1
|
Park J, Song M, Hwang K, Bae H. Start-up strategy of single-stage partial nitrification-anammox process for anaerobic digestion effluent. BIORESOURCE TECHNOLOGY 2024; 408:131213. [PMID: 39098357 DOI: 10.1016/j.biortech.2024.131213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The objective of this study was to improve the nitrogen removal efficiency and reduce the start-up period of a single-stage partial nitritation-anammox (SPNA) system using iron particle-integrated anammox granules (IP-IAGs). Anammox granules were enriched in sequencing batch and expanded granular sludge bed (EGSB) reactors. The EGSB reactor produced larger and more uniform granules with higher specific anammox activity. IP-IAGs were then inoculated into a two-stage partial nitritation-anammox reactor treating anaerobic digestion (AD) effluent, followed by an internal recirculation strategy to acclimate the granules to oxygen exposure for SPNA. Finally, the SPNA process operated to treat real AD effluent under optimal conditions of 0.05 L/min aeration intensity (0.01 vvm) and 24 h of hydraulic retention time, achieving TNRE of 86.01 ± 2.64 % and nitrogen removal rate of 0.74 ± 0.04 kg-N/m3·d for 101 d.
Collapse
Affiliation(s)
- Jihye Park
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Minsu Song
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Kwanghyun Hwang
- RIF Tech, Environment Solution Research Team, GS E&C, GRAN SEOUL, 33 Jong-ro, Jongno-gu, Seoul 03159, Republic of Korea
| | - Hyokwan Bae
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
2
|
Peng L, Zhang J, Chen Y, Xie CM, Su L, Wang SF. Strategy to prevent calcification by restricting surface adhesion of Ca 2+: Reduced affinity of extracellular polymeric substances for Ca 2+ by mild acidic conditions. BIORESOURCE TECHNOLOGY 2024; 406:131032. [PMID: 38925403 DOI: 10.1016/j.biortech.2024.131032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Controlling CaCO3 precipitation within anaerobic granular sludge (AnGS) is crucial for the anaerobic treatment of paper recycling wastewater. A viable strategy was proposed to control calcification by adjusting a mild acidic condition in an anaerobic reactor without hindering organic degradation. The results indicated that lowering the bulk pH (6.5 to 6.8) reduced calcium precipitation by 60.1 % in calcium-rich influent (Ca2+ 1200 mg/L) and eradicated CaCO3 deposition on AnGS. Extracellular polymeric substances (EPS) have proven to be crucial participants in Ca2+ migration. The acidic solution weakens the interactions between EPS and Ca2+ and then diminishes the EPS adsorption capacity and affinity for Ca2+. The mild acidic environment goes beyond reducing CaCO3 formation in wastewater. EPS protonation reduced the probability of Ca2+ adhering to the AnGS surface, which halted calcium transportation from bulk liquid to granule. This work offers a feasible strategy to prevent AnGS calcification in high-calcium wastewater.
Collapse
Affiliation(s)
- Ling Peng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; College of Chemistry and Biological Engineering, Yichun University, Yichun 336000, China
| | - Jian Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Yong Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chun-Min Xie
- Anhui Bossco Environmental Protection Technology, Ningguo 530007, China
| | - Liu Su
- Anhui Bossco Environmental Protection Technology, Ningguo 530007, China
| | - Shuang-Fei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Zou X, Gao M, Yao Y, Zhang Y, Guo H, Liu Y. Efficient nitrogen removal from ammonia rich wastewater using aerobic granular sludge (AGS) reactor: Selection and enrichment of effective microbial community. ENVIRONMENTAL RESEARCH 2024; 251:118573. [PMID: 38431070 DOI: 10.1016/j.envres.2024.118573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Anaerobically digested sludge supernatant, characterized by its high ammonia and low biodegradable chemical oxygen demand (COD) content, has raised concerns when returned to mainstream treatment lines due to potential impacts on effluent quality. Addressing this, an aerobic granular sludge (AGS) reactor adopted nitritation/denitritation with external COD addition was utilized and achieved a considerable nitrogen treatment capacity of 4.2 kg N/m3/d, reaching over 90% removal efficiencies for both ammonia and total inorganic nitrogen. This study applied progressively increased nitrogen loading to select for a microbial community that exhibited high nitrogen oxidation and reduction rates, demonstrating peak rates of 0.5 g N/g VSS/d and 3 g N/g VSS/d, respectively. The enrichment of highly efficient microbial community was achieved along with the increased biomass density peaked at 17 g/L MLVSS, with the system retaining small-sized granular sludge at 0.5 mm. The primary ammonia oxidizing bacteria was Nitrosomonas, while Thauera was the dominated denitrifiers. Quantitative polymerase chain reaction analyses reinforced the enhanced nitrogen removal capacity based on the progressively increased abundance of nitrogen cycling functional genes. The high nitrogen treatment capacity, synergistic attributes of high specific microbial activities and the substantial biomass retention, suggest the AGS's efficacy and capacity in ammonia rich wastewater treatment.
Collapse
Affiliation(s)
- Xin Zou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mengjiao Gao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada; College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Yiduo Yao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yihui Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hengbo Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Guo H, Gao M, Yao Y, Zou X, Zhang Y, Huang W, Liu Y. Enhancing anammox process with granular activated carbon: A study on Microbial Extracellular Secretions (MESs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171980. [PMID: 38537814 DOI: 10.1016/j.scitotenv.2024.171980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
Granular activated carbon (GAC), a porous carbon-based material, provides increased attachment space for functional microorganisms and enhances nitrogen removal by facilitating extracellular electron transfer in the anammox process. This study investigates the effects of GAC on the biosynthesis of microbial extracellular secretions (MESs) and explores the roles of these secretions in anammox activities. Four lab-scale reactors were operated: two downstream UASB reactors (D1 and D2) receiving effluents from the upstream UASB reactors (U1: no-GAC, U2: yes-GAC). Our results indicate that MESs were enhanced with the addition of GAC. The effluent from U2 exhibited a 59.62 % higher amino acid content than that from U1. These secretions contributed to an increase in the nitrogen loading rate (NLR) in the downstream reactors. Specifically, NLR in D1 increased from 130.5 to 142.7 g N/m3/day, and in D2, it escalated from 137.5 to 202.8 g N/m3/day, likely through acting as cross-feeding substrates or vital nutrients. D2 also showed increased anammox bacterial activity, enriched Ca. Brocadia population and hao gene abundance. Furthermore, this study revealed that D2 sludge has significantly higher extracellular polymeric substances (EPS) (48.71 mg/g VSS) and a larger average granule size (1.201 ± 0.119 mm) compared to D1 sludge. Overall, GAC-stimulated MESs may have contributed to the enhanced performance of the anammox process.
Collapse
Affiliation(s)
- Hengbo Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mengjiao Gao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yiduo Yao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xin Zou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yihui Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wendy Huang
- Department of Civil Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
5
|
Chang G, Yang J, Li X, Liao H, Li S, Hou J, Zhong G, Wang J, Deng M, Xue Y. Iron-modified carriers accelerate biofilm formation and resist anammox bacteria loss in biofilm reactors for partial denitrification-anammox. BIORESOURCE TECHNOLOGY 2024; 394:130223. [PMID: 38113948 DOI: 10.1016/j.biortech.2023.130223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/16/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
The slow formation of anammox biofilms presents a bottleneck for resolving anammox bacterial loss and achieving stable performance in biofilm-based partial denitrification-anammox (PD-A) processes. This study utilized iron-modified (K1/Fe3O4 NPs) carriers, which were prepared and used for the first time in PD-A processes. Parallel moving bed biofilm reactors (MBBRs) indicated that iron-modified carriers facilitated the formation of biofilms at a faster rate than K1 carriers, consequently improving the nitrogen removal performance of the process by over 40 %. 16S rDNA analysis showed that anammox bacteria were approximately four times more abundant in the iron-modified carrier biofilm than in the K1 carrier biofilm. XPS and zeta potential analysis suggested that the improved microbial affinity of the iron-modified carrier surface caused this. As a result, the iron-modified carriers facilitated the formation of anammox biofilms and enhanced PD-A performance.
Collapse
Affiliation(s)
- Genwang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Jinjin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Shaokang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junhua Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Genmao Zhong
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junjie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Mingtao Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yiheng Xue
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
6
|
Liu X, Yang H, Yang K. Optimizing the hydrolysis-acidification stage in municipal wastewater treatment: comparison of immobilized fillers and granular sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6288-6300. [PMID: 38147258 DOI: 10.1007/s11356-023-31649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The decomposition of organic macromolecules in sewage currently benefits substantially from hydrolysis-acidification. The full use of its qualities can help domestic sewage to biodegrade more quickly, which promotes the subsequent aerobic reactions. This study evaluated the hydrolysis-acidification performance of granular sludge and filler in residential sewage. Both forms were highly effective at producing volatile fatty acids (VFAs) at the beginning of the reaction, but the granular sludge gradually disintegrated over time, particularly at low temperatures. The production of VFAs decreased (68.08 mg/L), and the effluent dissolved organic nitrogen (DON) increased (6.23 mg/L). However, the effluent of fillers remained at a lower level (1.3 mg/L) and produced more VFAs (74.13 mg/L). High-throughput sequencing revealed that the filler included a greater quantity of hydrolytic-acidifying bacteria than the granular sludge, which resulted in higher performance. In this study, the optimal form of utilizing hydrolytic acidifying bacteria was discussed to provide a theoretical basis to improve the full utilization of organic matter in domestic sewage and the removal of as much total nitrogen as possible.
Collapse
Affiliation(s)
- Xuyan Liu
- Hebei GEO University, Shijiazhuang, 050031, China
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Shijiazhuang, 050031, China
| | - Hong Yang
- Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Kai Yang
- Shijiazhuang University, Shijiazhuang, 050035, China.
| |
Collapse
|
7
|
Lin X, Li B, Tian M, Li X, Wang J. Denitrification effect and strengthening mechanism of SAD/A system at low temperature by gel-immobilization technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165599. [PMID: 37516176 DOI: 10.1016/j.scitotenv.2023.165599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Sulfur autotrophic denitrification coupled anaerobic ammonia oxidation (SAD/A) has several advantages over other denitrification processes; for example, it does not consume the organic carbon source, has low operation costs, and produces less excess sludge; however, it has certain disadvantages as well, such as a long start-up time, easy loss of bacteria, and low microbial activity at low temperature. The use of microbial immobilization technology to embed functional bacteria provides a feasible method of resolving the above problems. In this study polyvinyl alcohol‑sodium alginate was used to prepare a composite carrier for fixing anaerobic ammonia oxidizing bacteria (AAOB) and sulfur oxidizing bacteria (SOB), and the structure and morphology of the encapsulated bodies were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Subsequently, the nitrogen removal performance of the immobilized microbial carriers in the gradient cooling process (30 °C to 10 °C) was determined, and the corresponding mechanism was discussed. The results showed that the nitrate-removal efficiencies observed with granular sludge and gel embedding were at 10 °C 21.44 % and 14.31 % lower, than those at 30 °C, respectively, whereas the ammonia-removal efficiency decreased by up to approximately three-fold. The main mechanism was the 'insulation' provided by the external gel composed of PVA and SA for the internal sludge and subsequent improvement of its low temperature resistance, while protecting AAOB and SOB from oxygen inhibition, which is conducive to enriching denitrifying bacteria. In addition, the gel does not change the internal sludge species, it can shift the dominance of specific microorganisms and improve the removal efficiency of nitrogen. In summary, the immobilization of AAOB and SOB by the gel can achieve effectively mitigate nitrogen pollution in low temperature environments, thus indicating that the SAD/A process has broad engineering application prospects.
Collapse
Affiliation(s)
- Xiangyu Lin
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Bolin Li
- Wuhan University of Technology, Wuhan, Hubei 430070, China.
| | - Mengyuan Tian
- Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiang Li
- Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Jun Wang
- Wuhan University of Technology, Wuhan, Hubei 430070, China; Wuhan Airport Economic and Technological Development Zone Service Industry Development Investment Group Co., Ltd., Wuhan, Hubei 430070, China
| |
Collapse
|
8
|
Qian J, Luo D, Yu PF, Ye B, Li YH, Wang YY, Gao YN, Fu JX. Insights into the reaction of anammox to exogenous pyridine: Long-term performance and micro mechanisms. BIORESOURCE TECHNOLOGY 2023:129273. [PMID: 37290710 DOI: 10.1016/j.biortech.2023.129273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Some industrial wastewaters contain high amounts of toxic nitrogen-containing heterocyclic compounds, which may inhibit the efficiency of biological treatment. This work systematically investigated how exogenous pyridine affected the anaerobic ammonia oxidation (anammox) system and discussed the microscopic response mechanisms based on genes and enzymes. The anammox efficiency was not seriously inhibited by pyridine less than 50 mg/L. Bacteria secreted more extracellular polymeric substances to resist pyridine stress. After 6 days stress with 80 mg/L pyridine, the nitrogen removal rate of anammox system lost 47.7%. Long-term stress of pyridine reduced anammox bacteria by 7.26% and the expression of functional genes by 45%. Pyridine could actively bind to hydrazine synthase and ammonium transporter. This work fills a research gap in the ongoing threat of pyridines to anammox, and has guiding value for the application of anammox process in the treatment of ammonia-rich wastewater containing pyridine.
Collapse
Affiliation(s)
- Jie Qian
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Di Luo
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, PR China.
| | - Peng-Fei Yu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, PR China
| | - Bin Ye
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Ying-Hua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, PR China
| | - Yong-Yong Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, PR China
| | - Yu-Nan Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528225, PR China
| | - Jin-Xiang Fu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, PR China
| |
Collapse
|
9
|
Gao Y, Cai T, Yin J, Li H, Liu X, Lu X, Tang H, Hu W, Zhen G. Insights into biodegradation behaviors of methanolic wastewater in up-flow anaerobic sludge bed (UASB) reactor coupled with in-situ bioelectrocatalysis. BIORESOURCE TECHNOLOGY 2023; 376:128835. [PMID: 36889605 DOI: 10.1016/j.biortech.2023.128835] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Granular sludge disintegration and washing out pose a challenge to up-flow anaerobic sludge bed (UASB) reactor treating methanolic wastewater. Herein, in-situ bioelectrocatalysis (BE) was integrated into UASB (BE-UASB) reactor to alter microbial metabolic behaviors and enhance the re-granulation process. BE-UASB reactor exhibited the highest methane (CH4) production rate of 388.0 mL/Lreactor/d and chemical oxygen demand (COD) removal of 89.6 % at 0.8 V. Sludge re-granulation was strengthened with particle size over 300 µm of up to 22.4%. Bioelectrocatalysis stimulated extracellular polymeric substances (EPS) secretion and formation of granules with rigid [-EPS-cell-EPS-] matrix by enhancing the proliferation of key functional microorganisms (Acetobacterium, Methanobacterium, and Methanomethylovorans) and diversifying metabolic pathways. Particularly, a high Methanobacterium richness (10.8%) drove the electroreduction of CO2 into CH4 and reduced its emissions (52.8%). This study provides a novel bioelectrocatalytic strategy for controlling granular sludge disintegration, which will facilitate the practical application of UASB in methanolic wastewater treatment.
Collapse
Affiliation(s)
- Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Jian Yin
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Huan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xinyu Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd, Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| | - Hongxia Tang
- Shanghai Solid Waste and Chemicals Management Center, Shanghai, No. 55, Sanjiang Road, Xuhui District, PR China
| | - Weijie Hu
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai 200092, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N Zhongshan Road, Shanghai 200062, PR China
| |
Collapse
|
10
|
Ma C, Zeng W, Li J, Li S, Peng Y. Metabolomics uncovers adaptation discrepancy among anammox granular sludge with different granule size: Metabolic pathway regulation by consortia cooperation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161086. [PMID: 36566861 DOI: 10.1016/j.scitotenv.2022.161086] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The relationship between granular size and anaerobic ammonium oxidation (anammox) performance in the anammox granular sludge (AnGS) system has been extensively observed. However, the metabolic pathways regulated by communication and cross-feedings among anammox consortia remain unclear. The reactor operation and metabolomics analyses were combined to explore the influence of microbiota cooperation on metabolic pathways and granule properties under low temperature (18 °C) and nitrite inhibition. Anammox activity was sustained under challenging circumstances by active quorum sensing among anammox consortia in AnGS with diameters larger than 1.4 mm, which promoted nucleotide metabolism. Cross-feedings among anammox consortia increased the levels of molybdopterin cofactor and folate meanwhile decreasing the cost of carbon fixation metabolism, which supported anabolism and maintained the content of heme c and extracellular polymeric substance. These metabolic insights into the AnGS system provide a new view for anammox process overcoming the low temperature and nitrite stress.
Collapse
Affiliation(s)
- Chenyang Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jianmin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shuangshuang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
11
|
Wang P, Lu B, Liu X, Chai X. Accelerating the granulation of anammox sludge in wastewater treatment with the drive of "micro-nuclei": A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160238. [PMID: 36402322 DOI: 10.1016/j.scitotenv.2022.160238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Anammox granule sludge (AnGS) has great potential in the field of wastewater nitrogen removal, but its development and promotion have been limited by the slow granulation speed and fragile operating stability. Based on the reviews about the AnGS formation mechanism in this paper, "micro-nuclei" was found to play an important role in the granulation of AnGS, and adding "micro-nuclei" directly into the reactor may be an efficient way to accelerate the formation of AnGS. Then, accelerating AnGS granulation with inert particles, multivalent positive ions, and broken granule sludge as "micro-nuclei" was summarized and discussed. Among inert particles, iron-based particles may be a more advantageous candidate for "micro-nuclei" due to their ability to provide attachment sites and release ferric/ferrous ions. The precipitations of multivalent positive ions are also a potential option for "micro-nuclei" that can be generated in-situ, but a suitable dosing strategy is necessary. About broken granular sludge, the broken active AnGS may have advantages in terms of anaerobic ammonium oxidation bacteria-affinity and granulation speed, while using inactive granular sludge as "micro-nuclei" can avoid interfering bacterial invasion and has a higher cost performance than broken active AnGS. In addition, possible research directions for accelerating the formation of AnGS by dosing "micro-nuclei" were highlighted. This paper is intended to provide a possible pathway for the rapid start-up of AnGS systems, and references for the optimization and promotion of the AnGS process.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Xiaoji Liu
- China Energy Conservation and Environmental Protection Group (CECEP) Feixi WTE Co., Ltd., Anhui 230000, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
12
|
Kang P, Liang Z, Zhang Q, Zheng P, Yu G, Cui L, Liang Y. The optimum particle size of anaerobic ammonia oxidation granular sludge under different substrate concentrations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116992. [PMID: 36502703 DOI: 10.1016/j.jenvman.2022.116992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The nitrogen removal performance of anaerobic ammonia oxidation granular sludge (AnGS) varies widely among particle sizes. In this paper, the nitrogen removal performance, extracellular polymeric substances (EPS) secretion level and microbial community of AnGS with different particle sizes were investigated to select the optimal particle size for different substrate concentrations. The results showed that the optimal particle size migrated from 0.6-1.6 mm to 1.6-2.5 mm and then to 2.5-3.2 mm as the substrate concentration increased. When the influent concentration of NH4+-N was 110 mg/L, granular sludge with particle size of 1.6-2.5 mm showed excellent nitrogen removal performance with the highest EPS secretion, while the highest EPS secretion gradually migrated to smaller particles as the substrate concentration decreased. The nitrogen removal performance of AnGS with different particle sizes depends on different proportions of anaerobic ammonium-oxidizing (anammox) bacteria (Candidates_Jettenia, Candidates_Kuenenia, Candidatus_Brocadia), heterotrophic nitrification aerobic denitrifying bacteria (Acinetobacter) and denitrifying bacteria (Denitratisoma). The optimum particle size range for AnGS has been clarified for different influent nitrogen concentrations, which can provide some new understanding for the application of anammox reactors.
Collapse
Affiliation(s)
- Peilun Kang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zile Liang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Peihan Zheng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Guangwei Yu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lihua Cui
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yuhai Liang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Dsane VF, Jeon H, Choi Y, Jeong S, Choi Y. Characterization of magnetite assisted anammox granules based on in-depth analysis of extracellular polymeric substance (EPS). BIORESOURCE TECHNOLOGY 2023; 369:128372. [PMID: 36423769 DOI: 10.1016/j.biortech.2022.128372] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Magnetite can be considered as an iron-rich carrier particles that can be ionized into Fe2+ and Fe3+ which improves the activity and aggregation of anammox bacteria. Three samples from this carrier assisted granulation reactor with size groups including Flocs, FL (0-300 µm), Small Granules, SG (300-500 µm) and Large Granules, LG (500-1000 µm) were used in this study. It was observed that as the granule size increased, the iron-rich carrier content increased, and their active crystals improved the microbial cell density. Specific anammox activity (SAA) was 34.63 ± 5.02, 55.29 ± 5.14, and 63.81 ± 7.50 mg-N/g-VSS/d for FL, SG and LG, respectively. In addition, in heme c content of LG was 31.5 % higher than SG and 62.9 % higher than FL. An in-depth study into the extracellular polymeric substances (EPS) showed that the secretion intensity of essential proteins followed the order of FL < SG < LG in loosely bound EPS and FL > SG > LG in tightly bound EPS. Functional group analysis confirmed that the hydrophobic CN and NH stretching vibration band had almost 3.5 times higher transmittance intensity in LG than the other sizes and the corresponding ratio of α-helix/(β sheet + random coil) in secondary derivative proteins analysis showed tightness in the protein structures of FL. The relative abundance of Brocadia Sinica increased from 0 % in FL to a high of 20.46 % in LG. This study aims to communicate the essence of in-depth EPS analysis beyond the usual EPS yield and major contents of proteins (PN) and polysaccharides (PS) analysis.
Collapse
Affiliation(s)
| | - Haejun Jeon
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon, South Korea
| | - Yuri Choi
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon, South Korea
| | - Sohee Jeong
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon, South Korea
| | - Younggyun Choi
- Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
14
|
Xie J, Cao Q, An T, Mabruk A, Xie J, Chang Y, Guo M, Chen C. Small biochar addition enhanced anammox granular sludge system for practical wastewater treatment: Performance and microbial community. BIORESOURCE TECHNOLOGY 2022; 363:127749. [PMID: 35940326 DOI: 10.1016/j.biortech.2022.127749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonium oxidation (Anammox) granular sludge (AnGS) has poor strength and is prone to disintegration under complex environmental conditions, especially in the presence of complex organic carbon, which renders the Anammox process instable. Herein, with a mixture of landfill leachate and domestic sewage as wastewater, the effect on the properties of AnGS with two small particle size (0.1-0.2 mm) biochars (coconut and peach biochars) addition were investigated at different COD concentrations (150 mg·L-1, 200 mg·L-1, and 250 mg·L-1), as well as at different BOD/TN (B/N) (0.3 and 0.5). Results showed that the nitrogen removal efficiencies decreased from 89 % to 72 % as the COD concentration increased by 100 mg·L-1, while peach biochar reactor had better nitrogen removal performance. Excessive organic carbon supply inhibits AnAOB proliferation and B/N had the most significant effect on AnAOB (p < 0.05). The Polymerase Chain Reaction (PCR) indicated peach biochar reactor get higher activity of anammox-related functional genes (hzsA, hdh).
Collapse
Affiliation(s)
- Junxiang Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qianfei Cao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Tianyi An
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Adams Mabruk
- School of Civil Engineering, National University of Ireland, Galway, GA, Ireland
| | - Jiawei Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yaofeng Chang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Menglei Guo
- Qingyuan County Sanitation Department, Lishui 323800, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
15
|
Zhang Q, Zhao L, Zhang J, Liu W, Cai S, Chen L, Cai T, Ji XM. Nitrogen contribution and microbial community of size-fractionated anammox sludge in continuous stirred-tank reactors. BIORESOURCE TECHNOLOGY 2022; 362:127857. [PMID: 36037841 DOI: 10.1016/j.biortech.2022.127857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In this study, the microbial diversity of size-fractionated anammox sludge in a well-mixed system and their contribution to nitrogen transformation were investigated. Results showed that small granules (0.2-1.0 mm) contributed to the major part of the nitrogen removal rate (56 %) due to its largest mixed liquor volatile suspended solids (1240 ± 80 mg·L-1). However, large granules (>1.0 mm) possessed the highest relative abundances of Ca. Kuenenia stuttgartiensis and specific anammox activity, representing 49.34 % and 24.45 ± 0.01 mg-N·g-1-mixed liquor volatile suspended solids·h-1, respectively. The microbial diversity decreased as the increase of granular size, resulting in microbial community shifting to a simpler model. Metagenomic analysis showed that fine sludge might be the potential major for NO/N2O production in the mature well-mixed system under inorganic conditions. This study provides guidance for the evaluation of nitrogen contribution by anammox size-fractionated sludge and the inhibition of the potential NO/N2O emission in anammox processes.
Collapse
Affiliation(s)
- Qi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Leizhen Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shu Cai
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States
| | - Liwei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
16
|
Wan K, Yu Y, Hu J, Liu X, Deng X, Yu J, Chi R, Xiao C. Recovery of anammox process performance after substrate inhibition: Reactor performance, sludge morphology, and microbial community. BIORESOURCE TECHNOLOGY 2022; 357:127351. [PMID: 35605779 DOI: 10.1016/j.biortech.2022.127351] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Most of the current studies have focused on the inhibition of anaerobic ammonium oxidation (anammox) by substrates, however, little attention has been paid to the recovery process of the reactor after inhibition. Therefore, we investigated the changes in reactor performance, granular sludge structure, and microbial community during the recovery phase after being inhibited by a high nitrogen load for 15 d. The nitrogen removal rate of the reactorwasrestored to pre-inhibition levels after 75 d of recovery, and the stoichiometric ratio converged to the theoretical value. The surface of the granular sludge developed into a broccoli-like structure, and the Ca and P contents of the granules increased from 6.88% and 4.39% to 24.42% and 13.88%, respectively. The abundance of the anammox bacterium Candidatus brocadia increased from 5.86% to 12.10%, and network analysis indicated that SMA102 and SBR1031 were positively correlated with the occurrence of Candidatus brocadia.
Collapse
Affiliation(s)
- Kai Wan
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ye Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Jinggang Hu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Xuemei Liu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Xiangyi Deng
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China.
| |
Collapse
|
17
|
Wang X, Yang H. Nitrogen removal performance of anammox immobilized fillers in response to seasonal temperature variations and different operating modes: Substrate utilization and microbial community analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154574. [PMID: 35304144 DOI: 10.1016/j.scitotenv.2022.154574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Four anaerobic ammonium oxidation (anammox) immobilized filler reactors (R1: 33 °C-normal, R2: seasonal temperature-normal, R3: seasonal temperature-feast, R4: seasonal temperature-starvation) were established to study the response of anammox immobilized fillers to seasonal temperature changes and different operating modes. The results showed that the anammox immobilized filler could better adapt to the seasonal temperature drop and maintain the activity potential by adjusting the hydraulic retention time (HRT). During the temperature rise phase, R2 activity increased rapidly with the highest nitrogen removal rate reaching 1.26 kgN·(m3·d)-1, which was equivalent to control sample R1 (1.33 kgN·(m3·d)-1). However, feasting and famine conditions severely impaired anammox performance and changed stoichiometric ratios; feasting, in particular, significantly lowered the nitrogen removal potential of R3. The specific anammox activity of R2, R3 and R4 was 92.2%, 52.6% and 67.9%, respectively, that of R1, respectively, where the accumulation of functional bacteria was the reason for the higher activity of R2. Degradation kinetics and NO2--N inhibition curves showed that R3 was less sensitive to high concentrations of NH4+-N, while R4 responded earlier to low concentrations of NH4+-N, and the reduction of IC50 at low temperature was the reason for the inhibition of R3 activity. Furthermore, seasonal temperature fluctuations had little effect on the microbial community structure but had a considerable impact on bacteria abundance. The anammox functional bacteria Candidatus Kuenenia was found to be the dominant genus in R1-R4; however, the relative abundance of most bacteria, including anammox bacteria, decreased in R3, while the proportion of fermentation bacteria and denitrifying bacteria increased in R4. These findings highlight the necessity of rational regulation of HRT for the adaptation of anammox immobilized fillers to seasonal temperature changes, which could enhance our understanding of the synergistic effect of seasonal temperature changes and different operating modes on nitrogen removal.
Collapse
Affiliation(s)
- XiaoTong Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
18
|
Kang D, Zheng P, Li W, Xu D, Chen W, Pan C. Stratification patterns of anammox granular sludge bed: Linking particle size distribution to microbial activity and community. ENVIRONMENTAL RESEARCH 2022; 210:112763. [PMID: 35114142 DOI: 10.1016/j.envres.2022.112763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Anammox granular sludge processes are an attractive and efficient biotechnology in the field of wastewater treatment. In this study, the stratification patterns of anammox granular sludge bed (GSB) at steady states were illustrated and its relationship to microbial activity and community were systematically investigated under different nitrogen loading rates (NLRs). Morphological observation and quantitive particle size distribution analysis demonstrated that the GSB at low NLR was mainly composed of micro and fine granules with a big difference between bottom and top sludge layers. But at high NLR, the volumetric mean diameter (VMD) of GSB increased with the size distribution width (Span) declined forming a more homogeneous and coarse granules population. The particle size distribution parameters of GSB could be fast characterized by the optical lightness (L*) parameter (r = -0.771, p < 0.01, n = 16) and held a significant correlation with the nitrogen removal rate (NRR) of anammox system (r > 0.9, p < 0.05). The microbial spatial distribution patterns of different sludge layers were further investigated by high-throughput sequencing. The microbial community α-diversity index and microbial abundance matrix proved that the community structure tend to coverage at high NLR. Significant difference of the relative abundance of microbial community was detected under different NLRs. The VMD of GSB held a significant correlation with the relative abundance of AnAOB (r = 0.556, p < 0.01, n = 16) and other common accompanying bacteria (Denitratisoma and Chloroflexi). This study proved that the apparent particle size distribution patterns of GSB could be a potential auxiliary indicator to reflect the microbial activity and community, which can facilitate the innovative process monitor of anammox system based on visual features.
Collapse
Affiliation(s)
- Da Kang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, China; Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, China.
| | - Wenji Li
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, China
| | - Dongdong Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, China
| | - Wenda Chen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, China
| | - Chao Pan
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, China
| |
Collapse
|
19
|
Wang X, Yang H, Geng L, Liu X. Analyzing the effect of storage conditions on anammox recovery performance from the perspectives of time, temperature and biomass form. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151577. [PMID: 34801501 DOI: 10.1016/j.scitotenv.2021.151577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effects of different storage conditions, such as temperature, storage time and biomass form, on the properties of anaerobic ammonia oxidation (anammox) were investigated along with the identification of the process mechanism. The results showed that the influence of storage time on anammox properties was stronger than that of storage temperature and biomass form. Also, the anammox recovery activity at 15 °C was better than that at 4 °C, and the anammox recovery activity of immobilized filler was better than that of anammox granular sludge (AnGS). Although cryogenic storage severely damaged anammox activity, lower loss of extracellular polymeric substances maintained the AnGS structure. The maximum recovery of specific anammox activity at 15 °C for the immobilized filler was observed to be 109%. In addition, intermittent substrate supplementation weakened the adverse effect of long-term storage on anammox activity, and was conducive to maintaining stable flora composition and promoting regeneration of anammox bacteria (AnAOB). High-throughput sequencing analysis showed that starvation resulted in increased community diversity, and the functional bacteria Candidatus Brocadia was observed to be more tolerant to starvation than Candidatus Kuenenia. Finally, principal component analysis was used to explain the complex relationship between process performance and preservation conditions. Based on the results of this work, it is recommended to preserve AnAOB in the form of immobilized filler at 15 °C and supplement substrate intermittently during long term storage. This study provides an economical and robust strategy for the short-term and long-term preservation of AnAOB.
Collapse
Affiliation(s)
- XiaoTong Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China.
| | - LiangHan Geng
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - XuYan Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
20
|
Li Q, Jia Z, Fu J, Yang X, Shi X, Chen R. Biochar enhances partial denitrification/anammox by sustaining high rates of nitrate to nitrite reduction. BIORESOURCE TECHNOLOGY 2022; 349:126869. [PMID: 35183720 DOI: 10.1016/j.biortech.2022.126869] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
To examine the short-term effects of biochar on the partial-denitrification anammox (PD/A) process, the adsorption kinetics, nitrogen degradation, electron transfer properties, and microbial community succession of wastewater treatment systems with and without biochar added were monitored and characterized. The results showed that biochar increased nitrate reduction rates, which enhanced total nitrogen (TN) removal of the system by about 10%. The findings attributed improved TN removal to biochar's influence in accelerating electron transfer rather than its adsorption properties. Analysis of the nitrogen transfer pathway showed that when sufficient substrate was available, the anammox and denitrification reactions simultaneously removed nitrogen. When the nitrite supply was insufficient, the anammox reaction outcompeted the denitrification reaction for regenerated nitrite. Integrated microbial community and functional protein analyses indicated that biochar addition increased the abundance of Ca. Kuenenia and Pseudomonas. Meanwhile, biochar modulates denitrifying cellular metabolism by inducing protein changes.
Collapse
Affiliation(s)
- Qian Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; International S & T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Ziwen Jia
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Jingwei Fu
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Xiaohuan Yang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Xiaolin Shi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S & T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
21
|
Zhang M, Gu J, Wang S, Liu Y. A mainstream anammox fixed-film membrane bioreactor with novel sandwich-structured carriers for fast start-up, effective sludge retention and membrane fouling mitigation. BIORESOURCE TECHNOLOGY 2022; 347:126370. [PMID: 34801720 DOI: 10.1016/j.biortech.2021.126370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Novel sandwich-structured carriers were developed for fast immobilizing anammox sludge, with which a fixed-film membrane bioreactor was further established for treating municipal wastewater. Results showed that fast start-up of the fixed-film reactor with anammox bacteria could be achieved without lag phase, indicated by the respective nitrogen removal efficiency and rate of 70.58 ± 0.66% and 0.12 g N/(L·d). Meanwhile, low membrane fouling 0.0017 bar/hour was also observed. The activity of anammox sludge fixed in the novel carriers gradually stabilized at the level of 6.59 mg N/(g VSS·h), while Candidatus Kuenenia as the dominant anammox bacteria were enriched from the initial abundance of 15.16% to 39.12% after a long-term operation. Consequently, it was demonstrated that the sandwich-structured carriers developed in this study could offer a promising alternative for fast immobilization and start-up of mainstream anammox process.
Collapse
Affiliation(s)
- Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Jun Gu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Siyu Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
22
|
Wang X, Yang H, Su Y, Liu X. Effect of the form of granular sludge and temperature on anammox immobilized fillers: From performance to microbial community analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149754. [PMID: 34496344 DOI: 10.1016/j.scitotenv.2021.149754] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/26/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
The immobilized carrier was prepared with complete anaerobic ammonia oxidation granular sludge (AnGS) and crushed AnGS, respectively. We evaluated the effects of granular form and continuous temperature changes on nitrogen removal by immobilized anaerobic ammonium oxidation (anammox) filler. The results showed that the rate of nitrogen removal of crushed and encapsulated AnGS was 20% higher than that of direct encapsulated AnGS. However, the latter had higher thresholds of tolerance to Fe2+ and Cu2+. In addition, the immobilization reduced the activation energy of anammox. Above 12.5 °C, the immobilized filler was efficient at removing nitrogen removal through the dual adjustment of temperature-hydraulic retention time. From 12.5 °C to 23 °C, the temperature had a greater influence on the nitrogen removal effect than the HRT. In contrast, HRT had a dominant influence from 23 °C to 32 °C. Anammox activity was severely inhibited below 12.5 °C. High-throughput sequencing analysis showed that the community structure migrated with the changes in temperature. The anammox functional bacteria Candidatus Kuenenia (18.31-39.73%) were the dominant genus at medium and high temperatures, and it was replaced by Chryseobacterium (24.19%) at 8.5 °C. In addition, an RDA analysis showed that Candidatus Brocadia was more adaptable to low temperatures than Candidatus Kuenenia. In addition, Bellilinea was more sensitive to temperature than Candidatus Kuenenia. Thus, the temperature could be appropriately lowered to avoid overbreeding. The results of this study optimized the operation of an anammox immobilized system and promote its further application.
Collapse
Affiliation(s)
- XiaoTong Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yang Su
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - XuYan Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
23
|
Xu D, Fan J, Pan C, Kang D, Li W, Chen W, Zhang M, Hu B, Zheng P. Dimension effect of anammox granule: Potential vs performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148681. [PMID: 34328917 DOI: 10.1016/j.scitotenv.2021.148681] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Anammox granule is the key support of anammox sludge bed reactor. In this study, the anammox granules from a steady-state reactor were divided into 6 groups to investigate their dimension effects. The results of batch cultivation showed that the anammox granules with VMD (volume surface mean diameter) of 2.17 mm had the maximum SAA (specific anammox activity) of 399.6 ± 37.6 mg-N/(g-VSS·d). The bacterial community analysis demonstrated that Candidatus Kuenenia was the main detectable AnAOB genus in the anammox granules. Q-PCR together with flow cytometry indicated that the total number of viable AnAOB cells ascended with the increasing anammox granular size, suggesting the enhancement of nitrogen removal potential. On the contrary, the mass transfer efficiency descended with the increasing granular size, indicating the restriction of nitrogen removal performance. The maximum SAA was ascribed to the optimal match between nitrogen removal potential and mass transfer efficiency. The results of this study are helpful to comprehend the nitrogen removal capacity of anammox granules and to promote the optimization of anammox process.
Collapse
Affiliation(s)
- Dongdong Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chao Pan
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Da Kang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Wenji Li
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Wenda Chen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Baolan Hu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Wang X, Yang H, Su Y, Liu X, Wang J. Characteristics of anammox granular sludge using color differentiation, and nitrogen removal performance of its immobilized fillers based on microbial succession. BIORESOURCE TECHNOLOGY 2021; 333:125188. [PMID: 33901915 DOI: 10.1016/j.biortech.2021.125188] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
The characteristics of anammox granular sludge (AnGS) based on color differentiation, and the regulation mechanism of immobilized fillers in the system were investigated. The results showed that biomass content, EPS and activity of red AnGS (R1) were higher than those of brown AnGS (R2). Moreover, R1 showed nitrification, while R2 showed denitrification. Filamentous bacteria constituted the granule skeleton of R1, while R2 mainly constituted inorganic nucleation and granulation. Additionally, immobilization improved the contribution rate of Anammox, and involved different regulatory mechanisms. High-throughput sequencing analysis showed that R1 encapsulation biomass eliminated miscellaneous bacteria and established specific flora, while mixed encapsulated biomass of R1 and R2 re-formed a functional bacterial network, which strengthened interspecies cooperation. The R2 encapsulated biomass and AnAOB copy numbers were inferior and the interspecific cooperation was weak, resulting in an unsatisfactory nitrogen removal performance. These results can strengthen the understanding and optimization of AnGS and its immobilization system.
Collapse
Affiliation(s)
- XiaoTong Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yang Su
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - XuYan Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - JiaWei Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
25
|
Guzmán-Fierro V, Sanhueza J, Arriagada C, Pereira L, Campos V, Gallardo JJ, Roeckel M. The prediction of partial-nitrification-anammox performance in real industrial wastewater based on granular size. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112255. [PMID: 33647672 DOI: 10.1016/j.jenvman.2021.112255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/28/2020] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
To date, the partial nitrification-Anammox (PN-A) granular sludge size has been exclusively analyzed in synthetic substrates. In this work, different ranges of granular size of PN-A sludge were studied at low oxygen concentration using real industrial wastewater as, well as a synthetic substrate. The granular sludge was characterized by the specific nitrification activity (SNA), specific anammox activity (SAA), and granule sedimentation rate. The relative abundance of the bacterial consortium was assessed for each range of diameters through the fluorescence in situ hybridization (FISH) technique. SNA exhibits a direct association with the specific surface of granules, which proves the importance of the outer layer in the nitrification process. Even more critical, the flocculent sludge allowed the stability of the nitrifying activity. The SAA showed different performances faced the real industrial and synthetic substrates. With the synthetic substrate, the SAA decreased at higher diameter ranges, whereas with the industrial substrate, the SAA increased at higher diameter ranges. This situation is explained by the oxygen protection in the sludge maintained with industrial wastewater. The relative abundance of heterotrophic bacteria increased from 9.6 to 22%, due to the presence of organic matter in the industrial substrate. The granular sedimentation rate increased with the diameter of the granules with a linear correlation (R2 > 0.98). Thus, granular sizes can be selected through sedimentation rate control. A linear correlation between SAA and granular sludge diameter ranges was observed. With this correlation, an error of less than 11% in the prediction of SAA was achieved. The use of diameter measurement and granular sedimentation rate as routine techniques could contribute to the control and start-up of PN-A reactors. In the same sense, organic matter present in defined concentrations, can be beneficial for the granular sludge stability, and thus, for nitrogen removal.
Collapse
Affiliation(s)
- Víctor Guzmán-Fierro
- Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepción, Chile
| | - José Sanhueza
- Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepción, Chile
| | - Constanza Arriagada
- Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepción, Chile
| | - Luis Pereira
- Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Víctor Campos
- Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Juan José Gallardo
- Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepción, Chile; Department of Chemical Engineering, Higher Engineering School, University of Almería, Spain
| | - Marlene Roeckel
- Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepción, Chile.
| |
Collapse
|
26
|
Chen W, Yu T, Xu D, Li W, Pan C, Li Y, Zeng Z, Kang D, Shan S, Zheng P. Performance of DOuble Circulation Anaerobic Sludge bed reactor: Biomass self-balance. BIORESOURCE TECHNOLOGY 2021; 320:124407. [PMID: 33248436 DOI: 10.1016/j.biortech.2020.124407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
The calcification of Anaerobic Granular Sludge is a serious problem in the application of anaerobic methanization biotechnology. Regular replacement of calcified sludge with exogenous sludge is an effective method, but it is costly and troublesome. A new DOuble Circulation Anaerobic Sludge bed reactor was developed for the enhanced production of endogenous sludge to self-balance the discharge of calcified sludge. The sludge washout rate was demonstrated to fall by 45% and the sludge proliferation rate was shown to rise by 230%, offsetting the regular discharge of calcified sludge. The zoogloea in 100 μm dimension was revealed to be the intermediate component of sludge. The sludge proliferation mode was proposed as follows: (i) Growth of sludge; (ii) Self-cracking of sludge to release fragmental sludge; (iii) Migration of fragmental sludge by self-floatation; (iv) Accumulation of suspended sludge in the sedimentation chamber; (v) Re-granulation of suspended sludge with the aid of Venturi effect.
Collapse
Affiliation(s)
- Wenda Chen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Yu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongdong Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenji Li
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Pan
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiyu Li
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhuo Zeng
- Department of Environmental Science & Engineering, Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Sichuan 611756, China
| | - Da Kang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengdao Shan
- Key Lab Recycling & Ecotreatment Waste Biomass Zh, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|