1
|
Hu M, Ge J, Jiang Y, Sun X, Guo D, Gu Y. Advances and perspectives in genetic expression and operation for the oleaginous yeast Yarrowia lipolytica. Synth Syst Biotechnol 2024; 9:618-626. [PMID: 38784195 PMCID: PMC11109602 DOI: 10.1016/j.synbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
The utilization of industrial biomanufacturing has emerged as a viable and sustainable alternative to fossil-based resources for producing functional chemicals. Moreover, advancements in synthetic biology have created new opportunities for the development of innovative cell factories. Notably, Yarrowia lipolytica, an oleaginous yeast that is generally regarded as safe, possesses several advantageous characteristics, including the ability to utilize inexpensive renewable carbon sources, well-established genetic backgrounds, and mature genetic manipulation methods. Consequently, there is increasing interest in manipulating the metabolism of this yeast to enhance its potential as a biomanufacturing platform. Here, we reviewed the latest developments in genetic expression strategies and manipulation tools related to Y. lipolytica, particularly focusing on gene expression, chromosomal operation, CRISPR-based tool, and dynamic biosensors. The purpose of this review is to serve as a valuable reference for those interested in the development of a Y. lipolytica microbial factory.
Collapse
Affiliation(s)
- Mengchen Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jianyue Ge
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yaru Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Dongshen Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
2
|
Peralta FT, Shi C, Widanagamage GW, Speight RE, O'Hara I, Zhang Z, Navone L, Behrendorff JB. Pretreated sugarcane bagasse matches performance of synthetic media for lipid production with Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 413:131558. [PMID: 39362341 DOI: 10.1016/j.biortech.2024.131558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/25/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Engineered strains of Yarrowia lipolytica with modified lipid profiles and other desirable properties for microbial oil production are widely reported but are almost exclusively characterized in synthetic laboratory-grade media. Ensuring translatable performance between synthetic media and industrially scalable lignocellulosic feedstocks is a critical challenge. Yarrowia lipolytica growth and lipid production were characterized in media derived from two-step acid-catalyzed glycerol pretreatment of sugarcane bagasse. Fermentation performance was benchmarked against laboratory-grade synthetic growth media, including detailed characterization of media composition, nitrogen utilization, biomass and lipid production, and fatty acid product profile. A Yarrowia lipolytica strain modified to enable xylose consumption consumed all sugars, glycerol, and acetic acid, accumulating lipids to 34-44 % of cell dry weight. Growth and lipid content when grown in sugarcane bagasse-derived media were equivalent to or better than that observed with synthetic media. These sugarcane bagasse-derived media are suitable for transferable development of Yarrowia lipolytica fermentations from synthetic media.
Collapse
Affiliation(s)
- Francisco T Peralta
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Changrong Shi
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Gevindu Wathsala Widanagamage
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Robert E Speight
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Advanced Engineering Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD 4102, Australia.
| | - Ian O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Industrial Transformation Training Centre for Bioplastics and Biocomposites, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Laura Navone
- ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - James B Behrendorff
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| |
Collapse
|
3
|
Duan Y, Chen L, Ma L, Amin FR, Zhai Y, Chen G, Li D. From lignocellulosic biomass to single cell oil for sustainable biomanufacturing: Current advances and prospects. Biotechnol Adv 2024; 77:108460. [PMID: 39383979 DOI: 10.1016/j.biotechadv.2024.108460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
As global temperatures rise and arid climates intensify, the reserves of Earth's resources and the future development of humankind are under unprecedented pressure. Traditional methods of food production are increasingly inadequate in meeting the demands of human life while remaining environmentally sustainable and resource-efficient. Consequently, the sustainable supply of lipids is expected to become a pivotal area for future food development. Lignocellulose biomass (LB), as the most abundant and cost-effective renewable resource, has garnered significant attention from researchers worldwide. Thus, bioprocessing based on LB is appearing as a sustainable model for mitigating the depletion of energy reserves and reducing carbon footprints. Currently, the transformation of LB primarily focuses on producing biofuels, such as bioethanol, biobutanol, and biodiesel, to address the energy crisis. However, there are limited reports on the production of single cell oil (SCO) from LB. This review, therefore, provides a comprehensive summary of the research progress in lignocellulosic pretreatment. Subsequently, it describes how the capability for lignocellulosic use can be conferred to cells through genetic engineering. Additionally, the current status of saccharification and fermentation of LB is outlined. The article also highlights the advances in synthetic biology aimed at driving the development of oil-producing microorganism (OPM), including genetic transformation, chassis modification, and metabolic pathway optimization. Finally, the limitations currently faced in SCO production from straw are discussed, and future directions for achieving high SCO yields from various perspectives are proposed. This review aims to provide a valuable reference for the industrial application of green SCO production.
Collapse
Affiliation(s)
- Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Longxue Ma
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Farrukh Raza Amin
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yida Zhai
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
4
|
Yu B, Ma T, Nawaz M, Chen H, Zheng H. Advances in Metabolic Engineering for the Accumulation of Astaxanthin Biosynthesis. Mol Biotechnol 2024:10.1007/s12033-024-01289-1. [PMID: 39373956 DOI: 10.1007/s12033-024-01289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Astaxanthin, a lipophilic carotenoid renowned for its strong antioxidant activity, holds significant commercial value across industries such as feed, food, and cosmetics. Although astaxanthin can be synthesized through chemical methods, it may contain toxic by-products in the synthesized astaxanthin, limiting its application in medicine or functional food. Natural astaxanthin can be extracted from algae, however, the cultivation cycle of algae is relatively longer compared to microorganisms. With the advancement of synthetic biology and metabolic engineering, the method of microbial fermentation has emerged as a promising strategy for the large-scale production of astaxanthin. This article provides a comprehensive overview of the research progress in astaxanthin biosynthesis, highlighting the use of the natural host Xanthophyllomyces dendrorhous, and the heterologous hosts Yarrowia lipolytica and Saccharomyces cerevisiae. Additionally, future research prospects are also discussed.
Collapse
Affiliation(s)
- Bingxin Yu
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Tianyue Ma
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Maryam Nawaz
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Hailong Chen
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
5
|
Li D, Liu J, Sun L, Zhang J, Hou J. Developing polycistronic expression tool in Yarrowia lipolytica. Synth Syst Biotechnol 2024; 10:127-132. [PMID: 39493336 PMCID: PMC11530789 DOI: 10.1016/j.synbio.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
Unconventional oleaginous yeast Yarrowia lipolytica has gained widespread applications as a microbial cell factory for synthesizing various chemicals and natural products. The construction of efficient cell factories requires intricate metabolic engineering. However, multi-gene expression in Y. lipolytica is labor-intensive. To facilitate multi-gene expression, we developed the polycistronic expression tool using 2A peptides. We first compared different 2A peptides in Y. lipolytica and identified two 2A peptides with high cleavage efficiency: P2A and ERBV-1. The effect of 2A peptides on the expression level of upstream and downstream genes was then determined. Ultimately, we applied the identified 2A peptides to express four genes in canthaxanthin biosynthetic pathway within one expression cassette for canthaxanthin production. This study enriches the multi-gene expression tools of Y. lipolytica, which will facilitate the cell factory construction of Y. lipolytica.
Collapse
Affiliation(s)
- Donghan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
- Taishan College, Shandong University, Jinan, PR China
| | - Jianhui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| | - Lingxuan Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| | - Jin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| |
Collapse
|
6
|
Li H, Zhang S, Dong Z, Shan X, Zhou J, Zeng W. De Novo Biosynthesis of Dihydroquercetin in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19436-19446. [PMID: 39180741 DOI: 10.1021/acs.jafc.4c05546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Dihydroquercetin is a vital flavonoid compound with a wide range of physiological activities. However, factors, such as metabolic regulation, limit the heterologous synthesis of dihydroquercetin in microorganisms. In this study, flavanone 3-hydroxylase (F3H) and flavanone 3'-hydroxylase (F3'H) were screened from different plants, and their co-expression in Saccharomyces cerevisiae was optimized. Promoter engineering and redox partner engineering were used to optimize the corresponding expression of genes involved in the dihydroquercetin synthesis pathway. Dihydroquercetin production was further improved through multicopy integration pathway genes and systems metabolic engineering. By increasing NADPH and α-ketoglutarate supply, the catalytic efficiency of F3'H and F3H was improved, thereby effectively increasing dihydroquercetin production (235.1 mg/L). Finally, 873.1 mg/L dihydroquercetin titer was obtained by fed-batch fermentation in a 5-L bioreactor, which is the highest dihydroquercetin production achieved through de novo microbial synthesis. These results established a pivotal groundwork for flavonoids synthesis.
Collapse
Affiliation(s)
- Hongbiao Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuai Zhang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zilong Dong
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoyu Shan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Fu J, Zaghen S, Lu H, Konzock O, Poorinmohammad N, Kornberg A, Ledesma-Amaro R, Koseto D, Wentzel A, Di Bartolomeo F, Kerkhoven EJ. Reprogramming Yarrowia lipolytica metabolism for efficient synthesis of itaconic acid from flask to semipilot scale. SCIENCE ADVANCES 2024; 10:eadn0414. [PMID: 39121230 PMCID: PMC11313960 DOI: 10.1126/sciadv.adn0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/03/2024] [Indexed: 08/11/2024]
Abstract
Itaconic acid is an emerging platform chemical with extensive applications. Itaconic acid is currently produced by Aspergillus terreus through biological fermentation. However, A. terreus is a fungal pathogen that needs additional morphology controls, making itaconic acid production on industrial scale problematic. Here, we reprogrammed the Generally Recognized As Safe (GRAS) yeast Yarrowia lipolytica for competitive itaconic acid production. After preventing carbon sink into lipid accumulation, we evaluated itaconic acid production both inside and outside the mitochondria while fine-tuning its biosynthetic pathway. We then mimicked the regulation of nitrogen limitation in nitrogen-replete conditions by down-regulating NAD+-dependent isocitrate dehydrogenase through weak promoters, RNA interference, or CRISPR interference. Ultimately, we optimized fermentation parameters for fed-batch cultivations and produced itaconic acid titers of 130.1 grams per liter in 1-liter bioreactors and 94.8 grams per liter in a 50-liter bioreactor on semipilot scale. Our findings provide effective approaches to harness the GRAS microorganism Y. lipolytica for competitive industrial-scale production of itaconic acid.
Collapse
Affiliation(s)
- Jing Fu
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Simone Zaghen
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Oliver Konzock
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Naghmeh Poorinmohammad
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Alexander Kornberg
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Deni Koseto
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim N-7465, Norway
| | - Alexander Wentzel
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim N-7465, Norway
| | | | - Eduard J. Kerkhoven
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
- SciLifeLab, Chalmers University of Technology, Göteborg 412 96, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Tang YX, Huang W, Wang YH, Chen H, Lu XY, Tian Y, Ji XJ, Liu HH. Engineering Yarrowia lipolytica for sustainable Cis-13, 16-docosadienoic acid production. BIORESOURCE TECHNOLOGY 2024; 406:130978. [PMID: 38879057 DOI: 10.1016/j.biortech.2024.130978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/19/2024]
Abstract
Cis-13, 16-docosadienoic acid (DDA) is an omega-6 polyunsaturated fatty acid with great potential for application in medicine and health. Using microbial cell factories for DDA production is considered a viable alternative to extracting DDA from plant seeds. In this study, using Yarrowia lipolytica Po1f (Δku70) as a chassis, firstly, the adaptation of three elongases in Po1f (Δku70) were explored. Secondly, the DDA biosynthetic pathway was redesigned, resulting in a DDA content of 0.046 % of total fatty acids (TFAs). Thirdly, through the "push-pull" strategy, the DDA content increased to 0.078 % of TFAs. By enhancing the supply of acetyl-CoA, the DDA production in the engineered strain YL-7 reached 0.391 % of the TFAs (3.19 mg/L). Through optimizing the fermentation conditions, the DDA titer of YL-7 reached 29.34 mg/L. This research achieves the sustainable biological production of DDA in Y. lipolytica.
Collapse
Affiliation(s)
- Yi-Xiong Tang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wei Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yu-Hui Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Hong Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiang-Yang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Hu-Hu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
9
|
Kim YC, Yoo HW, Park BG, Sarak S, Hahn JS, Kim BG, Yun H. One-Pot Biocatalytic Route from Alkanes to α,ω-Diamines by Whole-Cell Consortia of Engineered Yarrowia lipolytica and Escherichia coli. ACS Synth Biol 2024; 13:2188-2198. [PMID: 38912892 DOI: 10.1021/acssynbio.4c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Metabolically engineered microbial consortia can contribute as a promising production platform for the supply of polyamide monomers. To date, the biosynthesis of long-chain α,ω-diamines from n-alkanes is challenging because of the inert nature of n-alkanes and the complexity of the overall synthesis pathway. We combined an engineered Yarrowia lipolytica module with Escherichia coli modules to obtain a mixed strain microbial consortium that could catalyze an efficient biotransformation of n-alkanes into corresponding α,ω-diamines. The engineered Y. lipolytica strain was constructed (YALI10) wherein the two genes responsible for β-oxidation and the five genes responsible for the overoxidation of fatty aldehydes were deleted. This newly constructed YALI10 strain expressing transaminase (TA) could produce 0.2 mM 1,12-dodecanediamine (40.1 mg/L) from 10 mM n-dodecane. The microbial consortia comprising engineered Y. lipolytica strains for the oxidation of n-alkanes (OM) and an E. coli amination module (AM) expressing an aldehyde reductase (AHR) and transaminase (TA) improved the production of 1,12-diamine up to 1.95 mM (391 mg/L) from 10 mM n-dodecane. Finally, combining the E. coli reduction module (RM) expressing a carboxylic acid reductase (CAR) and an sfp phosphopantetheinyl transferase with OM and AM further improved the production of 1,12-diamine by catalyzing the reduction of undesired 1,12-diacids into 1,12-diols, which further undergo amination to give 1,12-diamine as the target product. This newly constructed mixed strain consortium comprising three modules in one pot gave 4.1 mM (41%; 816 mg/L) 1,12-diaminododecane from 10 mM n-dodecane. The whole-cell consortia reported herein present an elegant "greener" alternative for the biosynthesis of various α,ω-diamines (C8, C10, C12, and C14) from corresponding n-alkanes.
Collapse
Affiliation(s)
- Ye Chan Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Hee-Wang Yoo
- Manufacfuring development, Pyeongtaek plant, Hanmi Pharm. Co., Pyeontaek 17118, South Korea
| | - Beom Gi Park
- CutisBio Co., Ltd., 8F Apgujeong B/D, 842 Nonhyeon-ro, Gangnam-gu, Seoul 08826, South Korea
| | - Sharad Sarak
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Saint Paul campus, Saint Paul, Minnesota 55108, United States of America
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
10
|
Žganjar M, Ogrizović M, Matul M, Čadež N, Gunde-Cimerman N, González-Fernández C, Gostinčar C, Tomás-Pejó E, Petrovič U. High-throughput screening of non-conventional yeasts for conversion of organic waste to microbial oils via carboxylate platform. Sci Rep 2024; 14:14233. [PMID: 38902520 PMCID: PMC11190255 DOI: 10.1038/s41598-024-65150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Converting waste into high-value products promotes sustainability by reducing waste and creating new revenue streams. This study investigates the potential of diverse yeasts for microbial oil production by utilizing short-chain fatty acids (SCFAs) that can be produced from organic waste and focuses on identifying strains with the best SCFA utilisation, tolerance and lipid production. A collection of 1434 yeast strains was cultivated with SCFAs as the sole carbon source. Eleven strains emerged as candidates with promising growth rates and high lipid accumulation. Subsequent fermentation experiments in liquid SCFA-rich media, which focused on optimizing lipid accumulation by adjusting the carbon to nitrogen (C/N) ratio, showed an increase in lipid content at a C/N ratio of 200:1, but with a concurrent reduction in biomass. Two strains were characterized by their superior ability to produce lipids compared to the reference strain Yarrowia lipolytica CECT124: Y. lipolytica EXF-17398 and Pichia manshurica EXF-7849. Characterization of these two strains indicated that they exhibit a biotechnologically relevant balance between maximizing lipid yield and maintaining growth at high SCFA concentrations. These results emphasize the potential of using SCFAs as a sustainable feedstock for oleochemical production, offering a dual benefit of waste valorisation and microbial oil production.
Collapse
Affiliation(s)
- Mia Žganjar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Ogrizović
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Mojca Matul
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Neža Čadež
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
- Institute of Sustainable Processes, Dr. Mergelina, Valladolid, Spain
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Uroš Petrovič
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Ibrahim GG, Perera M, Abdulmalek SA, Yan J, Yan Y. De Novo Synthesis of Resveratrol from Sucrose by Metabolically Engineered Yarrowia lipolytica. Biomolecules 2024; 14:712. [PMID: 38927115 PMCID: PMC11201955 DOI: 10.3390/biom14060712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Resveratrol, a phenylpropanoid compound, exhibits diverse pharmacological properties, making it a valuable candidate for health and disease management. However, the demand for resveratrol exceeds the capacity of plant extraction methods, necessitating alternative production strategies. Microbial synthesis offers several advantages over plant-based approaches and presents a promising alternative. Yarrowia lipolytica stands out among microbial hosts due to its safe nature, abundant acetyl-CoA and malonyl-CoA availability, and robust pentose phosphate pathway. This study aimed to engineer Y. lipolytica for resveratrol production. The resveratrol biosynthetic pathway was integrated into Y. lipolytica by adding genes encoding tyrosine ammonia lyase from Rhodotorula glutinis, 4-coumarate CoA ligase from Nicotiana tabacum, and stilbene synthase from Vitis vinifera. This resulted in the production of 14.3 mg/L resveratrol. A combination of endogenous and exogenous malonyl-CoA biosynthetic modules was introduced to enhance malonyl-CoA availability. This included genes encoding acetyl-CoA carboxylase 2 from Arabidopsis thaliana, malonyl-CoA synthase, and a malonate transporter protein from Bradyrhizobium diazoefficiens. These strategies increased resveratrol production to 51.8 mg/L. The further optimization of fermentation conditions and the utilization of sucrose as an effective carbon source in YP media enhanced the resveratrol concentration to 141 mg/L in flask fermentation. By combining these strategies, we achieved a titer of 400 mg/L resveratrol in a controlled fed-batch bioreactor. These findings demonstrate the efficacy of Y. lipolytica as a platform for the de novo production of resveratrol and highlight the importance of metabolic engineering, enhancing malonyl-CoA availability, and media optimization for improved resveratrol production.
Collapse
Affiliation(s)
- Gehad G. Ibrahim
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (G.G.I.); (M.P.)
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig 7120001, Egypt
| | - Madhavi Perera
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (G.G.I.); (M.P.)
- Department of Electrical, Electronic and Telecommunication, Faculty of Engineering, General Sir John Kotelawala Defence University, Rathmalana 10390, Sri Lanka
| | | | - Jinyong Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (G.G.I.); (M.P.)
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (G.G.I.); (M.P.)
| |
Collapse
|
12
|
Wang S, Sun X, Han Y, Li Z, Lu X, Shi H, Zhang CY, Wong A, Yu A. Sustainable biosynthesis of squalene from waste cooking oil by the yeast Yarrowia lipolytica. Metab Eng Commun 2024; 18:e00240. [PMID: 38948667 PMCID: PMC11214311 DOI: 10.1016/j.mec.2024.e00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Squalene is a highly sought-after triterpene compound in growing demand, and its production offers a promising avenue for circular economy practices. In this study, we applied metabolic engineering principles to enhance squalene production in the nonconventional yeast Yarrowia lipolytica, using waste cooking oil as a substrate. By overexpressing key enzymes in the mevalonate pathway - specifically ERG9 encoding squalene synthase, ERG20 encoding farnesyl diphosphate synthase, and HMGR encoding hydroxy-methyl-glutaryl-CoA reductase - we achieved a yield of 779.9 mg/L of squalene. Further co-overexpression of DGA1, encoding diacylglycerol acyltransferase, and CAT2, encoding carnitine acetyltransferase, in combination with prior metabolic enhancements, boosted squalene production to 1381.4 mg/L in the engineered strain Po1g17. To enhance the supply of the precursor acetyl-CoA and inhibit downstream squalene conversion, we supplemented with 6 g/L pyruvic acid and 0.7 mg/L terbinafine, resulting in an overall squalene titer of 2594.1 mg/L. These advancements underscore the potential for sustainable, large-scale squalene production using Y. lipolytica cell factories, contributing to circular economy initiatives by valorizing waste materials.
Collapse
Affiliation(s)
- Shuhui Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China
| | - Xu Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China
| | - Yuqing Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China
| | - Zhuo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China
| | - Xiaocong Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China
| | - Hongrui Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China
| | - Cui-ying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China
| | - Adison Wong
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore, 138683, Singapore
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China
| |
Collapse
|
13
|
Morales-Palomo S, Navarrete C, Martínez JL, González-Fernández C, Tomás-Pejó E. Transcriptomic profiling of an evolved Yarrowia lipolytica strain: tackling hexanoic acid fermentation to increase lipid production from short-chain fatty acids. Microb Cell Fact 2024; 23:101. [PMID: 38566056 PMCID: PMC10988856 DOI: 10.1186/s12934-024-02367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) are cost-effective carbon sources for an affordable production of lipids. Hexanoic acid, the acid with the longest carbon chain in the SCFAs pool, is produced in anaerobic fermentation of organic residues and its use is very challenging, even inhibiting oleaginous yeasts growth. RESULTS In this investigation, an adaptive laboratory evolution (ALE) was performed to improve Yarrowia lipolytica ACA DC 50109 tolerance to high hexanoic acid concentrations. Following ALE, the transcriptomic analysis revealed several genetic adaptations that improved the assimilation of this carbon source in the evolved strain compared to the wild type (WT). Indeed, the evolved strain presented a high expression of the up-regulated gene YALI0 E16016g, which codes for FAT1 and is related to lipid droplets formation and responsible for mobilizing long-chain acids within the cell. Strikingly, acetic acid and other carbohydrate transporters were over-expressed in the WT strain. CONCLUSIONS A more tolerant yeast strain able to attain higher lipid content under the presence of high concentrations of hexanoic acid has been obtained. Results provided novel information regarding the assimilation of hexanoic acid in yeasts.
Collapse
Affiliation(s)
| | - Clara Navarrete
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - José Luis Martínez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Móstoles (Madrid), Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Valladolid, 47011, Spain
- Institute of Sustainable Processes, Valladolid, 47011, Spain
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Móstoles (Madrid), Spain.
| |
Collapse
|
14
|
Yu Y, Lu L, Xu J, Wang L, Guo S. Microbial lipid synthesis based on visible light-driven oxygen doped-graphitic carbon nitride /oleaginous yeast hybrid system. BIORESOURCE TECHNOLOGY 2024; 397:130476. [PMID: 38387842 DOI: 10.1016/j.biortech.2024.130476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The use of solar energy and heterotrophic microbes to synthesize microbial lipids is a promising strategy to solve energy crisis and reduce CO2 emissions. In this study, a photocatalyst, oxygen-doped graphitic carbon nitride (O-g-C3N4), was synthesized and combined with an oleaginous yeast strain, Cutaneotrichosporon dermatis ZZ-46, to construct a photocatalyst-microbe hybrid (PMH) system. Under illumination, the lipid yield of the PMH system reached 1.61 g/L after 96 h (87 % higher than that of control). NADPH/NADP+ ratio of ZZ-46 cells in the PMH system increased. Metabolomics results revealed that glutathione generation was increased, and the fatty acid decomposition pathway in ZZ-46 cells was inhibited in the PMH system. This study provides a new approach for the synthesis of microbial lipids based on solar energy and heterotrophic microbes.
Collapse
Affiliation(s)
- Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, Jiangsu, PR China.
| | - Lingxia Lu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, Jiangsu, PR China
| | - Jie Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, Jiangsu, PR China
| | - Laiyou Wang
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473004, PR China
| | - Shuxian Guo
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473004, PR China
| |
Collapse
|
15
|
Zhu J, Yang S, Cao Q, Li X, Jiao L, Shi Y, Yan Y, Xu L, Yang M, Xie X, Madzak C, Yan J. Engineering Yarrowia lipolytica as a Cellulolytic Cell Factory for Production of p-Coumaric Acid from Cellulose and Hemicellulose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5867-5877. [PMID: 38446418 DOI: 10.1021/acs.jafc.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
De novo biosynthesis of high-value added food additive p-coumaric acid (p-CA) direct from cellulose/hemicellulose is a more sustainable route compared to the chemical route, considering the abundant cellulose/hemicellulose resources. In this study, a novel factory was constructed for the production of p-CA in Yarrowia lipolytica using cellulose/hemicellulose as the sole carbon source. Based on multicopy integration of the TAL gene and reprogramming the shikimic acid pathway, the engineered strain produced 1035.5 ± 67.8 mg/L p-CA using glucose as a carbon source. The strains with overexpression of cellulases and hemicellulases produced 84.3 ± 2.4 and 65.3 ± 4.6 mg/L p-CA, using cellulose (carboxymethyl-cellulose) or hemicellulose (xylan from bagasse) as the carbon source, respectively. This research demonstrated the feasibility of conversion of cost-effective cellulose/hemicellulose into a value-added product and provided a sustainable cellulolytic cell factory for the utilization of cellulose/hemicellulose.
Collapse
Affiliation(s)
- Jiarui Zhu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Shu Yang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | | | - Xiaoyan Li
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Liangcheng Jiao
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yuanxing Shi
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yunjun Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Li Xu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Min Yang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiaoman Xie
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Catherine Madzak
- UMR 782 SayFood, INRAE, AgroParisTech, Paris-Saclay University, Palaiseau 91400, France
| | - Jinyong Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
16
|
Ning Y, Liu M, Ru Z, Zeng W, Liu S, Zhou J. Efficient synthesis of squalene by cytoplasmic-peroxisomal engineering and regulating lipid metabolism in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 395:130379. [PMID: 38281547 DOI: 10.1016/j.biortech.2024.130379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Squalene, a high-value acyclic triterpenoid compound, is broadly used in the food and medical industries. Although the large acetyl-CoA pool and hydrophobic space of Yarrowia lipolytica are suitable for the accumulation of squalene, the current production level in Y. lipolytica is still not sufficient for industrial production. In this study, two rounds of multicopy integration of genes encoding key enzymes were performed to enhance squalene anabolic flux in the cytoplasm. Furthermore, the mevalonate pathway was imported into peroxisomes through the compartmentalization strategy, and the production of squalene was significantly increased. By augmenting the acetyl-CoA supply in peroxisomes and the cytoplasm, the squalene was boosted to 2549.1 mg/L. Finally, the squalene production reached 51.2 g/L by fed-batch fermentation in a 5-L bioreactor. This is the highest squalene production reported to date for microbial production, and this study lays the foundation for the synthesis of steroids and squalene derivatives.
Collapse
Affiliation(s)
- Yang Ning
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ziyun Ru
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
17
|
Liu M, Wu J, Yue M, Ning Y, Guan X, Gao S, Zhou J. YaliCMulti and YaliHMulti: Stable, efficient multi-copy integration tools for engineering Yarrowia lipolytica. Metab Eng 2024; 82:29-40. [PMID: 38224832 DOI: 10.1016/j.ymben.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Yarrowia lipolytica is widely used in biotechnology to produce recombinant proteins, food ingredients and diverse natural products. However, unstable expression of plasmids, difficult and time-consuming integration of single and low-copy-number plasmids hampers the construction of efficient production pathways and application to industrial production. Here, by exploiting sequence diversity in the long terminal repeats (LTRs) of retrotransposons and ribosomal DNA (rDNA) sequences, a set of vectors and methods that can recycle multiple and high-copy-number plasmids was developed that can achieve stable integration of long-pathway genes in Y. lipolytica. By combining these sequences, amino acids and antibiotic tags with the Cre-LoxP system, a series of multi-copy site integration recyclable vectors were constructed and assessed using the green fluorescent protein (HrGFP) reporter system. Furthermore, by combining the consensus sequence with the vector backbone of a rapidly degrading selective marker and a weak promoter, multiple integrated high-copy-number vectors were obtained and high levels of stable HrGFP expression were achieved. To validate the universality of the tools, simple integration of essential biosynthesis modules was explored, and 7.3 g/L of L-ergothioneine and 8.3 g/L of (2S)-naringenin were achieved in a 5 L fermenter, the highest titres reported to date for Y. lipolytica. These novel multi-copy genome integration strategies provide convenient and effective tools for further metabolic engineering of Y. lipolytica.
Collapse
Affiliation(s)
- Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Junjun Wu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Mingyu Yue
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yang Ning
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xin Guan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
18
|
Liu Z, Huang M, Chen H, Lu X, Tian Y, Hu P, Zhao Q, Li P, Li C, Ji X, Liu H. Metabolic engineering of Yarrowia lipolytica for high-level production of squalene. BIORESOURCE TECHNOLOGY 2024; 394:130233. [PMID: 38141883 DOI: 10.1016/j.biortech.2023.130233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Squalene is an important triterpene with a wide range of applications. Given the growing market demand for squalene, the development of microbial cell factories capable of squalene production is considered a sustainable method. This study aimed to investigate the squalene production potential of Yarrowia lipolytica. First, HMG-CoA reductase from Saccharomyces cerevisiae and squalene synthase from Y. lipolytica was co-overexpressed in Y. lipolytica. Second, by enhancing the supply of NADPH in the squalene synthesis pathway, the production of squalene in Y. lipolytica was effectively increased. Furthermore, by constructing an isoprenol utilization pathway and overexpressing YlDGA1, the strain YLSQ9, capable of producing 868.1 mg/L squalene, was obtained. Finally, by optimizing the fermentation conditions, the highest squalene concentration of 1628.2 mg/L (81.0 mg/g DCW) in Y. lipolytica to date was achieved. This study demonstrated the potential for achieving high squalene production using Y. lipolytica.
Collapse
Affiliation(s)
- Ziying Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Mingkang Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Hong Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Pengcheng Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qiaoqin Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Peiwang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Xiaojun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
19
|
Shen Q, Yan F, Li YW, Wang J, Ji J, Yan WX, He DC, Song P, Shi TQ. Expansion of YALIcloneHR toolkit for Yarrowia lipolytica combined with Golden Gate and CRISPR technology. Biotechnol Lett 2024; 46:37-46. [PMID: 38064043 DOI: 10.1007/s10529-023-03444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 01/14/2024]
Abstract
Metabolic Engineering of yeast is a critical approach to improving the production capacity of cell factories. To obtain genetically stable recombinant strains, the exogenous DNA is preferred to be integrated into the genome. Previously, we developed a Golden Gate toolkit YALIcloneNHEJ, which could be used as an efficient modular cloning toolkit for the random integration of multigene pathways through the innate non-homologous end-joining repair mechanisms of Yarrowia lipolytica. We expanded the toolkit by designing additional building blocks of homologous arms and using CRISPR technology. The reconstructed toolkit was thus entitled YALIcloneHR and designed for gene-specific knockout and integration. To verify the effectiveness of the system, the gene PEX10 was selected as the target for the knockout. This system was subsequently applied for the arachidonic acid production, and the reconstructed strain can accumulate 4.8% of arachidonic acid. The toolkit will expand gene editing technology in Y. lipolytica, which would help produce other chemicals derived from acetyl-CoA in the future.
Collapse
Affiliation(s)
- Qi Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
| | - Fang Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
| | - Jian Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
| | - Jia Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
| | - Wen-Xin Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
| | - Dan-Chen He
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
20
|
Sofeo N, Toi MG, Ee EQG, Ng JY, Busran CT, Lukito BR, Thong A, Hermansen C, Peterson EC, Glitsos R, Arumugam P. Sustainable production of lipids from cocoa fatty acid distillate fermentation driven by adaptive evolution in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 394:130302. [PMID: 38199440 DOI: 10.1016/j.biortech.2024.130302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Single cell oil production using oleaginous yeasts is a promising alternative to animal and plant-derived lipids. But substrate costs for microbial fermentation are a major bottleneck. Using side streams as alternative to substrates like glucose, for growing yeast, is a potential cost-effective solution. By combining a previously reported process of growing yeasts on a solid cocoa fatty acid distillate side stream with adaptive evolution techniques, the growth of oleaginous yeast Yarrowia lipolytica was improved by 2-fold. The lipid titre was also boosted by more than 3-fold. Using transcriptomics, key genes were identified that are possibly involved in tailoring of lipid composition, side stream utilisation and enhancement of lipid titres. Candidate genes were also identified that might enable efficient growth and utilization of fatty acids and triacylglycerides found in cocoa fatty acid distillate. In summary, this research has improved the understanding of side stream utilisation for lipid production in oleaginous yeast.
Collapse
Affiliation(s)
- Naazneen Sofeo
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore.
| | - Min Gin Toi
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - En Qi Grace Ee
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Jing Yang Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Coleen Toledo Busran
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Benedict Ryan Lukito
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Aaron Thong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Christian Hermansen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Eric Charles Peterson
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore; Institut National de la Recherche Scientifique - Eau Terre Environnement (INRS-ETE), 490 Rue de la Couronne, Quebec City, QC G1K 9A9, Canada
| | - Renata Glitsos
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Prakash Arumugam
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| |
Collapse
|
21
|
Manasa S, Tharak A, Venkata Mohan S. Biorefinery-centric ethanol and oleochemical production employing Yarrowia lipolytica and Pichia farinosa. BIORESOURCE TECHNOLOGY 2024; 394:130243. [PMID: 38142910 DOI: 10.1016/j.biortech.2023.130243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
The research examined the capabilities of Yarrowia lipolytica (YL) and Pichia farinosa (PF) in converting sugars to ethanol and oleochemicals. Lipid, ethanol, protein yield and gene-expressions were analysed at different substrate concentrations (3 to 30 g/L) with glucose, food waste, and fermentation-effluent. Optimal results were obtained at 20 g/L using both synthetic carbon with 4.6 % of total lipid yield. Lauric and Caprylic acid dominance was noted in total lipid fractions. Protein accumulation (6 g/L) was observed in glucose system (20 g/L) indicating yeast strains potential as single-cell proteins (SCP). Fatty-acid desaturase (FAD12) and alcohol dehydrogenase (ADH) expressions were higher at optimum condition of YL (1.15 × 10-1, 3.8 × 10-2) and PF (5.8 × 10-2, 3.8 × 10-2) respectively. Maximum carbon reduction of 87 % depicted at best condition, aligning with metabolic yield. These findings highlights promising role of yeast as biorefinery biocatalyst.
Collapse
Affiliation(s)
- Sravya Manasa
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Athmakuri Tharak
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
22
|
Yang Y, Li Z, Zong H, Liu S, Du Q, Wu H, Li Z, Wang X, Huang L, Lai C, Zhang M, Wang W, Chen X. Identification and Validation of Magnolol Biosynthesis Genes in Magnolia officinalis. Molecules 2024; 29:587. [PMID: 38338333 PMCID: PMC10856379 DOI: 10.3390/molecules29030587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Bacterial infections pose a significant risk to human health. Magnolol, derived from Magnolia officinalis, exhibits potent antibacterial properties. Synthetic biology offers a promising approach to manufacture such natural compounds. However, the plant-based biosynthesis of magnolol remains obscure, and the lack of identification of critical genes hampers its synthetic production. In this study, we have proposed a one-step conversion of magnolol from chavicol using laccase. After leveraging 20 transcriptomes from diverse parts of M. officinalis, transcripts were assembled, enriching genome annotation. Upon integrating this dataset with current genomic information, we could identify 30 laccase enzymes. From two potential gene clusters associated with magnolol production, highly expressed genes were subjected to functional analysis. In vitro experiments confirmed MoLAC14 as a pivotal enzyme in magnolol synthesis. Improvements in the thermal stability of MoLAC14 were achieved through selective mutations, where E345P, G377P, H347F, E346C, and E346F notably enhanced stability. By conducting alanine scanning, the essential residues in MoLAC14 were identified, and the L532A mutation further boosted magnolol production to an unprecedented level of 148.83 mg/L. Our findings not only elucidated the key enzymes for chavicol to magnolol conversion, but also laid the groundwork for synthetic biology-driven magnolol production, thereby providing valuable insights into M. officinalis biology and comparative plant science.
Collapse
Affiliation(s)
- Yue Yang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Y.Y.); (Z.L.); (H.Z.); (Z.L.)
| | - Zihe Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Y.Y.); (Z.L.); (H.Z.); (Z.L.)
| | - Hang Zong
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Y.Y.); (Z.L.); (H.Z.); (Z.L.)
| | - Shimeng Liu
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing 314006, China; (S.L.); (Q.D.); (H.W.); (X.W.); (L.H.); (C.L.)
| | - Qiuhui Du
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing 314006, China; (S.L.); (Q.D.); (H.W.); (X.W.); (L.H.); (C.L.)
| | - Hao Wu
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing 314006, China; (S.L.); (Q.D.); (H.W.); (X.W.); (L.H.); (C.L.)
| | - Zhenzhu Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Y.Y.); (Z.L.); (H.Z.); (Z.L.)
| | - Xiao Wang
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing 314006, China; (S.L.); (Q.D.); (H.W.); (X.W.); (L.H.); (C.L.)
| | - Lihui Huang
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing 314006, China; (S.L.); (Q.D.); (H.W.); (X.W.); (L.H.); (C.L.)
| | - Changlong Lai
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing 314006, China; (S.L.); (Q.D.); (H.W.); (X.W.); (L.H.); (C.L.)
| | - Meide Zhang
- Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi 445000, China;
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China; (Y.Y.); (Z.L.); (H.Z.); (Z.L.)
| | - Xianqing Chen
- Jiaxing Synbiolab Biotechnology Co., Ltd., Jiaxing 314006, China; (S.L.); (Q.D.); (H.W.); (X.W.); (L.H.); (C.L.)
| |
Collapse
|
23
|
Sun ML, Gao X, Lin L, Yang J, Ledesma-Amaro R, Ji XJ. Building Yarrowia lipolytica Cell Factories for Advanced Biomanufacturing: Challenges and Solutions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:94-107. [PMID: 38126236 DOI: 10.1021/acs.jafc.3c07889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Microbial cell factories have shown great potential for industrial production with the benefit of being environmentally friendly and sustainable. Yarrowia lipolytica is a promising and superior non-model host for biomanufacturing due to its cumulated advantages compared to model microorganisms, such as high fluxes of metabolic precursors (acetyl-CoA and malonyl-CoA) and its naturally hydrophobic microenvironment. However, although diverse compounds have been synthesized in Y. lipolytica cell factories, most of the relevant studies have not reached the level of industrialization and commercialization due to a number of remaining challenges, including unbalanced metabolic flux, conflict between cell growth and product synthesis, and cytotoxic effects. Here, various metabolic engineering strategies for solving the challenges are summarized, which is developing fast and extremely conducive to rational design and reconstruction of robust Y. lipolytica cell factories for advanced biomanufacturing. Finally, future engineering efforts for enhancing the production efficiency of this platform strain are highlighted.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiaoxia Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jing Yang
- 2011 College, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
24
|
Yan CX, Zhang Y, Yang WQ, Ma W, Sun XM, Huang H. Universal and unique strategies for the production of polyunsaturated fatty acids in industrial oleaginous microorganisms. Biotechnol Adv 2024; 70:108298. [PMID: 38048920 DOI: 10.1016/j.biotechadv.2023.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (ARA), are beneficial for reducing blood cholesterol and enhancing memory. Traditional PUFA production relies on extraction from plants and animals, which is unsustainable. Thus, using microorganisms as lipid-producing factories holds promise as an alternative way for PUFA production. Several oleaginous microorganisms have been successfully industrialized to date. These can be divided into universal and specialized hosts according to the products range of biosynthesis. The Yarrowia lipolytica is universal oleaginous host that has been engineered to produce a variety of fatty acids, such as γ-linolenic acid (GLA), EPA, ARA and so on. By contrast, the specialized host are used to produce only certain fatty acids, such as ARA in Mortierella alpina, EPA in Nannochloropsis, and DHA in Thraustochytrids. The metabolic engineering and fermentation strategies for improving PUFA production in universal and specialized hosts are different, which is the subject of this review. In addition, the widely applicable strategies for microbial lipid production that are not specific to individual hosts were also reviewed.
Collapse
Affiliation(s)
- Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wen-Qian Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| |
Collapse
|
25
|
Son HF, Park W, Kim S, Kim IK, Kim KJ. Structure-based functional analysis of a novel NADPH-producing glyceraldehyde-3-phosphate dehydrogenase from Corynebacterium glutamicum. Int J Biol Macromol 2024; 255:128103. [PMID: 37992937 DOI: 10.1016/j.ijbiomac.2023.128103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Corynebacterium glutamicum is an industrial workhorse applied in the production of valuable biochemicals. In the process of bio-based chemical production, improving cofactor recycling and mitigating cofactor imbalance are considered major solutions for enhancing the production yield and efficiency. Although, glyceraldehyde-3-phosphate dehydrogenase (GapDH), a glycolytic enzyme, can be a promising candidate for a sufficient NADPH cofactor supply, however, most microorganisms have only NAD-dependent GapDHs. In this study, we performed functional characterization and structure determination of novel NADPH-producing GapDH from C. glutamicum (CgGapX). Based on the crystal structure of CgGapX in complex with NADP cofactor, the unique structural features of CgGapX for NADP stabilization were elucidated. Also, N-terminal additional region (Auxiliary domain, AD) appears to have an effect on enzyme stabilization. In addition, through structure-guided enzyme engineering, we developed a CgGapX variant that exhibited 4.3-fold higher kcat, and 1.2-fold higher kcat/KM values when compared with wild-type. Furthermore, a bioinformatic analysis of 100 GapX-like enzymes from 97 microorganisms in the KEGG database revealed that the GapX-like enzymes possess a variety of AD, which seem to determine enzyme stability. Our findings are expected to provide valuable information for supplying NADPH cofactor pools in bio-based value-added chemical production.
Collapse
Affiliation(s)
- Hyeoncheol Francis Son
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Woojin Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sangwoo Kim
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Il-Kwon Kim
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
26
|
Qin J, Kurt E, LBassi T, Sa L, Xie D. Biotechnological production of omega-3 fatty acids: current status and future perspectives. Front Microbiol 2023; 14:1280296. [PMID: 38029217 PMCID: PMC10662050 DOI: 10.3389/fmicb.2023.1280296] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Omega-3 fatty acids, including alpha-linolenic acids (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have shown major health benefits, but the human body's inability to synthesize them has led to the necessity of dietary intake of the products. The omega-3 fatty acid market has grown significantly, with a global market from an estimated USD 2.10 billion in 2020 to a predicted nearly USD 3.61 billion in 2028. However, obtaining a sufficient supply of high-quality and stable omega-3 fatty acids can be challenging. Currently, fish oil serves as the primary source of omega-3 fatty acids in the market, but it has several drawbacks, including high cost, inconsistent product quality, and major uncertainties in its sustainability and ecological impact. Other significant sources of omega-3 fatty acids include plants and microalgae fermentation, but they face similar challenges in reducing manufacturing costs and improving product quality and sustainability. With the advances in synthetic biology, biotechnological production of omega-3 fatty acids via engineered microbial cell factories still offers the best solution to provide a more stable, sustainable, and affordable source of omega-3 fatty acids by overcoming the major issues associated with conventional sources. This review summarizes the current status, key challenges, and future perspectives for the biotechnological production of major omega-3 fatty acids.
Collapse
Affiliation(s)
| | | | | | | | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
27
|
Chen C, Li YW, Chen XY, Wang YT, Ye C, Shi TQ. Application of adaptive laboratory evolution for Yarrowia lipolytica: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 391:129893. [PMID: 39491116 DOI: 10.1016/j.biortech.2023.129893] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Adaptive laboratory evolution is an innovative approach utilized by researchers to enhance the characteristics of microorganisms in the field of biology. With the advancement of this technology, it is now being extended to non-model strains. Yarrowia lipolytica, an oleaginous yeast with significant industrial potential, stands out among the non-conventional fungi. However, the activity of Yarrowia lipolytica is frequently affected by specific substances and environmental factors, necessitating the development of techniques to address these challenges. This manuscript provides an overview of adaptive laboratory evolution experiments conducted on Yarrowia lipolytica, and categorizes the contents into two aspects including improving lignocellulose utilization and enhancing the production in Yarrowia lipolytica. Additionally, we selected several representative examples to illustrate how adaptive laboratory evolution can be combined with other techniques to elucidate the potential mechanisms underlying strain evolution. Lastly, we anticipate a promising future for adaptive laboratory evolution technology and Yarrowia lipolytica in tandem.
Collapse
Affiliation(s)
- Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xin-Yu Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| |
Collapse
|
28
|
Huang C, Chen Y, Cheng S, Li M, Wang L, Cheng M, Li F, Cao Y, Song H. Enhanced acetate utilization for value-added chemicals production in Yarrowia lipolytica by integration of metabolic engineering and microbial electrosynthesis. Biotechnol Bioeng 2023; 120:3013-3024. [PMID: 37306471 DOI: 10.1002/bit.28465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
The limited supply of reducing power restricts the efficient utilization of acetate in Yarrowia lipolytica. Here, microbial electrosynthesis (MES) system, enabling direct conversion of inward electrons to NAD(P)H, was used to improve the production of fatty alcohols from acetate based on pathway engineering. First, the conversion efficiency of acetate to acetyl-CoA was reinforced by heterogenous expression of ackA-pta genes. Second, a small amount of glucose was used as cosubstrate to activate the pentose phosphate pathway and promote intracellular reducing cofactors synthesis. Third, through the employment of MES system, the final fatty alcohols production of the engineered strain YLFL-11 reached 83.8 mg/g dry cell weight (DCW), which was 6.17-fold higher than the initial production of YLFL-2 in shake flask. Furthermore, these strategies were also applied for the elevation of lupeol and betulinic acid synthesis from acetate in Y. lipolytica, demonstrating that our work provides a practical solution for cofactor supply and the assimilation of inferior carbon sources.
Collapse
Affiliation(s)
- Congcong Huang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yaru Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Shuai Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Mengxu Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Luxin Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Meijie Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
29
|
Lu Z, Wang Y, Li Z, Zhang Y, He S, Zhang Z, Leong S, Wong A, Zhang CY, Yu A. Combining Metabolic Engineering and Lipid Droplet Storage Engineering for Improved α-Bisabolene Production in Yarrowia Lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37463315 DOI: 10.1021/acs.jafc.3c02472] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Bisabolene is a bioactive sesquiterpene with a wide range of applications in food, cosmetics, medicine, and aviation fuels. Microbial production offers a green, efficient, and sustainable alternative. In this study, we focused on improving the titers of α-bisabolene in Yarrowia lipolytica by applying two strategies, (i) optimizing the metabolic flux of α-bisabolene biosynthetic pathway and (ii) sequestering α-bisabolene in lipid droplet, thus alleviating its inherent toxicity to host cells. We showed that overexpression of DGA1 and OLE1 to increase lipid content and unsaturated fatty acid levels was essential for boosting the α-bisabolene synthesis when supplemented with auxiliary carbon sources. The final engineered strain Po1gαB10 produced 1954.3 mg/L α-bisabolene from the waste cooking oil under shake flask fermentation, which was 96-fold higher than the control strain Po1gαB0. At the time of writing, our study represents the highest reported α-bisabolene titer in the engineered Y. lipolytica cell factory. This work describes novel strategies to improve the bioproduction of α-bisabolene that potentially may be applicable for other high-value terpene products.
Collapse
Affiliation(s)
- Zhihui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Yaping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Zhuo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Yahui Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Sicheng He
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Ziyuan Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Susanna Leong
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Adison Wong
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Cui-Ying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin 300457, PR China
| |
Collapse
|
30
|
Geng Y, Xie Y, Li W, Mou Y, Chen F, Xiao J, Liao X, Hu X, Ji J, Ma L. Toward the bioactive potential of myricitrin in food production: state-of-the-art green extraction and trends in biosynthesis. Crit Rev Food Sci Nutr 2023; 64:10668-10694. [PMID: 37395263 DOI: 10.1080/10408398.2023.2227262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Myricitrin is a member of flavonols, natural phenolic compounds extracted from plant resources. It has gained great attention for various biological activities, such as anti-inflammatory, anti-cancer, anti-diabetic, as well as cardio-/neuro-/hepatoprotective activities. These effects have been demonstrated in both in vitro and in vivo models, making myricitrin a favorable candidate for the exploitation of novel functional foods with potential protective or preventive effects against diseases. This review summarized the health benefits of myricitrin and attempted to uncover its action mechanism, expecting to provide a theoretical basis for their application. Despite enormous bioactive potential of myricitrin, low production, high cost, and environmental damage caused by extracting it from plant resources greatly constrain its practical application. Fortunately, innovative, green, and sustainable extraction techniques are emerging to extract myricitrin, which function as alternatives to conventional techniques. Additionally, biosynthesis based on synthetic biology plays an essential role in industrial-scale manufacturing, which has not been reported for myricitrin exclusively. The construction of microbial cell factories is absolutely an appealing and competitive option to produce myricitrin in large-scale manufacturing. Consequently, state-of-the-art green extraction techniques and trends in biosynthesis were reviewed and discussed to endow an innovative perspective for the large-scale production of myricitrin.
Collapse
Affiliation(s)
- Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yingfeng Xie
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Li
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yao Mou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Liu D, Hwang HJ, Otoupal PB, Geiselman GM, Kim J, Pomraning KR, Kim YM, Munoz N, Nicora CD, Gao Y, Burnum-Johnson KE, Jacobson O, Coradetti S, Kim J, Deng S, Dai Z, Prahl JP, Tanjore D, Lee TS, Magnuson JK, Gladden JM. Engineering Rhodosporidium toruloides for production of 3-hydroxypropionic acid from lignocellulosic hydrolysate. Metab Eng 2023; 78:72-83. [PMID: 37201565 DOI: 10.1016/j.ymben.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Microbial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals. This study focuses on establishing and optimizing the production of 3HP in R. toruloides. As R. toruloides naturally has a high metabolic flux towards malonyl-CoA, we exploited this pathway to produce 3HP. Upon finding the yeast capable of catabolizing 3HP, we then implemented functional genomics and metabolomic analysis to identify the catabolic pathways. Deletion of a putative malonate semialdehyde dehydrogenase gene encoding an oxidative 3HP pathway was found to significantly reduce 3HP degradation. We further explored monocarboxylate transporters to promote 3HP transport and identified a novel 3HP transporter in Aspergillus pseudoterreus by RNA-seq and proteomics. Combining these engineering efforts with media optimization in a fed-batch fermentation resulted in 45.4 g/L 3HP production. This represents one of the highest 3HP titers reported in yeast from lignocellulosic feedstocks. This work establishes R. toruloides as a host for 3HP production from lignocellulosic hydrolysate at high titers, and paves the way for further strain and process optimization towards enabling industrial production of 3HP in the future.
Collapse
Affiliation(s)
- Di Liu
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA.
| | - Hee Jin Hwang
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA
| | - Peter B Otoupal
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Gina M Geiselman
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Joonhoon Kim
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kyle R Pomraning
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Young-Mo Kim
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nathalie Munoz
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carrie D Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kristin E Burnum-Johnson
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Oslo Jacobson
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Samuel Coradetti
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA
| | - Jinho Kim
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shuang Deng
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ziyu Dai
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jan-Philip Prahl
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Deepti Tanjore
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Taek Soon Lee
- DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jon K Magnuson
- Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - John M Gladden
- Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA; Agile BioFoundry, Department of Energy, Emeryville, CA, USA; DOE Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA.
| |
Collapse
|
32
|
Sun H, Gao Z, Zhang L, Wang X, Gao M, Wang Q. A comprehensive review on microbial lipid production from wastes: research updates and tendencies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79654-79675. [PMID: 37328718 DOI: 10.1007/s11356-023-28123-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Microbial lipids have recently attracted attention as an intriguing alternative for the biodiesel and oleochemical industries to achieve sustainable energy generation. However, large-scale lipid production remains limited due to the high processing costs. As multiple variables affect lipid synthesis, an up-to-date overview that will benefit researchers studying microbial lipids is necessary. In this review, the most studied keywords from bibliometric studies are first reviewed. Based on the results, the hot topics in the field were identified to be associated with microbiology studies that aim to enhance lipid synthesis and reduce production costs, focusing on the biological and metabolic engineering involved. The research updates and tendencies of microbial lipids were then analyzed in depth. In particular, feedstock and associated microbes, as well as feedstock and corresponding products, were analyzed in detail. Strategies for lipid biomass enhancement were also discussed, including feedstock adoption, value-added product synthesis, selection of oleaginous microbes, cultivation mode optimization, and metabolic engineering strategies. Finally, the environmental implications of microbial lipid production and possible research directions were presented.
Collapse
Affiliation(s)
- Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Zhen Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lirong Zhang
- Tianjin College, University of Science and Technology, Beijing, Tianjin, 301811, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China.
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Tianjin College, University of Science and Technology, Beijing, Tianjin, 301811, China
| |
Collapse
|
33
|
Diankristanti PA, Ng IS. Microbial itaconic acid bioproduction towards sustainable development: Insights, challenges, and prospects. BIORESOURCE TECHNOLOGY 2023:129280. [PMID: 37290713 DOI: 10.1016/j.biortech.2023.129280] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Microbial biomanufacturing is a promising approach to produce high-value compounds with low-carbon footprint and significant economic benefits. Among twelve "Top Value-Added Chemicals from Biomass", itaconic acid (IA) stands out as a versatile platform chemical with numerous applications. IA is naturally produced by Aspergillus and Ustilago species through a cascade enzymatic reaction between aconitase (EC 4.2.1.3) and cis-aconitic acid decarboxylase (EC 4.1.1.6). Recently, non-native hosts such as Escherichia coli, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Yarrowia lipolytica have been genetically engineered to produce IA through the introduction of key enzymes. This review provides an up-to-date summary of the progress made in IA bioproduction, from native to engineered hosts, covers in vivo and in vitro approaches, and highlights the prospects of combination tactics. Current challenges and recent endeavors are also addressed to envision comprehensive strategies for renewable IA production in the future towards sustainable development goals (SDGs).
Collapse
Affiliation(s)
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
34
|
Wang K, Lin L, Wei P, Ledesma-Amaro R, Ji XJ. Combining orthogonal plant and non-plant fatty acid biosynthesis pathways for efficient production of microbial oil enriched in nervonic acid in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2023; 378:129012. [PMID: 37019413 DOI: 10.1016/j.biortech.2023.129012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Nervonic acid has proven efficacy in brain development and the prevention of neurodegenerative diseases. Here, an alternative and sustainable strategy for nervonic acid-enriched plant oil production was established. Different β-ketoacyl-CoA synthases and heterologous Δ15 desaturase were co-expressed, combined with the deletion of the β-oxidation pathway to construct orthogonal plant and non-plant nervonic acid biosynthesis pathways in Yarrowia lipolytica. A "block-pull-restrain" strategy was further applied to improve the supply of stearic acid as the precursor of the non-plant pathway. Then, lysophosphatidic acid acyltransferase from Malania oleifera (MoLpaat) was identified, which showed specificity for nervonic acid. Endogenous LPAAT was exchanged by MoLPAAT resulted in 17.10 % nervonic acid accumulation. Finally, lipid metabolism was engineered and cofactor supply was increased to boost the lipid accumulation in a stable null-hyphal strain. The final strain produced 57.84 g/L oils with 23.44 % nervonic acid in fed-batch fermentation, which has the potential to substitute nervonic acid-enriched plant oil.
Collapse
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ping Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
35
|
Wang J, Yu X, Wang K, Lin L, Liu HH, Ledesma-Amaro R, Ji XJ. Reprogramming the fatty acid metabolism of Yarrowia lipolytica to produce the customized omega-6 polyunsaturated fatty acids. BIORESOURCE TECHNOLOGY 2023; 383:129231. [PMID: 37244310 DOI: 10.1016/j.biortech.2023.129231] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Omega-6 polyunsaturated fatty acids (ω6-PUFAs), such as γ-linolenic acid (GLA), dihomo-γ-linolenic acid (DGLA) and arachidonic acid (ARA), are indispensable nutrients for human health. Harnessing the lipogenesis pathway of Yarrowia lipolytica creates a potential platform for producing customized ω6-PUFAs. This study explored the optimal biosynthetic pathways for customized production of ω6-PUFAs in Y. lipolytica via either the Δ6 pathway from Mortierella alpina or the Δ8 pathway from Isochrysis galbana. Subsequently, the proportion of ω6-PUFAs in total fatty acids (TFAs) was effectively increased by bolstering the provision of precursors for fatty acid biosynthesis and carriers for fatty acid desaturation, as well as preventing fatty acid degradation. Finally, the proportions of GLA, DGLA and ARA synthesized by customized strains accounted for 22.58%, 46.65% and 11.30% of TFAs, and the corresponding titers reached 386.59, 832.00 and 191.76 mg/L in shake-flask fermentation, respectively. This work provides valuable insights into the production of functional ω6-PUFAs.
Collapse
Affiliation(s)
- Jinpeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Hu-Hu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
36
|
Silva JDME, Martins LHDS, Moreira DKT, Silva LDP, Barbosa PDPM, Komesu A, Ferreira NR, de Oliveira JAR. Microbial Lipid Based Biorefinery Concepts: A Review of Status and Prospects. Foods 2023; 12:2074. [PMID: 37238892 PMCID: PMC10217607 DOI: 10.3390/foods12102074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The use of lignocellulosic biomass as a raw material for the production of lipids has gained increasing attention, especially in recent years when the use of food in the production of biofuels has become a current technology. Thus, the competition for raw materials for both uses has brought the need to create technological alternatives to reduce this competition that could generate a reduction in the volume of food offered and a consequent commercial increase in the value of food. Furthermore, the use of microbial oils has been studied in many industrial branches, from the generation of renewable energy to the obtainment of several value-added products in the pharmaceutical and food industries. Thus, this review provides an overview of the feasibility and challenges observed in the production of microbial lipids through the use of lignocellulosic biomass in a biorefinery. Topics covered include biorefining technology, the microbial oil market, oily microorganisms, mechanisms involved in lipid-producing microbial metabolism, strain development, processes, lignocellulosic lipids, technical drawbacks, and lipid recovery.
Collapse
Affiliation(s)
- Jonilson de Melo e Silva
- Program of Food Science and Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | | | | | - Leonardo do Prado Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | | | - Andrea Komesu
- Department of Marine Sciences (DCMar), Federal University of São Paulo (UNIFESP), Santos 11070-100, SP, Brazil
| | - Nelson Rosa Ferreira
- Faculty of Food Engineering, Technology Institute, Federal University of Pará (UFPA), Belém 66077-000, PA, Brazil;
| | | |
Collapse
|
37
|
Urbanikova V, Park YK, Krajciova D, Tachekort M, Certik M, Grigoras I, Holic R, Nicaud JM, Gajdos P. Yarrowia lipolytica as a Platform for Punicic Acid Production. Int J Mol Sci 2023; 24:ijms24108823. [PMID: 37240172 DOI: 10.3390/ijms24108823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Punicic acid (PuA) is a polyunsaturated fatty acid with significant medical, biological, and nutraceutical properties. The primary source of punicic acid is the pomegranate seed oil obtained from fruits of trees that are mainly cultivated in subtropical and tropical climates. To establish sustainable production of PuA, various recombinant microorganisms and plants have been explored as platforms with limited efficiencies. In this study, the oleaginous yeast Yarrowia lipolytica was employed as a host for PuA production. First, growth and lipid accumulation of Y. lipolytica were evaluated in medium supplemented with pomegranate seed oil, resulting in the accumulation of lipids up to 31.2%, consisting of 22% PuA esterified in the fraction of glycerolipids. In addition, lipid-engineered Y. lipolytica strains, transformed with the bifunctional fatty acid conjugase/desaturase from Punica granatum (PgFADX), showed the ability to accumulate PuA de novo. PuA was detected in both polar and neutral lipid fractions, especially in phosphatidylcholine and triacylglycerols. Promoter optimization for PgFADX expression resulted in improved accumulation of PuA from 0.9 to 1.8 mg/g of dry cell weight. The best-producing strain expressing PgFADX under the control of a strong erythritol-inducible promoter produced 36.6 mg/L PuA. These results demonstrate that the yeast Y. lipolytica is a promising host for PuA production.
Collapse
Grants
- APVV-20-0166 INRAE, the French National Research Institute for Agriculture, Food and Environment, Micalis Institute, the Slovak Research and Development Agency
- VEGA 2/0012/20 Ministry of Education, Science, Research, and Sport of the Slovak Republic, and the Slovak Academy of Sciences
- NA Genopole, University of Evry-val-d'Essonne, University of Paris-Saclay, Investissements d'Avenir
- NA New England BioLabs (NEB)
- NA Integrated DNA Technologies Inc. (IDT)
- NA Twist Biosciences
- NA SnapGene
- NA Macherey Nagel
- NA Zymo Research
- NA Promega
Collapse
Affiliation(s)
- Veronika Urbanikova
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, 81237 Bratislava, Slovakia
| | - Young-Kyoung Park
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Daniela Krajciova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005 Bratislava, Slovakia
| | - Mehdi Tachekort
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
- Université Paris-Saclay, Univ Evry, CNRS, CEA, Génomique métabolique, 91057 Evry-Courcouronnes, France
| | - Milan Certik
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, 81237 Bratislava, Slovakia
| | - Ioana Grigoras
- Université Paris-Saclay, Univ Evry, CNRS, CEA, Génomique métabolique, 91057 Evry-Courcouronnes, France
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005 Bratislava, Slovakia
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Peter Gajdos
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, 81237 Bratislava, Slovakia
| |
Collapse
|
38
|
Zhang X, Miao Q, Pan C, Yin J, Wang L, Qu L, Yin Y, Wei Y. Research advances in probiotic fermentation of Chinese herbal medicines. IMETA 2023; 2:e93. [PMID: 38868438 PMCID: PMC10989925 DOI: 10.1002/imt2.93] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/14/2024]
Abstract
Chinese herbal medicines (CHM) have been used to cure diseases for thousands of years. However, the bioactive ingredients of CHM are complex, and some CHM natural products cannot be directly absorbed by humans and animals. Moreover, the contents of most bioactive ingredients in CHM are low, and some natural products are toxic to humans and animals. Fermentation of CHM could enhance CHM bioactivities and decrease the potential toxicities. The compositions and functions of the microorganisms play essential roles in CHM fermentation, which can affect the fermentation metabolites and pharmaceutical activities of the final fermentation products. During CHM fermentation, probiotics not only increase the contents of bioactive natural products, but also are beneficial for the host gut microbiota and immune system. This review summarizes the advantages of fermentation of CHM using probiotics, fermentation techniques, probiotic strains, and future development for CHM fermentation. Cutting-edge microbiome and synthetic biology tools would harness microbial cell factories to produce large amounts of bioactive natural products derived from CHM with low-cost, which would help speed up modern CHM biomanufacturing.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Qin Miao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Chengxue Pan
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Leli Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Lingbo Qu
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
- College of ChemistryZhengzhou UniversityZhengzhouChina
| | - Yulong Yin
- Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources IndustrializationNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
39
|
Sun Y, Zhang T, Lu B, Li X, Jiang L. Application of cofactors in the regulation of microbial metabolism: A state of the art review. Front Microbiol 2023; 14:1145784. [PMID: 37113222 PMCID: PMC10126289 DOI: 10.3389/fmicb.2023.1145784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Cofactors are crucial chemicals that maintain cellular redox balance and drive the cell to do synthetic and catabolic reactions. They are involved in practically all enzymatic activities that occur in live cells. It has been a hot research topic in recent years to manage their concentrations and forms in microbial cells by using appropriate techniques to obtain more high-quality target products. In this review, we first summarize the physiological functions of common cofactors, and give a brief overview of common cofactors acetyl coenzyme A, NAD(P)H/NAD(P)+, and ATP/ADP; then we provide a detailed introduction of intracellular cofactor regeneration pathways, review the regulation of cofactor forms and concentrations by molecular biological means, and review the existing regulatory strategies of microbial cellular cofactors and their application progress, to maximize and rapidly direct the metabolic flux to target metabolites. Finally, we speculate on the future of cofactor engineering applications in cell factories. Graphical Abstract.
Collapse
Affiliation(s)
- Yang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Ting Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Bingqian Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiangfei Li
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
40
|
Wang K, Zhao W, Lin L, Wang T, Wei P, Ledesma-Amaro R, Zhang AH, Ji XJ. A robust soft sensor based on artificial neural network for monitoring microbial lipid fermentation processes using Yarrowia lipolytica. Biotechnol Bioeng 2023; 120:1015-1025. [PMID: 36522163 DOI: 10.1002/bit.28310] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Microbial oils produced by Yarrowia lipolytica offer an environmentally friendly and sustainable alternative to petroleum as well as traditional lipids from animals and plants. The accurate measurement of fermentation parameters, including the substrate concentration, dry cell weight, and lipid accumulation, is the foundation of process control, which is indispensable for industrial lipid production. However, it remains a great challenge to measure the complex parameters online during the lipid fermentation process, which is nonlinear, multivariate, and characterized by strong coupling. As a type of AI technology, the artificial neural network model is a powerful tool for handling extremely complex problems, and it can be employed to develop a soft sensor to monitor the microbial lipid fermentation process of Y. lipolytica. In this study, we first analyzed and emphasized the volume of sodium hydroxide and dissolved oxygen concentration as central parameters of the fermentation process. Then, a soft sensor based on a four-input artificial neural network model was developed, in which the input variables were fermentation time, dissolved oxygen concentration, initial glucose concentration, and additional volume of sodium hydroxide. This provides the possibility of online monitoring of dry cell weight, glucose concentration, and lipid production with high accuracy, which can be extended to similar fermentation processes characterized by the addition of bases or acids, as well as changes of the dissolved oxygen concentration.
Collapse
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Wenyang Zhao
- Institute of Network and Cloud Computing Technology, College of Computer Science and Technology, Nanjing Tech University, Nanjing, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Tianjing Wang
- Institute of Network and Cloud Computing Technology, College of Computer Science and Technology, Nanjing Tech University, Nanjing, People's Republic of China
| | - Ping Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Ai-Hui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
41
|
Theodosiou E. Engineering Strategies for Efficient Bioconversion of Glycerol to Value-Added Products by Yarrowia lipolytica. Catalysts 2023. [DOI: 10.3390/catal13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Yarrowia lipolytica has been a valuable biotechnological workhorse for the production of commercially important biochemicals for over 70 years. The knowledge gained so far on the native biosynthetic pathways, as well as the availability of numerous systems and synthetic biology tools, enabled not only the regulation and the redesign of the existing metabolic pathways, but also the introduction of novel synthetic ones; further consolidating the position of the yeast in industrial biotechnology. However, for the development of competitive and sustainable biotechnological production processes, bioengineering should be reinforced by bioprocess optimization strategies. Although there are many published reviews on the bioconversion of various carbon sources to value-added products by Yarrowia lipolytica, fewer works have focused on reviewing up-to-date strain, medium, and process engineering strategies with an aim to emphasize the significance of integrated engineering approaches. The ultimate goal of this work is to summarize the necessary knowledge and inspire novel routes to manipulate at a systems level the yeast biosynthetic machineries by combining strain and bioprocess engineering. Due to the increasing surplus of biodiesel-derived waste glycerol and the favored glycerol-utilization metabolic pathways of Y. lipolytica over other carbon sources, the present review focuses on pure and crude glycerol-based biomanufacturing.
Collapse
|
42
|
Sun T, Yu Y, Wang L, Qi Y, Xu T, Wang Z, Lin L, Ledesma-Amaro R, Ji XJ. Combination of a Push-Pull-Block Strategy with a Heterologous Xylose Assimilation Pathway toward Lipid Overproduction from Lignocellulose in Yarrowia lipolytica. ACS Synth Biol 2023; 12:761-767. [PMID: 36789673 DOI: 10.1021/acssynbio.2c00550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The production of biodiesel using microbial lipids derived from renewable lignocellulosic biomass is considered a promising strategy to reduce environmental pressure and promote the green energy transition. The hydrolysates of lignocellulosic biomass are rich in glucose and xylose, which makes it crucial to efficiently utilize both sugars. Here, we combined metabolic engineering and adaptive laboratory evolution (ALE) to construct an engineered Yarrowia lipolytica strain that can efficiently produce lipids from glucose and xylose. First, the "Push-Pull-Block" strategy was adopted to increase lipid content to 73.42% of the dry cell weight (DCW). Then, a heterologous xylose-utilization pathway was integrated into the engineered strain, which was subjected to ALE. The final evolved strain could accumulate 53.64% DCW of lipids from xylose, and the lipid titer reached 16.25 g/L. This work sheds light on the potential of microbial lipid overproduction from lignocellulose using engineered Y. lipolytica.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yizi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lexin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yichun Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Zhe Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
43
|
Using oils and fats to replace sugars as feedstocks for biomanufacturing: Challenges and opportunities for the yeast Yarrowia lipolytica. Biotechnol Adv 2023; 65:108128. [PMID: 36921878 DOI: 10.1016/j.biotechadv.2023.108128] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
More than 200 million tons of plant oils and animal fats are produced annually worldwide from oil, crops, and the rendered animal fat industry. Triacylglycerol, an abundant energy-dense compound, is the major form of lipid in oils and fats. While oils or fats are very important raw materials and functional ingredients for food or related products, a significant portion is currently diverted to or recovered as waste. To significantly increase the value of waste oils or fats and expand their applications with a minimal environmental footprint, microbial biomanufacturing is presented as an effective strategy for adding value. Though both bacteria and yeast can be engineered to use oils or fats as the biomanufacturing feedstocks, the yeast Yarrowia lipolytica is presented as one of the most attractive platforms. Y. lipolytica is oleaginous, generally regarded as safe, demonstrated as a promising industrial producer, and has unique capabilities for efficient catabolism and bioconversion of lipid substrates. This review summarizes the major challenges and opportunities for Y. lipolytica as a new biomanufacturing platform for the production of value-added products from oils and fats. This review also discusses relevant cellular and metabolic engineering strategies such as fatty acid transport, fatty acid catabolism and bioconversion, redox balances and energy yield, cell morphology and stress response, and bioreaction engineering. Finally, this review highlights specific product classes including long-chain diacids, wax esters, terpenes, and carotenoids with unique synthesis opportunities from oils and fats in Y. lipolytica.
Collapse
|
44
|
Maurya R, Gohil N, Nixon S, Kumar N, Noronha SB, Dhali D, Trabelsi H, Alzahrani KJ, Reshamwala SMS, Awasthi MK, Ramakrishna S, Singh V. Rewiring of metabolic pathways in yeasts for sustainable production of biofuels. BIORESOURCE TECHNOLOGY 2023; 372:128668. [PMID: 36693507 DOI: 10.1016/j.biortech.2023.128668] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The ever-increasing global energy demand has led world towards negative repercussions such as depletion of fossil fuels, pollution, global warming and climate change. Designing microbial cell factories for the sustainable production of biofuels is therefore an active area of research. Different yeast cells have been successfully engineered using synthetic biology and metabolic engineering approaches for the production of various biofuels. In the present article, recent advancements in genetic engineering strategies for production of bioalcohols, isoprenoid-based biofuels and biodiesels in different yeast chassis designs are reviewed, along with challenges that must be overcome for efficient and high titre production of biofuels.
Collapse
Affiliation(s)
- Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Snovia Nixon
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nilesh Kumar
- M.Tech. Programme in Bioprocess Engineering, Institute of Chemical Technology, Mumbai, India; DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Santosh B Noronha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Debarun Dhali
- EV Biotech BV, Zernikelaan 8, 9747 AA Groningen, The Netherlands
| | - Heykel Trabelsi
- Carbocode GmbH, Byk-Gulden-Strasse 2, 78467 Konstanz, Germany
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Suresh Ramakrishna
- College of Medicine, Hanyang University, Seoul, South Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India.
| |
Collapse
|
45
|
Zhang Q, Wang X, Zeng W, Xu S, Li D, Yu S, Zhou J. De novo biosynthesis of carminic acid in Saccharomyces cerevisiae. Metab Eng 2023; 76:50-62. [PMID: 36634840 DOI: 10.1016/j.ymben.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Carminic acid is a natural red dye extracted from the insect Dactylopius coccus. Due to its ideal dying effect and high safety, it is widely used in food and cosmetics industries. Previous study showed that introduction of polyketide synthase (OKS) from Aloe arborescens, cyclase (ZhuI) and aromatase (ZhuJ) from Streptomyces sp. R1128, and C-glucosyltransferase (UGT2) from D. coccus into Aspergillus nidulans could achieve trace amounts of de novo production. These four genes were introduced into Saccharomyces cerevisiae, but carminic acid was not detected. Analysis of the genome of A. nidulans revealed that 4'-phosphopantetheinyl transferase (NpgA) and monooxygenase (AptC) are essential for de novo biosynthesis of carminic acid in S. cerevisiae. Additionally, endogenous hydroxylase (Cat5) from S. cerevisiae was found to be responsible for hydroxylation of flavokermesic acid to kermesic acid. Therefore, all enzymes and their functions in the biosynthesis of carminic acid were explored and reconstructed in S. cerevisiae. Through systematic pathway engineering, including regulating enzyme expression, enhancing precursor supply, and modifying the β-oxidation pathway, the carminic acid titer in a 5 L bioreactor reached 7580.9 μg/L, the highest yet reported for a microorganism. Heterologous reconstruction of the carminic acid biosynthetic pathway in S. cerevisiae has great potential for de novo biosynthesis of anthraquinone dye.
Collapse
Affiliation(s)
- Qian Zhang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China
| | - Weizhu Zeng
- School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China
| | - Sha Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Dong Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China
| | - Shiqin Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
46
|
Zaghen S, Konzock O, Fu J, Kerkhoven EJ. Abolishing storage lipids induces protein misfolding and stress responses in Yarrowia lipolytica. J Ind Microbiol Biotechnol 2023; 50:kuad031. [PMID: 37742215 PMCID: PMC10563384 DOI: 10.1093/jimb/kuad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Yarrowia lipolytica naturally saves excess carbon as storage lipids. Engineering efforts allow redirecting the high precursor flux required for lipid synthesis toward added-value chemicals such as polyketides, flavonoids, and terpenoids. To redirect precursor flux from storage lipids to other products, four genes involved in triacylglycerol and sterol ester synthesis (DGA1, DGA2, LRO1, and ARE1) can be deleted. To elucidate the effect of the deletions on cell physiology and regulation, we performed chemostat cultivations under carbon and nitrogen limitations, followed by transcriptome analysis. We found that storage lipid-free cells show an enrichment of the unfolded protein response, and several biological processes related to protein refolding and degradation are enriched. Additionally, storage lipid-free cells show an altered lipid class distribution with an abundance of potentially cytotoxic free fatty acids under nitrogen limitation. Our findings not only highlight the importance of lipid metabolism on cell physiology and proteostasis, but can also aid the development of improved chassy strains of Y. lipolytica for commodity chemical production.
Collapse
Affiliation(s)
- Simone Zaghen
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Oliver Konzock
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Jing Fu
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Eduard J Kerkhoven
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
- SciLifeLab, Chalmers University of Technology, Göteborg 412 96, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800Lyngby, Denmark
| |
Collapse
|
47
|
Ran M, Zhao G, Jiao L, Gu Z, Yang K, Wang L, Cao X, Xu L, Yan J, Yan Y, Xie S, Yang M. Copper Ion Mediates Yeast-to-Hypha Transition in Yarrowia lipolytica. J Fungi (Basel) 2023; 9:249. [PMID: 36836363 PMCID: PMC9966917 DOI: 10.3390/jof9020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Copper is an essential element that maintains yeast physiological function at low concentrations, but is toxic in excess. This study reported that Cu(II) significantly promoted the yeast-to-hypha transition of Yarrowia lipolytica in dose-dependent manner. Strikingly, the intracellular Cu(II) accumulation was drastically reduced upon hyphae formation. Moreover, we investigated the effect of Cu(II) on the physiological function of Y. lipolytica during the dimorphic transition and found that cellular viability and thermomyces lanuginosus lipase (TLL) were both influenced by the Cu(II)-induced yeast-to-hypha transition. Overall, hyphal cells survived better than yeast-form cells with copper ions. Furthermore, transcriptional analysis of the Cu(II)-induced Y. lipolytica before and after hyphae formation revealed a transition state between them. The results showed multiple differentially expressed genes (DEGs) were turned over between the yeast-to-transition and the transition-to-hyphae processes. Furthermore, gene set enrichment analysis (GSEA) identified that multiple KEGG pathways, including signaling, ion transport, carbon and lipid metabolism, ribosomal, and other biological processes, were highly involved in the dimorphic transition. Importantly, overexpression screening of more than thirty DEGs further found four novel genes, which are encoded by YALI1_B07500g, YALI1_C12900g, YALI1_E04033g, and YALI1_F29317g, were essential regulators in Cu-induced dimorphic transition. Overexpression of each of them will turn on the yeast-to-hypha transition without Cu(II) induction. Taken together, these results provide new insight to explore further the regulatory mechanism of dimorphic transition in Y. lipolytica.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Min Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
48
|
Wang D, He Z, Liu M, Jin Y, Zhao J, Zhou R, Wu C, Qin J. Exogenous fatty acid renders the improved salt tolerance in Zygosaccharomyces rouxii by altering lipid metabolism. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
49
|
Zhu J, Gu Y, Yan Y, Ma J, Sun X, Xu P. Knocking out central metabolism genes to identify new targets and alternating substrates to improve lipid synthesis in Y. lipolytica. Front Bioeng Biotechnol 2023; 11:1098116. [PMID: 36714010 PMCID: PMC9880266 DOI: 10.3389/fbioe.2023.1098116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Introduction: Systematic gene knockout studies may offer us novel insights on cell metabolism and physiology. Specifically, the lipid accumulation mechanism at the molecular or cellular level is yet to be determined in the oleaginous yeast Y. lipolytica. Methods: Herein, we established ten engineered strains with the knockout of important genes involving in central carbon metabolism, NADPH generation, and fatty acid biosynthetic pathways. Results: Our result showed that NADPH sources for lipogenesis include the OxPP pathway, POM cycle, and a trans-mitochondrial isocitrate-α-oxoglutarate NADPH shuttle in Y. lipolytica. Moreover, we found that knockout of mitochondrial NAD+ isocitrate dehydrogenase IDH2 and overexpression of cytosolic NADP+ isocitrate dehydrogenase IDP2 could facilitate lipid synthesis. Besides, we also demonstrated that acetate is a more favorable carbon source for lipid synthesis when glycolysis step is impaired, indicating the evolutionary robustness of Y. lipolytica. Discussion: This systematic investigation of gene deletions and overexpression across various lipogenic pathways would help us better understand lipogenesis and engineer yeast factories to upgrade the lipid biomanufacturing platform.
Collapse
Affiliation(s)
- Jiang Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China,Department of Chemical, Biochemical and Environmental Engineering, University of MD, Baltimore County, Baltimore, MD, United States,*Correspondence: Yang Gu, ; Peng Xu,
| | - Yijing Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jingbo Ma
- Department of Chemical, Biochemical and Environmental Engineering, University of MD, Baltimore County, Baltimore, MD, United States,College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, Anhui, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of MD, Baltimore County, Baltimore, MD, United States,Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China,The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel,*Correspondence: Yang Gu, ; Peng Xu,
| |
Collapse
|
50
|
Yu Y, Zhou Y, Wang K, Sun T, Lin L, Ledesma-Amaro R, Ji XJ. Metabolic and Process Engineering for Producing the Peach-Like Aroma Compound γ-Decalactone in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:110-120. [PMID: 36579964 DOI: 10.1021/acs.jafc.2c07356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to its strong and unique peach-like aroma, γ-decalactone is widely used in dairy products and other foods or beverages. The oleaginous yeast Yarrowia lipolytica, which is generally regarded as safe, has shown great potential in the production of this flavor compound. Recently, the development of metabolic and process engineering has enabled the application of Y. lipolytica for the production of γ-decalactone. This Review summarizes the relevant biosynthesis and degradation pathways of Y. lipolytica, after which the related metabolic engineering strategies to increase the accumulation of γ-decalactone are summarized. In addition, the factors affecting γ-decalactone accumulation in Y. lipolytica are introduced, and corresponding process optimization strategies are discussed. Finally, the current research needs are analyzed to search for remaining challenges and future directions in this field.
Collapse
Affiliation(s)
- Yizi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yufan Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tao Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|