1
|
Chen L, Zhang Z, Yang R, Wang X, Yu J, Jiang H, Zhang W, Xi B, Sun X, Li N. Nano Fe 3O 4 improved the electron donating capacity of dissolved organic matter during sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122354. [PMID: 39226814 DOI: 10.1016/j.jenvman.2024.122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
The effect of Fe3O4 nanoparticles (Fe3O4 NPs) on the electron transfer process in aerobic composting systems remains unexplored. In this study, we compared the electron transfer characteristics of DOM in sludge composting without additives (group CK) and with the addition of 50 mg/kg Fe3O4 NPs additive (group Fe). It was demonstrated that the electron transfer capacity (ETC) and electron donating capacity (EDC) of compost-derived DOM increased by 13%-29% and 40%-47%, respectively, with the addition of Fe3O4 NPs during sludge composting. Analyzing the composition and structure of DOM revealed that Fe3O4 NPs promoted the formation of humic acid-like substances and enhanced the aromatic condensation degree of DOM. Correlation analysis indicated that the increase in EDC of DOM was closely associated with the phenolic group in DOM and influenced by quinone groups and the degree of aromatization of DOM. The higher EDC and the structural evolution of DOM in group Fe reduced the bioaccessibility of Cu, Cr, Ni, Zn. This study contributes to a deeper understanding of the redox evolutionary mechanism of DOM in sludge composting and broadens the application of iron oxides additives.
Collapse
Affiliation(s)
- Liu Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Zeyu Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Rui Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Xiaojie Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Jieyu Yu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hong Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Wenjie Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Beidou Xi
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Ningjie Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
2
|
Wen X, Qin X, Long XE, Li Q. Microbial necromass facilitated the humification process through amino sugar reactions during the co-composting of cow manure plus sawdust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48175-48188. [PMID: 39017863 DOI: 10.1007/s11356-024-34381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Humus (HS) reservoirs can embed microbial necromass (including cell wall components that are intact or with varying degrees of fragmentation) in small pores, raising widespread concerns about the potential for C/N interception and stability in composting systems. In this study, fresh cow manure and sawdust were used for microbial solid fermentation, and the significance of microbial residues in promoting humification was elucidated by measuring their physicochemical properties and analyzing their microbial informatics. These results showed that the stimulation of external carbon sources (NaHCO3) led to an increase in the accumulation of bacterial necromass C/N from 6.19 and 0.91 µg/mg to 21.57 and 3.20 µg/mg, respectively. Additionally, fungal necromass C/N values were about 3 times higher than the initial values. This contributed to the increase in HS content and the increased condensation of polysaccharides and nitrogen-containing compounds during maturation. The formation of cellular debris mainly depends on the enrichment of Actinobacteria, Proteobacteria, Ascomycota, and Chytridiomycota. Furthermore, Euryarchaeota was the core functional microorganism secreting cell wall lytic enzymes (including AA3, AA7, GH23, and GH15). In conclusion, this study comprehensively analyzed the transformation mechanisms of cellular residuals at different profile scales, providing new insights into C/N cycles and sequestration.
Collapse
Affiliation(s)
- Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaoya Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xi-En Long
- School of Geographic Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Luo C, Li S, Ren P, Yan F, Wang L, Guo B, Zhao Y, Yang Y, Sun J, Gao P, Ji P. Enhancing the carbon content of coal gangue for composting through sludge amendment: A feasibility study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123439. [PMID: 38325505 DOI: 10.1016/j.envpol.2024.123439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Cocomposting coal gangue and sludge eliminates the challenge of utilizing coal gangue. However, there is limited understanding about the feasibility of cocomposting sludge and coal gangue, as well as the composting indicators, functional microorganisms, and safety risks involved. Therefore, this study evaluated the feasibility of enhancing carbon composting in coal gangue by incorporating sludge along with sawdust as a conditioner. Three laboratory-scale reactors were designed and labeled as T1 (20 % coal gangue, 60 % sludge, and 20 % sawdust), T2 (40 % coal gangue, 40 % sludge, and 20 % sawdust), and T3 (60 % coal gangue, 20 % sludge, and 20 % sawdust). Seed germination and plant growth assessments were conducted to ensure compost stability and assess phytotoxicity to cabbage (Brassica rapa chinensis L.) in terms of growth and biomass. The results indicated that the temperature, pH, EC and ammonia nitrogen of all three reactor conditions met the requirements for product decomposition. Composting was successfully achieved when the sludge proportion was 20 % (T3). However, when the sludge proportion was markedly high (T1), the harmlessness of the compost was reduced. The germination indices of T1, T2, and T3 reached 95 %, 122 %, and 119 % at maturity, respectively. This confirmed that the harmless cycle, which involved promoting condensation and aromatization, enhancing decay, and reducing composting time, was shorter in T2 and T3 than in T1. Coal gangue can also serve as a beneficial habitat for microorganisms, promoting an increase in their population and activity. Potting experiments in sandy soil revealed that the mechanism of action of compost products in soil included not only the enhancement of soil nutrients but also the improvement of soil texture. The results of this study suggest that using coal gangue as a raw material for composting is an efficient and environmentally friendly approach for producing organic fertilizers.
Collapse
Affiliation(s)
- Chi Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shaohua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pengyu Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fan Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bin Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yimo Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yue Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jian Sun
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Pengcheng Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Zhang H, Ma L, Li Y, Yan S, Tong Z, Qiu Y, Zhang X, Yong X, Luo L, Wong JWC, Zhou J. Control of nitrogen and odor emissions during chicken manure composting with a carbon-based microbial inoculant and a biotrickling filter. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120636. [PMID: 38552514 DOI: 10.1016/j.jenvman.2024.120636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 04/14/2024]
Abstract
Although aerobic composting is usually utilized in livestock manure disposal, the emission of odorous gases from compost not only induces harm to the human body and the environment, but also causes loss of nitrogen, sulfur, and other essential elements, resulting in a decline in product quality. The impact of biotrickling filter (BTF) and insertion of carbon-based microbial agent (CBMA) on compost maturation, odor emissions, and microbial population during the chicken manure composting were assessed in the current experiment. Compared with the CK group, CBMA addition accelerated the increase in pile temperature (EG group reached maximum temperature 10 days earlier than CK group), increased compost maturation (GI showed the highest increase of 41.3% on day 14 in EG group), resulted in 36.59% and 14.60% increase in NO3--N content and the total nitrogen retention preservation rate after composting. The deodorization effect of biotrickling filter was stable, and the removal rates of NH3, H2S, and TVOCs reached more than 90%, 96%, and 56%, respectively. Furthermore, microbial sequencing showed that CBMA effectively changed the microbial community in compost, protected the ammonia-oxidizing microorganisms, and strengthened the nitrification of the compost. In addition, the nitrifying and denitrifying bacteria were more active in the cooling period than they were in the thermophilic period. Moreover, the abundance of denitrification genes containing nirS, nirK, and nosZ in EG group was lower than that in CK group. Thus, a large amount of nitrogen was retained under the combined drive of BTF and CBMA during composting. This study made significant contributions to our understanding of how to compost livestock manure while reducing releases of odors and raising compost quality.
Collapse
Affiliation(s)
- Haorong Zhang
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Liqian Ma
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yinchao Li
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Su Yan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Zhenye Tong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yue Qiu
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xueying Zhang
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xiaoyu Yong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Liwen Luo
- Institute of Bioresource and Agriculture, And Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, And Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Jun Zhou
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| |
Collapse
|
5
|
Jiao M, Yang Z, Xu W, Zhan X, Ren X, Zhang Z. Elucidating carbon conversion and bacterial succession by amending Fenon-like systems during co-composting of pig manure and branch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170279. [PMID: 38280577 DOI: 10.1016/j.scitotenv.2024.170279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
The essential point of current study was to investigate the effect of a Fenton-like system established by oxalic acid and Fe(II) on gas emission, organic matter decomposition and humification during composting. Branches were pretreated with Fenton reagents (0.02 M FeCl2·4H2O + 1.5 M H2O2) and then adding 10 % oxalic acid (OA). The treatments were marked as B1 (control), B2 (Fenton reagent), B3 (10% OA) and B4 (Fenton-like reagent). The results collected from 80 d of composting showed that adding Fenton-like reagent benefited the degradation of organic substances, as reflected by the total organic carbon and dissolved organic carbon, and the maximum decomposition rate was observed in B4. In addition, the Fenton-like reagent could improve the synthesis of humus characterized by complex and stable compounds, which was consistent with the spectral parameters (SUVA254, SUVA280, E253/E203 and Fourier transform-infrared indicators) of DOC. Furthermore, the functional microbial succession performance and linear discriminant effect size analyses provided microbial evidence of humification improvement. Notably, compared with the control, the minimum value of CH4 cumulation was reported in B4, which decreased by 30.44 %. Concluded together, the addition of a Fenton-like reagent composed by OA and Fe(II) is a practical way to improve the humification. Furthermore, the mechanisms related to the promotion of humification should be investigated from free radicals, functional genes, and metabolic pathways.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zhaowen Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Wanying Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiangyu Zhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
6
|
Wang Y, Li L, Ma J, Han Y. The response and factors of microbial aerosol emission from the sludge bio-drying process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:294-304. [PMID: 38237405 DOI: 10.1016/j.wasman.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/25/2023] [Accepted: 01/07/2024] [Indexed: 01/29/2024]
Abstract
Exposure to high levels of microbial contaminants during waste disposal leads to the development of various diseases, including respiratory symptoms and gastrointestinal infections. In this study, the emissions of airborne bacteria and fungi during the process of sludge bio-drying were investigated. The recorded emission levels of airborne bacteria and fungi were 2398 ± 1307 CFU/m3 and 1963 ± 468 CFU/m3, respectively. Viable bacteria were sized between 1.1 and 3.3 μm, while fungal particles were concentrated between 2.1 and 4.7 μm. High-throughput sequencing was used to conduct a microbial population assay, and correlation analysis was performed to estimate the relationship between key factors and bioaerosol emissions. The main bacteria identified were Bacillus sp., Lysinibacillus sp. YS11, unclassified Enterobacteriaceae, Brevundimonas olei, and Achromobacter sp.; the primary types of fungi were Aspergillus ochraceus, Gibberella intricans, Fusarium concentricum, Aspergillus qinqixianii, and Alternaria sp.; and the dominant opportunistic pathogens were Bacillus anthracis and Aspergillus ochraceus. At lower moisture and temperature levels, airborne bacterial concentrations were higher, especially the release of fine particles. In addition, moisture content had a significant impact on the microbial population in bioaerosols. This study provides insights into strategies for controlling bioaerosols in the exhaust gases of the sludge bio-drying process.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Jiawei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Li J, Lu H, Yang H, Wen X, Huang Y, Li Q. Performances of antibiotic resistance genes profile upon the action of biochar-activated peroxydisulfate in composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117509. [PMID: 36801799 DOI: 10.1016/j.jenvman.2023.117509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
In this study, the amendment of biochar-activated peroxydisulfate during composting to remove antibiotic resistance genes (ARGs) by direct (microbial community succession) and indirect methods (physicochemical factors) was analyzed. When implementing indirect methods, the synergistic effect of peroxydisulfate with biochar optimized the physicochemical habitat of compost, maintaining its moisture within a range of 62.95%-65.71%, and a pH of 6.87-7.73, and causing the compost to mature 18 days earlier than the control groups. The direct methods caused the optimized physicochemical habitat to adjust the microbial communities and reduce the abundance of most of the ARG host bacteria (Thermopolyspora, Thermobifida, and Saccharomonospora), thus inhibiting this substance's amplification. Heatmap analysis confirmed the necessary connection between physicochemical factors, microbial communities, and ARGs. Moreover, a mantel test confirmed the direct significant effect of the microbial communities on ARGs and the indirect significant effect of physicochemical factors on ARGs. The results showed that the abundance of more ARGs was down-regulated at the end of composting and regulated by biochar-activated peroxydisulfate, especially for the abundance of AbaF, tet(44), golS, and mryA, which was significantly decreased by 0.87-1.07 fold. These results provide new insights into the removal of ARGs during composting.
Collapse
Affiliation(s)
- Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Heng Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Hongmei Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
8
|
Wen X, Zhou Y, Liang X, Li J, Huang Y, Li Q. A novel carbon-nitrogen coupled metabolic pathway promotes the recyclability of nitrogen in composting habitats. BIORESOURCE TECHNOLOGY 2023; 381:129134. [PMID: 37164230 DOI: 10.1016/j.biortech.2023.129134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
This study revealed a novel carbon-nitrogen coupled metabolic pathway. Results showed that the addition of inorganic carbon sources slowed down the decomposition of urea and conserved more nutrients in composting. Metagenomic analysis showed that the main bacteria involved in this new pathway were Actinobacteria, Proteobacteria and Firmicutes. During the late composting period, the dominant genus Microbacteium involved in denitrification accounted for 22.18% in control (CP) and only 0.12% in treatment group (T). Moreover, ureC, rocF, argF, argI, argG were key genes involved in urea cycle. The abundance of functional gene ureC and denitrification genes decreased in thermophilic and cooling phases, respectively. The genes hao, nosZ, ureA and nifH were more closely associated with Chloroflexi_bacterium and Bacillus_paralichenformis. In conclusion, composting habitats with additional inorganic carbon sources could not only weaken denitrification but also allow more nitrogen to be conserved through slow-release urea to improve resource utilization and decrease the environmental risk.
Collapse
Affiliation(s)
- Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yucheng Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xueling Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
9
|
Yu X, Cheng A, Chen D, Li T, Fan X, Wang X, Ji W, Wang J, Ren L. Insight into the evolution characteristics on molecular weight of compost dissolved organic matters using high-performance size exclusion chromatography combined with a two-dimensional correlation analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37197-37207. [PMID: 36571693 DOI: 10.1007/s11356-022-24922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The information on molecular weight (MW) characteristics of DOM and relevant evolution behaviors during composting are limited. In this study, DOM extracted from co-composting of chicken manure and rice husks were comprehensively analyzed by using high-performance size exclusion chromatography (HPSEC) combined with a two-dimensional correlation spectroscopy (2D COS) to explore the evolution characteristics of MW of compost DOM. The HPSEC detected at UV of 254 nm and at fluorescence (FL) Ex/Em wavelengths (315/410, 270/455 nm) all showed a gradual increase in both weight-average and number-average MW for DOM, suggesting that the large MW fractions were continuously generated and polymerized during composting. The 2D COS applied on HPSEC-UV and -FL further identified the key active MW chromophoric (i.e., 0.5, 7.2. 9.5, 26.3, 30.7, and 83.9 kDa) and fluorophoric (i.e., 0.55 and 3.5 kDa) molecules that mainly participated in the transformation processes of compost DOM. Moreover, these active MW species were preferentially formed by the order of small to large molecules. A hetero-2D COS analysis disclosed the change sequence in the order of 0.5 and 7.2 kDa chromophores → 3.5 kDa fluorophores, and the 0.55 and 3.5 kDa fluorophores → 26.3 and 83.9 kDa chromophores.
Collapse
Affiliation(s)
- Xufang Yu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, People's Republic of China
| | - Ao Cheng
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, People's Republic of China
| | - Dan Chen
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, People's Republic of China
| | - Ting Li
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, People's Republic of China
| | - Xingjun Fan
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, People's Republic of China.
- Anhui Province Key Laboratory of Biochar and Cropland Pollution Prevention, Bengbu, 233400, People's Republic of China.
| | - Xiang Wang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, People's Republic of China
- Anhui Province Key Laboratory of Biochar and Cropland Pollution Prevention, Bengbu, 233400, People's Republic of China
| | - Wenchao Ji
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, People's Republic of China
- Anhui Province Key Laboratory of Biochar and Cropland Pollution Prevention, Bengbu, 233400, People's Republic of China
| | - Jianfei Wang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, People's Republic of China
- Anhui Province Key Laboratory of Biochar and Cropland Pollution Prevention, Bengbu, 233400, People's Republic of China
| | - Lantian Ren
- College of Agronomy, Anhui Science and Technology University, Fengyang, 233100, China
| |
Collapse
|
10
|
Singh A, Prajapati P, Vyas S, Gaur VK, Sindhu R, Binod P, Kumar V, Singhania RR, Awasthi MK, Zhang Z, Varjani S. A Comprehensive Review of Feedstocks as Sustainable Substrates for Next-Generation Biofuels. BIOENERGY RESEARCH 2023; 16:105-122. [DOI: 10.1007/s12155-022-10440-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/18/2022] [Indexed: 08/20/2023]
|
11
|
Mohanty SS, Vyas S, Koul Y, Prajapati P, Varjani S, Chang JS, Bilal M, Moustakas K, Show PL, Vithanage M. Tricks and tracks in waste management with a special focus on municipal landfill leachate: Leads and obstacles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160377. [PMID: 36414054 DOI: 10.1016/j.scitotenv.2022.160377] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Landfilling is the most widely used disposal method for municipal solid waste around the world. The main disadvantage of this strategy is formation of leachate, among other aspects. Landfill leachate contains highly toxic and bio-refractory substances that are detrimental to the environment and human health. Hence, the risk(s) of discharging potentially harmful landfill leachate into the environment need to be assessed and measured in order to make effective choices about landfill leachate management and treatment. In view of this, the present review aims to investigate (a) how landfill leachate is perceived as an emerging concern, and (b) the stakeholders' mid- to long-term policy priorities for implementing technological and integrative solutions to reduce the harmful effects of landfill leachate. Because traditional methods alone have been reported ineffective, and in response to emerging contaminants and stringent regulations, new effective and integrated leachate treatments have been developed. This study gives a forward-thinking of the accomplishments and challenges in landfill leachate treatment during the last decade. It also provides a comprehensive compilation of the formation and characterization of landfill leachate, the geo-environmental challenges that it raises, as well as the resource recovery and industrial linkage associated with it in order to provide an insight into its sustainable management.
Collapse
Affiliation(s)
- Swayansu Sabyasachi Mohanty
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Shaili Vyas
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382015, India
| | - Yamini Koul
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Priya Prajapati
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382015, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India.
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, Unit of Environmental Science & Technology, 9 Heroon Polytechniou Street, Zographou Campus, 15780 Athens, Greece
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
12
|
Qi C, Yin R, Cheng J, Xu Z, Chen J, Gao X, Li G, Nghiem L, Luo W. Bacterial dynamics for gaseous emission and humification during bio-augmented composting of kitchen waste with lime addition for acidity regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157653. [PMID: 35926596 DOI: 10.1016/j.scitotenv.2022.157653] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the impacts of lime addition and further microbial inoculum on gaseous emission and humification during kitchen waste composting. High-throughput sequencing was integrated with Linear Discriminant Analysis Effect Size (LEfSe) and Functional Annotation of Prokaryotic Taxa (FAPROTAX) to decipher bacterial dynamics in response to different additives. Results showed that lime addition enriched bacteria, such as Taibaiella and Sphingobacterium as biomarkers, to strengthen organic biodegradation toward humification. Furthermore, lime addition facilitated the proliferation of thermophilic bacteria (e.g. Bacillus and Symbiobacterium) for aerobic chemoheterotrophy, leading to enhanced organic decomposition to trigger notable gaseous emission. Such emission profile was further exacerbated by microbial inoculum to lime-regulated condition given the rapid enrichment of bacteria (e.g. Caldicoprobacter and Pusillimonas as biomarkers) for fermentation and denitrification. In addition, microbial inoculum slightly hindered humus formation by narrowing the relative abundance of bacteria for humification. Results from this study show that microbial inoculum to feedstock should be carefully regulated to accelerate composting and avoid excessive gaseous emission.
Collapse
Affiliation(s)
- Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Rongrong Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jingwen Cheng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Long Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Ma L, Sun R, Yang H, Li J, Wen X, Cao Z, Zhou Y, Fu M, Li Q. Metagenomics analysis revealed the coupling of lignin degradation with humus formation mediated via shell powder during composting. BIORESOURCE TECHNOLOGY 2022; 363:127949. [PMID: 36108576 DOI: 10.1016/j.biortech.2022.127949] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
This study was the first to explore the effect of shell powder (SP) on lignin degradation and humus (HS) formation during composting. The results showed that the treatment group (T) with SP consumed more polyphenols, reducing sugar and amino acids than the control group (CK), especially the rate of reducing sugar consumption in T (50.61 %) was significantly higher than CK (28.40 %). SP greatly enhanced the efficiency of lignin degradation (T:45.47 %; CK:24.63 %) and HS formation (T:34.93 %; CK:20.16 %). The content of HA in T was 12.94 mg/g while CK was 12.06 mg/g. SP maintained a continuous increase in the relative abundance of AA1, AA3 after cooling phase. Meanwhile, T (48.98 %) significantly increased the abundance of Actinobacteria compared with CK (37.19 %). Actinobacteria, AA1 and AA3 were identified as the main factors promoting lignin degradation and HS formation by correlation analysis. Therefore, adding SP could be a novel strategy to improve compost quality.
Collapse
Affiliation(s)
- Liangcai Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ru Sun
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ziyi Cao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yucheng Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Mengxin Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
14
|
Wang Y, Chen Z, Ma J, Wang J, Li L. Migration and transformation of main components during perishable waste bio-drying process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115720. [PMID: 35853308 DOI: 10.1016/j.jenvman.2022.115720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Bio-drying can significantly reduce the moisture content of waste. The factors, functional microorganisms, and the transformation of main components were investigated during bio-drying of perishable waste. This study provides a scientific basis for the improvement of the bio-drying process and the necessity for secondary pollutant control. Reaction temperature and microbial biomass were main factors during the bio-drying process. The ideal bio-drying conditions included an initial temperature above 20 °C, intermittent ventilation, and appropriate microbial inoculation. The main microorganisms included Alcaligenes, Aquamicrobium, and Brevundimonas. From each gram of the carbonaceous, nitrogenous, sulfur-containing compounds, and phosphorus-containing substances in the perishable waste, approximately 0.74 g, 0.66 g, 0.40 g, and 0.94 g, respectively, were transferred as gas-phase products; consisting mainly of ammonia and volatile organic compounds: 2-heptanone, dimethyl heptanone, and benzene. In the leachate, the respective amounts of the carbonaceous, nitrogenous, sulfur-containing compounds, and phosphorus-containing substances were 3.20 × 10-3 g, 4.08 × 10-3 g, 0.33 g, and 9.52 × 10-3 g, while those of the residual substances remaining in solid were 0.26 g, 0.33 g, 0.28 g, and 0.05 g.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Zexiang Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Jiawei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, PR China.
| |
Collapse
|
15
|
Yang H, Huang Y, Li K, Zhu P, Wang Y, Li X, Meng Q, Niu Q, Wang S, Li Q. Lignocellulosic depolymerization induced by ionic liquids regulating composting habitats based on metagenomics analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76298-76309. [PMID: 35668255 DOI: 10.1007/s11356-022-21148-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The application of ionic liquids with sawdust and fresh dairy manure was studied in composting. The degradation of organic matter (OM), dissolved organic matter (DOM), and lignocellulose was analyzed. The DOM decreased by 14.25 mg/g and 11.11 mg/g in experimental group (ILs) and control group (CK), respectively. OM decreased by 7.32% (CK) and 8.91% (ILs), respectively. The degradation rates of hemicellulose, lignin, and cellulose in ILs (56.62%, 42.01%, and 23.97%) were higher than in CK (38.39%, 39.82%, and 16.04%). Microbial community and carbohydrate-active enzymes (CAZymes) were analyzed based on metagenomics. Metagenomic analysis results showed that ionic liquids enriched Actinobacteria and Proteobacteria in composting. Compared with CK, the total abundance values of GH11, GH6, AA6, and AA3_2 in ILs increased by 13.98%, 10.12%, 11.21%, and 13.68%, respectively. Ionic liquids can improve the lignocellulosic degradation by regulating the environmental physicochemical parameters (temperature, pH, C/N) to promote the growth of Actinobacteria and Proteobacteria and carbohydrate-active enzymes (CAZymes) abundance. Therefore, ionic liquids are a promising additive in lignocellulosic waste composting.
Collapse
Affiliation(s)
- Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yiwu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaolan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qingran Meng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Susu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
16
|
Wen X, Sun R, Cao Z, Huang Y, Li J, Zhou Y, Fu M, Ma L, Zhu P, Li Q. Synergistic metabolism of carbon and nitrogen: Cyanate drives nitrogen cycle to conserve nitrogen in composting system. BIORESOURCE TECHNOLOGY 2022; 361:127708. [PMID: 35907603 DOI: 10.1016/j.biortech.2022.127708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
In this study, HCO3- was used as a co-substrate for cyanate metabolism to investigate its effect on nitrogen cycle in composting. The results showed that the carbamate content in experimental group (T) with HCO3- added was higher than that in control group (CP) during cooling period. Actinobacteria and Proteobacteria were the dominant phyla for cyanate metabolism, and the process was mediated by cyanase gene (cynS). The cynS abundance was 16.6% higher in T than CP. In cooling period, the nitrification gene hao in T was 8.125% higher than CP. Denitrification genes narG, narH, nirK, norB, and nosZ were 25.64%, 35.33%, 45.93%, 36.62%, and 36.12% less than CP, respectively. The nitrogen fixation gene nifH in T was consistently higher than CP in the late composting period. Conclusively, cyanate metabolism drove the nitrogen cycle by promoting nitrification, nitrogen fixation, and inhibiting denitrification, which improved nitrogen retention and compost quality.
Collapse
Affiliation(s)
- Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ru Sun
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ziyi Cao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yucheng Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Mengxin Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liangcai Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
17
|
Cui Y, Zhao B, Xie F, Zhang X, Zhou A, Wang S, Yue X. Study on the preparation and feasibility of a novel adding-type biological slow-release carbon source. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115236. [PMID: 35568017 DOI: 10.1016/j.jenvman.2022.115236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The development of slow-release carbon sources is an effective biological treatment to remove nutrients from wastewater with low carbon-to-nitrogen ratio (C/N). Most filling-type slow-release carbon could not fulfil the needs of current wastewater treatment plants (WWTPs) process. And most adding-type slow-release carbon sources were prepared using some expensive chemical materials. In this study, combining the advantages of the aforementioned types, a novel adding-type wastepaper-flora (AT-WF) slow-release carbon source was proposed, aiming to realise wastepaper recycling in WWTPs. The screening and identification of the mixed flora, AT-WF carbon source release behaviour, and denitrification performance were investigated. The results showed that through the proposed screening method, a considerable proportion of cellulose-degradation-related genera was enriched, and the cellulose degradation ability and ratio of readily available carbon sources of flora T4, S4 and S5 were effectively strengthened. AT-WF had significant carbon release ability and stability, with an average total organic carbon (TOC) release of 8.82 ± 2.36 mg/g. Kinetic analysis showed that the entire carbon release process was more consistent with the first-order equation. Piecewise fitting with the Ritger-Peppas equation exhibited that the rapid-release (RR) stage was skeleton dissolution and the slow-release (SR) stage was Fick diffusion. Denitrification efficiency can achieve a high average removal efficiency of 94.17%, which could theoretically contribute 11.2% more to the total inorganic nitrogen (TIN) removal. Thus, this study indicated that AT-WF could be utilised as an alternative carbon source in WWTPs.
Collapse
Affiliation(s)
- Ying Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Fei Xie
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiao Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| |
Collapse
|
18
|
Zhang Y, Duan M, Zhou B, Wang Q, Zhang Z, Su L, Bai Q. Mechanism that allows manno-oligosaccharide to promote cellulose degradation by the bacterial community and the composting of cow manure with straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30265-30276. [PMID: 34997494 DOI: 10.1007/s11356-021-17797-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The new sugar source manno-oligosaccharide can regulate the structure of the microbial community. This study investigated the effects of adding manno-oligosaccharide at four different levels (0, 0.1%, 0.5%, and 1% w/w compost) to composting cow manure and straw on lignocellulose degradation and the bacterial community. Adding 0.5% manno-oligosaccharide had the greatest effects on accelerating the composting process, reducing its toxicity, and improving the stability of the product. After composting for 25 days, adding 0.5% manno-oligosaccharide decreased the hemicellulose, cellulose, and lignin contents to 2.25%, 11.25%, and 7.07%, respectively, compared with those under CK. Manno-oligosaccharide promoted the degradation of lignocellulose by increasing the abundances of Thermobifida, Streptomyces, and Luteimonas. In addition, manno-oligosaccharide inhibited pathogenic bacteria and increased the abundances of functional genes related to metabolism. Finally, adding 0.5% manno-oligosaccharide mainly affected the degradation of lignocellulose by enhancing the C/N ratio and the abundances of Streptomyces and the secretion system during composting according to redundancy analysis.
Collapse
Affiliation(s)
- Yuhua Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
- XianYang and Research Institute of Water Conservancy and Hydropower Planning and Design, XianYang, 712021, China
| | - Manli Duan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.
| | - Beibei Zhou
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.
| | - Quanjiu Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Zhenshi Zhang
- Northwest Engineering Corporation Limited Power China, Xi'an, 710065, China
| | - Lijun Su
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Qingjun Bai
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
19
|
Wang Y, Li X, Li K, Huang Y, Yang H, Zhu P, Chi Z, Xu Y, Li Q. Signature of dissolved organic matter and microbial communities based on different oxygen levels response during distillers dried grains with solubles plus sugarcane pith co-fermentations. BIORESOURCE TECHNOLOGY 2022; 349:126868. [PMID: 35183724 DOI: 10.1016/j.biortech.2022.126868] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The objective of this study was to investigate the relationship between dissolved organic matter (DOM) and microbial communities during the co-fermentation of distillers dried grains with solubles (DDGS) and sugarcane pith at different oxygen levels. In aerobic fermentation (AF), the content of DOM decreased from 32.61 mg/g to 14.14 mg/g, and decreased from 32.61 mg/g to 30.83 mg/g in anaerobic fermentation (ANF). Phenols and alcohols were consumed first in AF, while lipids and proteins were consumed first in ANF. Degradation rates of cellulose, hemicellulose and lignin in AF (6.67%, 39.93%, 36.50%) were higher than those in ANF (0.69%, 18.36%, 9.12%). Firmicutes, Actinobacteriota and Ascomycota were the main phyla in community. Distance-based redundancy analysis showed that pH, organic matter (OM) and DOM were the main driving factors of microbial community succession.
Collapse
Affiliation(s)
- Yiwu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaolan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
20
|
Niu Q, Meng Q, Yang H, Wang Y, Li X, Li G, Li Q. Humification process and mechanisms investigated by Fenton-like reaction and laccase functional expression during composting. BIORESOURCE TECHNOLOGY 2021; 341:125906. [PMID: 34523564 DOI: 10.1016/j.biortech.2021.125906] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
This study aims to explore the impacts of the Fenton-like reaction on hydrogen peroxide, hydroxyl radicals, humic substance (HS) formation, laccase activity and microbial communities during composting to optimize composting performances. The results indicated that the activity of laccase in the presence of the Fenton-like reaction (HC) (35.92 U/g) was significantly higher than that in the control (CP) (29.56 U/g). The content of HS in HC (151.91 g/kg) was higher than that in CP (131.73 g/kg), and amides, quinones, aliphatic compounds and aromatic compounds were promoted to form HS in HC by 2D-FTIR-COS analysis. Proteobacteria contributed most greatly to AA1 at phylum level, Pseudomonas and Sphingomonas abundances increased in HC. Redundancy analysis indicated that there was a strong positive correlation among the Fenton-like reaction, laccase and HS. Conclusively, the Fenton-like reaction improved the activity of laccase, promoted the formation of HS and enhanced the quality of compost.
Collapse
Affiliation(s)
- Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Qingran Meng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yiwu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiaolan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Gen Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
21
|
Li D, Pan B, Han X, Li J, Zhu Q, Li M. Assessing the potential to use CDOM as an indicator of water quality for the sediment-laden Yellow river, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117970. [PMID: 34426192 DOI: 10.1016/j.envpol.2021.117970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Chromophoric dissolved organic matter (CDOM) in rivers is mainly affected by natural conditions and human activities and can reflect the watershed pollution status to a certain extent. The Yellow River is one of the largest contributors to the global riverine sediment flux from the land to ocean, and there is a paucity of information on how the optical properties of CDOM have the potential to serve as an indicator of water quality for the sediment-laden Yellow River. In this study, a three-dimensional fluorescence parallel factor (PARAFAC) analysis method was applied to investigate the seasonal and spatial variations in CDOM fluorescence components and spectral characteristics from the source region to the estuary in the mainstream of Yellow River. The relationships of CDOM with water quality indicators and trophic state were also analyzed. Six PARAFAC components (C1-C6) were identified and grouped into two categories: humic-like components (C1-C4), which accounted for 85.8 %, and protein-like components (C5 and C6), which accounted for only 14.2 %. The CDOM components, spectral parameters, and their clear correlations with the main ions (Na+ and Cl-) all indicated that the humic-like components may be primarily derived from nonpoint source erosion, and the protein-like components were mainly derived from point source discharges in the watershed. The combination of the CDOM absorption coefficient at 254 nm (a(254)), spectral slope ratio (SR), specific UV absorbance SUVA254, and fluorescence index (FI) had a good predictive ability for the key water quality indicators (total nitrogen (TN), dissolved total nitrogen (DTN), total phosphorus (TP), dissolved total phosphorus (DTP), and chlorophyll a (Chl a)) and trophic state index (TSI). Therefore, some fluorophores and UV spectral parameters of CDOM in the Yellow River can be used for rapid water quality monitoring and pollution source indication, especially pollutants related to nitrogen and phosphorus nutrients in the basin.
Collapse
Affiliation(s)
- Dianbao Li
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China.
| | - Xu Han
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Junhua Li
- Yellow River Institute of Hydraulic Research, Zhengzhou, 450003, China
| | - Qingwei Zhu
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
22
|
Wang S, Meng Q, Zhu Q, Niu Q, Yan H, Li K, Li G, Li X, Liu H, Liu Y, Li Q. Efficient decomposition of lignocellulose and improved composting performances driven by thermally activated persulfate based on metagenomics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148530. [PMID: 34217085 DOI: 10.1016/j.scitotenv.2021.148530] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
In this study, fresh dairy manure and bagasse pith were used as raw materials to study the effect of potassium persulfate in the aerobic composting process. The influence of sulfate radical anion (SO4-·) generated by thermally activated persulfate on physicochemical parameters, lignocellulose degradation, humic substance (HS) formation, microbial community succession, and carbohydrate-active enzymes (CAZymes) composition were assessed during composting. Experimental results showed that the degradation rates of cellulose, hemicellulose and lignin in the treatment group with potassium persulfate (PS) (61.47%, 74.63%, 73.1%) were higher than that in blank control group (CK) (59.98%, 71.47%, 70.89%), respectively. Additionally, persulfate additive promoted dynamic variation of dissolved organic matter (DOM) and accelerated the formation of HS. Furthermore, metagenomics analysis revealed that persulfate changed the structure of the microbial community, and the relative abundances of Actinobacteria and Proteobacteria increased by 17.64% and 34.09% in PS, whereas 12.09% and 29.96% in CK. Glycoside hydrolases (GHs) and auxiliary activities (AAs) families were crucial to degrade lignocellulose, and their abundances were more in PS. Redundancy analysis (RDA) manifested that Actinobacteria and Proteobacteria were closely associated with lignocellulosic degradation. In brief, persulfate could accelerate the degradation of organic components, promote the formation of HS, optimize the structure of microbial community, and improve the compost quality.
Collapse
Affiliation(s)
- Susu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qingran Meng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiuhui Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hailong Yan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Gen Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xintian Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Haibo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of Guangxi Biorefinery, Guangxi University, Nanning 530004, China
| | - Youyan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of Guangxi Biorefinery, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of Guangxi Biorefinery, Guangxi University, Nanning 530004, China.
| |
Collapse
|
23
|
Xu Z, Qi C, Zhang L, Ma Y, Li J, Li G, Luo W. Bacterial dynamics and functions for gaseous emissions and humification in response to aeration intensities during kitchen waste composting. BIORESOURCE TECHNOLOGY 2021; 337:125369. [PMID: 34139565 DOI: 10.1016/j.biortech.2021.125369] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
This study revealed bacteria dynamics and functions for gaseous emissions and humification during kitchen waste composting under different aeration intensities (i.e. 0.24, 0.36, and 0.48 L kg-1 DM min-1) using high-throughput sequencing with Functional Annotation of Prokaryotic Taxa. Results show that aeration increase restrained bacteria (e.g. Lactobacillus and Acinetobacter) for fermentation, nitrate reduction, and sulphur/sulphate respiration, but enriched thermophilic bacteria (e.g. Thermomonospora and Thermobifida) for aerobic chemohetertrophy, xylanolysis, cellulolysis, and methylotrophy. Thus, high aeration intensity (i.e. above 0.36 L kg-1 DM min-1) effectively alleviated the emission of greenhouse gases and hydrogen sulphide, and meanwhile facilitated the production of humus precursors and ammonia. Nevertheless, humification was limited by the conclusion of composting under high aeration conditions due to the consumption of humus precursors for bacterial activity. Thus, aeration intensity should be regulated at different stages indicated by temperature to balance gaseous emissions and humification during kitchen waste composting.
Collapse
Affiliation(s)
- Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jungang Li
- Beijing Solid Waste Treatment Company Limited, Beijing Environmental Sanitation Engineering Group Limited, Beijing 101100, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Wang H, Yao D, Xu J, Liu X, Sheng L. Investigation of technology for composting mixed deer manure and straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45805-45825. [PMID: 33884547 DOI: 10.1007/s11356-021-13886-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Composting is an effective method for utilizing agricultural straw waste and livestock manure resources. Using deer manure and corn straw as raw materials, the changes in various indexes were studied during composting under different initial C/N ratios, initial moisture contents, and particle sizes of corn straw, and compost maturity was evaluated. Moisture content, total organic carbon content, and C/N ratio all declined during composting, while total nitrogen, total phosphorus, total potassium, pH, germination index, and electrical conductivity increased. The grey relational analysis method was used to evaluate maturity. The results showed that a mixture of stalk and deer manure with initial moisture content of 55%, initial C/N ratio of 30:1, and a straw particle size of 1.5-3.5 cm constituted the optimal experimental conditions. Taguchi analysis indicated that initial moisture content exerted the greatest influence on compost maturity, followed by initial C/N ratio and crushed straw particle size. This study provides an important reference for the utilization of compost derived from a mixture of livestock manure and straw.
Collapse
Affiliation(s)
- Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Difu Yao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
| | - Xuejun Liu
- Development Planning Division, The Education Department of Jilin Province, Changchun, 130022, China
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| |
Collapse
|
25
|
Biochar reinforced the populations of cbbL-containing autotrophic microbes and humic substance formation via sequestrating CO 2 in composting process. J Biotechnol 2021; 333:39-48. [PMID: 33945823 DOI: 10.1016/j.jbiotec.2021.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 01/03/2023]
Abstract
The quality of compost is drastically reduced due to the loss of carbon, which negatively impacts the environment. Carbon emission reduction and carbon dioxide (CO2) fixation have attracted much attention in composting research. In this study, the relationship between CO2 emission, humic substances (HS) formation and cbbL-containing autotrophic microbes (CCAM) was analyzed by adding biochar during cow manure composting. The results showed that biochar can facilitate the degradation of organic matter (OM) and formation of HS, as well as reinforce the diversity and abundance of CCAM community, thereby promoting CO2 fixation and reducing carbon loss during composting. High-throughput sequencing analysis revealed significant increase in Actinobacteriota and Proteobacteria abundance by 30.97 % and 10.48 %, respectively, thus increasing carbon fixation by 32.07 %. Additionally, Alpha diversity index increased significantly during thermophilic phase, while Shannon index increased by 143.12 % and Sobs index increased by 51.62 %. Redundancy analysis (RDA) indicated that CO2 was positively correlated with C/N, temperature, HS and dissolved organic matter (DOM), while the abundance of Paeniclostridium, Corynebacterium, Bifidobacterium, Clostridium, Turicibacter and Romboutsia were positively correlated with temperature, CO2, C/N and E2/E4 (p < 0.01).
Collapse
|
26
|
Li G, Zhu Q, Niu Q, Meng Q, Yan H, Wang S, Li Q. The degradation of organic matter coupled with the functional characteristics of microbial community during composting with different surfactants. BIORESOURCE TECHNOLOGY 2021; 321:124446. [PMID: 33264744 DOI: 10.1016/j.biortech.2020.124446] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to investigate the effects of anionic and cationic surfactants on the physico-chemical properties, organic matter (OM) degradation, bacterial community structure and metabolic function during composting of dairy manure and sugarcane bagasse. The results showed that the surfactant could optimize the composting conditions to promote the degradation of OM. The most OM degradation and humic substances (HS) synthesis were observed in SAS. Firmicutes and Proteobacteria were more abundant in SAS and CTAC, and Actinobacteria in CK. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed that SAS and CTAC are more abundant than CK in genes related to metabolism, environmental and genetic information processing. The correlation analysis showed that the dominant bacteria had more significant correlation with environmental factors. In general, the anionic surfactant could better promote the degradation of OM, change the structure of microbial community, and improve the quality of compost.
Collapse
Affiliation(s)
- Gen Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiuhui Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qingran Meng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hailong Yan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Susu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
27
|
Li M, Xu J, Jiang Z, Li Q. Molecular understanding of autotrophic CO2-fixing bacterial communities in composting based on RuBisCO genes analysis. J Biotechnol 2020; 320:36-43. [DOI: 10.1016/j.jbiotec.2020.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/31/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
|