. Sci Rep 2024; 14:12655. [PMID: 38825597 PMCID: PMC11144709 DOI: 10.1038/s41598-024-63364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
Potato peel waste (PPW) is an underutilized substrate which is produced in huge amounts by food processing industries. Using PPW a feedstock for production of useful compounds can overcome the problem of waste management as well as cost-effective. In present study, potential of PPW was investigated using chemical and thermochemical treatment processes. Three independent variables i.e., PPW concentration, dilute sulphuric acid concentration and liberation time were selected to optimize the production of fermentable sugars (TS and RS) and phenolic compounds (TP). These three process variables were selected in the range of 5-15 g w/v substrate, 0.8-1.2 v/v acid conc. and 4-6 h. Whole treatment process was optimized by using box-behnken design (BBD) of response surface methodology (RSM). Highest yield of total and reducing sugars and total phenolic compounds obtained after chemical treatment was 188.00, 144.42 and 43.68 mg/gds, respectively. The maximum yield of fermentable sugars attained by acid plus steam treatment were 720.00 and 660.62 mg/gds of TS and RS, respectively w.r.t 5% substrate conc. in 0.8% acid with residence time of 6 h. Results recorded that acid assisted autoclaved treatment could be an effective process for PPW deconstruction. Characterization of substrate before and after treatment was checked by SEM and FTIR. Spectras and micrographs confirmed the topographical variations in treated substrate. The present study was aimed to utilize biowaste and to determine cost-effective conditions for degradation of PWW into value added compounds.
Collapse
Affiliation(s)
- Qudsia Mushtaq
- Institute of Zoology, Microbial Biotechnolog Laboratory, University of the Punjab, Lahore, 54590, Pakistan
| | - Uzair Ishtiaq
- Department of Research and Development, Paktex Industries, 2.5 KM Tatlay Road, Kamoke, 52470, Gujranwala, Pakistan
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Nicolas Joly
- Unite Transformations & Agroresources - ULR7519, Univ. Artois, UniLaSalle, 62408, Bethune, France
| | - Patrick Martin
- Unite Transformations & Agroresources - ULR7519, Univ. Artois, UniLaSalle, 62408, Bethune, France.
| | - JavedIqbal Qazi
- Institute of Zoology, Microbial Biotechnolog Laboratory, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
2
|
Nizzy AM, Kannan S, Kanmani S. Utilization of plant-derived wastes as the potential biohydrogen source: a sustainable strategy for waste management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34839-34858. [PMID: 38744759 DOI: 10.1007/s11356-024-33610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
The sustainable economy has shown a renewed interest in acquiring access to the resources required to promote innovative practices that favor recycling and the reuse of existing, unconsidered things over newly produced ones. The production of biohydrogen through dark anaerobic fermentation of organic wastes is one of the intriguing possibilities for replacing fossil-based fuels through the circular economy. At present, plant-derived waste from the agro-based industry is the main global concern. When these wastes are improperly disposed of in landfills, they become the habitat for several pathogens. Additionally, it contaminates surface water as a result of runoff, and the leachate that is created from the waste enters groundwater and degrades its quality. However, cellulose and hemicellulose-rich plant wastes from agriculture fields and agro-based industries have been employed as the most efficient feedstock since carbohydrates are the primary substrate for the synthesis of biohydrogen. To produce biohydrogen from plant-derived wastes on a large scale, it is necessary to explore comprehensive knowledge of lab-scale parameters and pretreatment strategies. This paper summarizes the problems associated with the improper management of plant-derived wastes and discusses the recent developments in dark fermentation and substrate pretreatment techniques with the goal of gaining significant insight into the biohydrogen production process. It also highlights the utilization of anaerobic digestate, which is left over after biohydrogen gas as feedstock for the development of value-added products such as volatile fatty acids (VFA), biochar, and biofertilizer.
Collapse
Affiliation(s)
| | - Suruli Kannan
- Department of Environmental Studies, School of Energy Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Sellappa Kanmani
- Centre for Environmental Studies, Anna University, Chennai, Tamil Nadu, 625021, India
| |
Collapse
|
3
|
Ramirez-Cabrera PA, Lozada-Castro JJ, Guerrero-Fajardo CA. Screw reactor design for potato peel pretreatment using the steam explosion. BIORESOURCE TECHNOLOGY 2024; 400:130675. [PMID: 38608786 DOI: 10.1016/j.biortech.2024.130675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
In this article we can observe the scanning by the literature for the pretreatment of steam explosion applied to lignocellulose biomass. A comparison of the chemical and physical characterization of potato peel as a lignocellulose biomass. Besides, the innovative design of a continuous reactor for the potato peel steam explosion process is shown, with specific temperature and pressure conditions on a pilot scale, detailing its parts. Finally, a finite element analysis was performed where stress results were obtained from the reactor material, severity factor, structural analysis and thermal analysis, providing a panorama of the reactor's behavior with the conditions specific.
Collapse
Affiliation(s)
- Paula A Ramirez-Cabrera
- Departamento de Quimica-Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá 16486, Colombia
| | - Juan J Lozada-Castro
- Departamento de Quimica-Facultad de Ciencias Naturales, Universidad de Nariño, Calle 18 cra 50 Sede Torobajo, Pasto 520002, Colombia
| | - Carlos A Guerrero-Fajardo
- Departamento de Quimica-Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá 16486, Colombia.
| |
Collapse
|
4
|
Kag S, Kumar P, Kataria R. Potato Peel Waste as an Economic Feedstock for PHA Production by Bacillus circulans. Appl Biochem Biotechnol 2024; 196:2451-2465. [PMID: 37776440 DOI: 10.1007/s12010-023-04741-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
Polymers of hydroxy alkanoates (PHA), also known as biodegradable, biocompatible plastic, are potential alternatives to petrochemical-based plastics. PHA is synthesized by microbes in their cytoplasm in the form of inclusion bodies in stress conditions such as nitrogen, oxygen, and phosphorus with excessive amounts of carbon. Sugar extracted from potato peel in the form of hydrolysate was employed as a carbon source for PHA production after acidic hydrolysis. The acid hydrolysis conditions are optimized for dilute acid concentrations and temperatures. The highest sugar-yielding condition (2% 15 min at 121 ℃) was used for submerged fermentation for PHA production by Bacillus circulans MTCC 8167. Fourier transform infrared spectroscopy, nuclear magnetic resonance, and differential scanning calorimetry were used for polymer characterization. Gas chromatography coupled with mass spectrometry confirmed the monomers such as hexadecenoic acid 3-hydroxy, methyl esters, pentadecanoic acid 14 methyl esters, and tetradecanoic acid 12- methyl esters. Crotonic acid assay was used for quantification of PHA and it was found highest (0.232 ± 0.04 g/L) at 37 °C and 36 h of incubation. Hence, potato peel waste could be a potential feedstock for waste to valuable production.
Collapse
Affiliation(s)
- Sonika Kag
- Department of Biotechnology, Delhi Technological University (DTU), Shahbad Daulatpur Village, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Department of Biotechnology, Delhi Technological University (DTU), Shahbad Daulatpur Village, Bawana Road, Delhi, 110042, India
| | - Rashmi Kataria
- Department of Biotechnology, Delhi Technological University (DTU), Shahbad Daulatpur Village, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
5
|
Rodríguez-Martínez B, Coelho E, Gullón B, Yáñez R, Domingues L. Potato peels waste as a sustainable source for biotechnological production of biofuels: Process optimization. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:320-328. [PMID: 36413884 DOI: 10.1016/j.wasman.2022.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Potato peel waste (PPW) is a starchy by-product generated in great amounts during the industrial processing of potatoes. It can be used as a low cost alternative, and renewable feedstock for the production of second generation bioethanol. In order to intensify this process, Saccharomyces cerevisiae Ethanol Red®, a robust and thermotolerant yeast strain, was selected and two experimental designs and response surfaces assessment were conducted to enable very high gravity fermentations (VHGF) using PPW as feedstock. The first one focused on the optimization of the liquefaction and enzymatic hydrolysis stages, enabling a maximum ethanol concentration of 116.5 g/L and a yield of 80.4 % at 72 h of fermentation; whereas, the second one, focus on the optimization of the pre-saccharification and fermentation stages, which further increased process productivity, leading to a maximum ethanol concentration of 108.8 g/L and a yield of 75.1 % after 54 h of fermentation. These results allowed the definition of an intensified pre-saccharification and simultaneous saccharification and fermentation (PSSF) process for ethanol production from PPW, resorting to short liquefaction and pre-saccharification times, 2 h and 10 h respectively, at an enzyme loading of 80 U/g PPW of Viscozyme and 5 UE/g PPW of SAN Super and a higher fermentation temperature of 34 °C due to the use of a thermotolerant yeast. Overall, with these conditions and solely from PPW without any supplementation, the outlined PSSF process allowed reaching a high ethanol concentration and yield (104.1 g/L and 71.9 %, respectively) standing at high productivities with only 54 h of fermentation.
Collapse
Affiliation(s)
- Beatriz Rodríguez-Martínez
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, As Lagoas, 32004 Ourense, Spain
| | - Eduardo Coelho
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, As Lagoas, 32004 Ourense, Spain
| | - Remedios Yáñez
- Universidade de Vigo, Departamento de Enxeñaría Química, Escola de Enxeñaría Industrial, Campus Lagoas-Marcosende 9, Vigo 36310, Spain; CINBIO, Universidade de Vigo, 36310 Vigo, Spain.
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
6
|
High-Pressure Water Jet System Treatment of Argan Nut Shell and Enzymatic Hydrolysis for Bioethanol Production. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Argan nut shell represents the most generated by-product during the process of the extraction of argan oil. For the first time, argan nut shell was characterized and assessed as a new potential feedstock for bioethanol production using a combination of mechanical and enzymatic pretreatment. Argan shell samples were first disintegrated using the Star Burst system, which involves a high-pressure water jet system. Then, the pretreated argan nut shell was subjected to enzymatic hydrolysis using Viscozyme L (30 FBGU/g). Afterwards, the fermentation of the hydrolysate by Saccharomyces cerevisiae was investigated. Argan nut shell, as a feedstock plentiful in carbohydrates, conferred a high yield of saccharification (90%) and an optimal ethanol bioconversion (45.25%) using Viscozyme L (30 FBGU/g) at 2%w/v of argan feedstock.
Collapse
|
7
|
Awasthi MK, Harirchi S, Sar T, Vs V, Rajendran K, Gómez-García R, Hellwig C, Binod P, Sindhu R, Madhavan A, Kumar ANA, Kumar V, Kumar D, Zhang Z, Taherzadeh MJ. Myco-biorefinery approaches for food waste valorization: Present status and future prospects. BIORESOURCE TECHNOLOGY 2022; 360:127592. [PMID: 35809874 DOI: 10.1016/j.biortech.2022.127592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Increases in population and urbanization leads to generation of a large amount of food waste (FW) and its effective waste management is a major concern. But putrescible nature and high moisture content is a major limiting factor for cost effective FW valorization. Bioconversion of FW for the production of value added products is an eco-friendly and economically viable strategy for addressing these issues. Targeting on production of multiple products will solve these issues to greater extent. This article provides an overview of bioconversion of FW to different value added products.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Vigneswaran Vs
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Karthik Rajendran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Ricardo Gómez-García
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Coralie Hellwig
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India
| | - A N Anoop Kumar
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram 673635, Kerala, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|
8
|
Abstract
Growing environmental concerns, increased population, and the need to meet the diversification of the source of global energy have led to increased demand for biofuels. However, the high cost of raw materials for biofuels production has continued to slow down the acceptability, universal accessibility, and affordability of biofuels. The cost of feedstock and catalysts constitutes a major component of the production cost of biofuels. Potato is one of the most commonly consumed food crops among various populations due to its rich nutritional, health, and industrial benefits. In the current study, the application of potato peel waste (PPW) for biofuel production was interrogated. The present state of the conversion of PPW to bioethanol and biogas, through various techniques, to meet the ever-growing demand for renewable fuels was reviewed. To satisfy the escalating demand for biohydrogen for various applications, the prospects for the synthesis of biohydrogen from PPW were proposed. Additionally, there is the potential to convert PPW to low-cost, ecologically friendly, and biodegradable bio-based catalysts to replace commercial catalysts. The information provided in this review will enrich scholarship and open a new vista in the utilization of PPW. More focused investigations are required to unravel more avenues for the utilization of PPW as a low-cost and readily available catalyst and feedstock for biofuel synthesis. The application of PPW for biofuel application will reduce the pump price of biofuels, ensure the appropriate disposal of waste, and contribute towards environmental cleanliness.
Collapse
|
9
|
Bhujbal SK, Ghosh P, Vijay VK, Rathour R, Kumar M, Singh L, Kapley A. Biotechnological potential of rumen microbiota for sustainable bioconversion of lignocellulosic waste to biofuels and value-added products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152773. [PMID: 34979222 DOI: 10.1016/j.scitotenv.2021.152773] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/05/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Lignocellulosic biomass is an abundant resource with untapped potential for biofuel, enzymes, and chemical production. Its complex recalcitrant structure obstructs its bioconversion into biofuels and other value-added products. For improving its bioconversion efficiency, it is important to deconstruct its complex structure. In natural systems like rumen, diverse microbial communities carry out hydrolysis, acidogenesis, acetogenesis, and methanogenesis of lignocellulosic biomass through physical penetration, synergistic and enzymatic actions enhancing lignocellulose degradation activity. This review article aims to discuss comprehensively the rumen microbial ecosystem, their interactions, enzyme production, and applications for efficient bioconversion of lignocellulosic waste to biofuels. Furthermore, meta 'omics' approaches to elucidate the structure and functions of rumen microorganisms, fermentation mechanisms, microbe-microbe interactions, and host-microbe interactions have been discussed thoroughly. Additionally, feed additives' role in improving ruminal fermentation efficiency and reducing environmental nitrogen losses has been discussed. Finally, the current status of rumen microbiota applications and future perspectives for the development of rumen mimic bioreactors for efficient bioconversion of lignocellulosic wastes to biofuels and chemicals have been highlighted.
Collapse
Affiliation(s)
- Sachin Krushna Bhujbal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Virendra Kumar Vijay
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rashmi Rathour
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Manish Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Lal Singh
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Atya Kapley
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| |
Collapse
|
10
|
Soltaninejad A, Jazini M, Karimi K. Sustainable bioconversion of potato peel wastes into ethanol and biogas using organosolv pretreatment. CHEMOSPHERE 2022; 291:133003. [PMID: 34808197 DOI: 10.1016/j.chemosphere.2021.133003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Potato processing industries generate considerable amounts of residues, i.e., potato peel wastes (PPW). Valorization of PPW for bioethanol and biogas production via a biorefining process was investigated in this study. Organosolv pretreatment was performed on the PPW using 50-75% (v/v) ethanol solution at 120-180 °C with/without the presence of 1% (w/w) H2SO4 (as a catalyst). After the pretreatment, the solvent, i.e., ethanol, was recovered by distillation. Catalyzed organosolv pretreatment using 50% (v/v) ethanol at 120 °C followed by enzymatic hydrolysis resulted in a high hydrolysate yield of 539.8 g glucose/kg dry PPW that was successfully fermented to 224.2 g ethanol/kg dry PPW. To recover more energy, the liquid fraction of the pretreatment remained after solvent recovery and the unhydrolyzed solids that remained from the enzymatic hydrolysis were anaerobically digested. From each kg of dry PPW, the anaerobic digestion produced 57.9 L biomethane. Thus, the biorefinery comprising ethanolic organosolv pretreatment, solvent recovery, enzymatic hydrolysis, ethanolic fermentation, and anaerobic digestion of residues was produced 8112 kJ energy per kg of dry PPW.
Collapse
Affiliation(s)
- Ali Soltaninejad
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammadhadi Jazini
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Chemical Engineering, Vrije Universiteit Brussel, 1050, Brussels, Belgium.
| |
Collapse
|
11
|
Ben Atitallah I, Antonopoulou G, Ntaikou I, Soto Beobide A, Dracopoulos V, Mechichi T, Lyberatos G. A Comparative Study of Various Pretreatment Approaches for Bio-Ethanol Production from Willow Sawdust, Using Co-Cultures and Mono-Cultures of Different Yeast Strains. Molecules 2022; 27:molecules27041344. [PMID: 35209130 PMCID: PMC8875012 DOI: 10.3390/molecules27041344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
The effect of different pretreatment approaches based on alkali (NaOH)/hydrogen peroxide (H2O2) on willow sawdust (WS) biomass, in terms of delignification efficiency, structural changes of lignocellulose and subsequent fermentation toward ethanol, was investigated. Bioethanol production was carried out using the conventional yeast Saccharomyces cerevisiae, as well as three non-conventional yeasts strains, i.e., Pichia stipitis, Pachysolen tannophilus, Wickerhamomyces anomalus X19, separately and in co-cultures. The experimental results showed that a two-stage pretreatment approach (NaOH (0.5% w/v) for 24 h and H2O2 (0.5% v/v) for 24 h) led to higher delignification (38.3 ± 0.1%) and saccharification efficiency (31.7 ± 0.3%) and higher ethanol concentration and yield. Monocultures of S. cerevisiae or W. anomalus X19 and co-cultures with P. stipitis exhibited ethanol yields in the range of 11.67 ± 0.21 to 13.81 ± 0.20 g/100 g total solids (TS). When WS was subjected to H2O2 (0.5% v/v) alone for 24 h, the lowest ethanol yields were observed for all yeast strains, due to the minor impact of this treatment on the main chemical and structural WS characteristics. In order to decide which is the best pretreatment approach, a detailed techno-economical assessment is needed, which will take into account the ethanol yields and the minimum processing cost.
Collapse
Affiliation(s)
- Imen Ben Atitallah
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (I.B.A.); (T.M.)
| | - Georgia Antonopoulou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
- Correspondence: ; Tel.: +30-261-096-5318
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Amaia Soto Beobide
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Vassilios Dracopoulos
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (I.B.A.); (T.M.)
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
- School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| |
Collapse
|
12
|
Otoni CG, Azeredo HMC, Mattos BD, Beaumont M, Correa DS, Rojas OJ. The Food-Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agri-Food Residues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102520. [PMID: 34510571 PMCID: PMC11468898 DOI: 10.1002/adma.202102520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The most recent strategies available for upcycling agri-food losses and waste (FLW) into functional bioplastics and advanced materials are reviewed and the valorization of food residuals are put in perspective, adding to the water-food-energy nexus. Low value or underutilized biomass, biocolloids, water-soluble biopolymers, polymerizable monomers, and nutrients are introduced as feasible building blocks for biotechnological conversion into bioplastics. The latter are demonstrated for their incorporation in multifunctional packaging, biomedical devices, sensors, actuators, and energy conversion and storage devices, contributing to the valorization efforts within the future circular bioeconomy. Strategies are introduced to effectively synthesize, deconstruct and reassemble or engineer FLW-derived monomeric, polymeric, and colloidal building blocks. Multifunctional bioplastics are introduced considering the structural, chemical, physical as well as the accessibility of FLW precursors. Processing techniques are analyzed within the fields of polymer chemistry and physics. The prospects of FLW streams and biomass surplus, considering their availability, interactions with water and thermal stability, are critically discussed in a near-future scenario that is expected to lead to next-generation bioplastics and advanced materials.
Collapse
Affiliation(s)
- Caio G. Otoni
- Department of Materials Engineering (DEMa)Federal University of São Carlos (UFSCar)Rod. Washington Luiz, km 235São CarlosSP13565‐905Brazil
| | - Henriette M. C. Azeredo
- Embrapa Agroindústria TropicalRua Dra. Sara Mesquita 2270FortalezaCE60511‐110Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoRua XV de Novembro 1452São CarlosSP13560‐970Brazil
| | - Bruno D. Mattos
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Marco Beaumont
- Department of ChemistryUniversity of Natural Resources and Life SciencesVienna (BOKU), Konrad‐Lorenz‐Str. 24TullnA‐3430Austria
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA)Embrapa InstrumentaçãoRua XV de Novembro 1452São CarlosSP13560‐970Brazil
| | - Orlando J. Rojas
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
- Bioproducts InstituteDepartments of Chemical & Biological Engineering, Chemistry and Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| |
Collapse
|
13
|
Bertacchi S, Jayaprakash P, Morrissey JP, Branduardi P. Interdependence between lignocellulosic biomasses, enzymatic hydrolysis and yeast cell factories in biorefineries. Microb Biotechnol 2021; 15:985-995. [PMID: 34289233 PMCID: PMC8913906 DOI: 10.1111/1751-7915.13886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
Biorefineries have a pivotal role in the bioeconomy scenario for the transition from fossil‐based processes towards more sustainable ones relying on renewable resources. Lignocellulose is a prominent feedstock since its abundance and relatively low cost. Microorganisms are often protagonists of biorefineries, as they contribute both to the enzymatic degradation of lignocellulose complex polymers and to the fermentative conversion of the hydrolyzed biomasses into fine and bulk chemicals. Enzymes have therefore become crucial for the development of sustainable biorefineries, being able to provide nutrients to cells from lignocellulose. Enzymatic hydrolysis can be performed by a portfolio of natural enzymes that degrade lignocellulose, often combined into cocktails. As enzymes can be deployed in different operative settings, such as separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF), their characteristics need to be combined with microbial ones to maximize the process. We therefore reviewed how the optimization of lignocellulose enzymatic hydrolysis can ameliorate bioethanol production when Saccharomyces cerevisiae is used as cell factory. Expanding beyond biofuels, enzymatic cocktail optimization can also be pivotal to unlock the potential of non‐Saccharomyces yeasts, which, thanks to broader substrate utilization, inhibitor resistance and peculiar metabolism, can widen the array of feedstocks and products of biorefineries.
Collapse
Affiliation(s)
- Stefano Bertacchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Pooja Jayaprakash
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy.,School of Microbiology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, T12 K8AF, Ireland
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, T12 K8AF, Ireland
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| |
Collapse
|
14
|
Efficient bioethanol production from date palm (Phoenix dactylifera L.) sap by a newly isolated Saccharomyces cerevisiae X19G2. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules 2021; 26:molecules26030753. [PMID: 33535536 PMCID: PMC7867074 DOI: 10.3390/molecules26030753] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
As the need for non-renewable sources such as fossil fuels has increased during the last few decades, the search for sustainable and renewable alternative sources has gained growing interest. Enzymatic hydrolysis in bioethanol production presents an important step, where sugars that are fermented are obtained in the final fermentation process. In the process of enzymatic hydrolysis, more and more new effective enzymes are being researched to ensure a more cost-effective process. There are many different enzyme strategies implemented in hydrolysis protocols, where different lignocellulosic biomass, such as wood feedstocks, different agricultural wastes, and marine algae are being used as substrates for an efficient bioethanol production. This review investigates the very recent enzymatic hydrolysis pathways in bioethanol production from lignocellulosic biomass.
Collapse
|
16
|
Cao JW, Deng Q, Gao DY, He B, Yin SJ, Qian LC, Wang JK, Wang Q. A novel bifunctional glucanase exhibiting high production of glucose and cellobiose from rumen bacterium. Int J Biol Macromol 2021; 173:136-145. [PMID: 33482202 DOI: 10.1016/j.ijbiomac.2021.01.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/21/2020] [Accepted: 01/17/2021] [Indexed: 12/22/2022]
Abstract
Herbivores gastrointestinal microbiota is of tremendous interest for mining novel lignocellulosic enzymes for bioprocessing. We previously reported a set of potential carbohydrate-active enzymes from the metatranscriptome of the Hu sheep rumen microbiome. In this study, we isolated and heterologously expressed two novel glucanase genes, Cel5A-h38 and Cel5A-h49, finding that both recombinant enzymes showed the optimum temperatures of 50 °C. Substrate-specificity determination revealed that Cel5A-h38 was exclusively active in the presence of mixed-linked glucans, such as barley β-glucan and Icelandic moss lichenan, whereas Cel5A-h49 (EC 3.2.1.4) exhibited a wider substrate spectrum. Surprisingly, Cel5A-h38 initially released only cellotriose from lichenan and further converted it into an equivalent amount of glucose and cellobiose, suggesting a dual-function as both endo-β-1,3-1,4-glucanase (EC 3.2.1.73) and exo-cellobiohydrolase (EC 3.2.1.91). Additionally, we performed enzymatic hydrolysis of sheepgrass (Leymus chinensis) and rice (Orysa sativa) straw using Cel5A-h38, revealing liberation of 1.91 ± 0.30 mmol/mL and 2.03 ± 0.09 mmol/mL reducing sugars, respectively, including high concentrations of glucose and cellobiose. These results provided new insights into glucanase activity and lay a foundation for bioconversion of lignocellulosic biomass.
Collapse
Affiliation(s)
- Jia-Wen Cao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Deng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - De-Ying Gao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Bo He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Li-Chun Qian
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Jia-Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| |
Collapse
|
17
|
Sustainable Second-Generation Bioethanol Production from Enzymatically Hydrolyzed Domestic Food Waste Using Pichia anomala as Biocatalyst. SUSTAINABILITY 2020. [DOI: 10.3390/su13010259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the current study, a domestic food waste containing more than 50% of carbohydrates was assessed as feedstock to produce second-generation bioethanol. Aiming to the maximum exploitation of the carbohydrate fraction of the waste, its hydrolysis via cellulolytic and amylolytic enzymatic blends was investigated and the saccharification efficiency was assessed in each case. Fermentation experiments were performed using the non-conventional yeast Pichia anomala (Wickerhamomyces anomalus) under both separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) modes to evaluate the conversion efficiencies and ethanol yields for different enzymatic loadings. It was shown that the fermentation efficiency of the yeast was not affected by the fermentation mode and was high for all handlings, reaching 83%, whereas the enzymatic blend containing the highest amount of both cellulolytic and amylolytic enzymes led to almost complete liquefaction of the waste, resulting also in ethanol yields reaching 141.06 ± 6.81 g ethanol/kg waste (0.40 ± 0.03 g ethanol/g consumed carbohydrates). In the sequel, a scale-up fermentation experiment was performed with the highest loading of enzymes in SHF mode, from which the maximum specific growth rate, μmax, and the biomass yield, Yx/s, of the yeast from the hydrolyzed waste were estimated. The ethanol yields that were achieved were similar to those of the respective small scale experiments reaching 138.67 ± 5.69 g ethanol/kg waste (0.40 ± 0.01 g ethanol/g consumed carbohydrates).
Collapse
|
18
|
Kwon G, Bhatnagar A, Wang H, Kwon EE, Song H. A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123242. [PMID: 32585525 DOI: 10.1016/j.jhazmat.2020.123242] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 05/12/2023]
Abstract
For past few years, biochar has gained a great deal of attention for its versatile utility in agricultural and environmental applications. The diverse functionality and environmental-friendly nature of biochar have motivated many researchers to delve into biochar researches and spurred rapid expansion of literature in recent years. Biochar can be produced from virtually all the biomass, but the properties of biochar are highly dependent upon the types of feedstock biomass and preparation methods. The overall performances of as-prepared biochar in treating soil and water contaminants is generally inferior to activated carbon due to its lower surface area and limited functionalities. This limitation has led to many follow-up studies that focused on improving material characteristics by imparting desired functionality. Such efforts have greatly advanced knowledge to produce better-performing engineered biochar with enhanced capability and versatility. To this end, this review was prepared to compile recent advancements in fabrication and application of engineered biochar, especially with respect to the influences of biomass feedstock on the properties of biochar and the utilization of industrial wastes in fabrication of engineered biochar.
Collapse
Affiliation(s)
- Gihoon Kwon
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul05006, Republic of Korea
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, Fl-70211, Kuopio, Finland
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul05006, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul05006, Republic of Korea.
| |
Collapse
|
19
|
A conceptual review on microalgae biorefinery through thermochemical and biological pathways: Bio-circular approach on carbon capture and wastewater treatment. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100477] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Antonopoulou G. Designing Efficient Processes for Sustainable Bioethanol and Bio-Hydrogen Production from Grass Lawn Waste. Molecules 2020; 25:molecules25122889. [PMID: 32586042 PMCID: PMC7355486 DOI: 10.3390/molecules25122889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/04/2022] Open
Abstract
The effect of thermal, acid and alkali pretreatment methods on biological hydrogen (BHP) and bioethanol production (BP) from grass lawn (GL) waste was investigated, under different process schemes. BHP from the whole pretreatment slurry of GL was performed through mixed microbial cultures in simultaneous saccharification and fermentation (SSF) mode, while BP was carried out through the C5yeast Pichia stipitis, in SSF mode. From these experiments, the best pretreatment conditions were determined and the efficiencies for each process were assessed and compared, when using either the whole pretreatment slurry or the separated fractions (solid and liquid), the separate hydrolysis and fermentation (SHF) or SSF mode, and especially for BP, the use of other yeasts such as Pachysolen tannophilus or Saccharomyces cerevisiae. The experimental results showed that pretreatment with 10 gH2SO4/100 g total solids (TS) was the optimum for both BHP and BP. Separation of solid and liquid pretreated fractions led to the highest BHP (270.1 mL H2/g TS, corresponding to 3.4 MJ/kg TS) and also BP (108.8 mg ethanol/g TS, corresponding to 2.9 MJ/kg TS) yields. The latter was achieved by using P. stipitis for the fermentation of the hydrolysate and S. serevisiae for the solid fraction fermentation, at SSF.
Collapse
Affiliation(s)
- Georgia Antonopoulou
- Institute of Chemical Engineering Sciences, Stadiou, Platani, 26504 Patras, Greece
| |
Collapse
|
21
|
Abstract
In this study, we evaluate potato pulp waste as a potential raw material for obtaining yeast biomass. A portion of the carbohydrates in the potato pulp waste can thereby be converted into more valuable protein. The potato pulp waste was analyzed in terms of protein and ash content, dry mass, simple sugars, and starch content. Two kinds of hydrolysis were performed (thermo-acidic and enzymatic) to produce media for cultivating Candida guilliermondii and Pichia stipitis. The hydrolysates and post-cultivation leachates were analyzed by High Performance Liquid Chromatography (HPLC). The highest biomass yield after 48 h (39.3%) was noted for Candida guilliermondii yeast grown on enzymatic hydrolysate-based medium. Our results prove that potato waste pulp is a promising raw material for the production of yeast single-cell protein (SCP).
Collapse
|
22
|
Myburgh MW, Cripwell RA, Favaro L, van Zyl WH. Application of industrial amylolytic yeast strains for the production of bioethanol from broken rice. BIORESOURCE TECHNOLOGY 2019; 294:122222. [PMID: 31683453 DOI: 10.1016/j.biortech.2019.122222] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Amylolytic Saccharomyces cerevisiae derivatives of Ethanol Red™ Version 1 (ER T12) and M2n (M2n T1) were assessed through enzyme assays, hydrolysis trials, electron microscopy and fermentation studies using broken rice. The heterologous enzymes hydrolysed broken rice at a similar rate compared to commercial granular starch-hydrolysing enzyme cocktail. During the fermentation of 20% dw/v broken rice, the amylolytic strains converted rice starch to ethanol in a single step and yielded high ethanol titers. The best-performing strain (ER T12) produced 93% of the theoretical ethanol yield after 96 h of consolidated bioprocessing (CBP) fermentation at 32 °C. Furthermore, the addition of commercial enzyme cocktail (10% of the recommended dosage) in combination with ER T12 did not significantly improve the maximum ethanol concentration, confirming the superior ability of ER T12 to hydrolyse raw starch. The ER T12 strain was therefore identified as an ideal candidate for the CBP of starch-rich waste streams.
Collapse
Affiliation(s)
- Marthinus W Myburgh
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Lorenzo Favaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Padova University, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|