1
|
Xie C, Li X, Zhang Q, Zhang L, Cao X, Peng Y. Achieving advanced nitrogen removal with anammox and endogenous partial denitrification driven by efficient hydrolytic fermentation of slowly-biodegradable organic matter. BIORESOURCE TECHNOLOGY 2024; 414:131555. [PMID: 39362342 DOI: 10.1016/j.biortech.2024.131555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/03/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Anammox-based processes are pivotal for elevating nitrogen removal efficiency in municipal wastewater treatment. This study established a novel HF-EPDA system combined in-situ hydrolytic fermentation (HF) with endogenous partial denitrification (EPD) and anammox. Slowly-biodegradable organic matter (SBOM) was degraded and transformed into endogenous polymers for driving production of sufficient nitrite by EPD, further promoted the nitrogen removal via anammox process. Processes above formed positive feedback, guaranteeing the robustness and recoverability of system. After a 92-day suspension during operation, advanced nitrogen removal was still achieved with excellent nitrogen removal efficiency of 95.84 ± 1.73 %, treating with actual domestic wastewater and synthetic nitrate wastewater. Candidatus Brocadia and Candidatus Competibacter were dominant bacteria on biofilms responsible for the anammox and EPD process respectively, while the main hydrolytic fermentation organisms norank_o SBR1031 was enriched in floc sludge. This study highlights the reliable potential for expanding anammox application with simultaneous improvement of SBOM utilization.
Collapse
Affiliation(s)
- Chen Xie
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | | | - Xiaoxin Cao
- Xinkai Environment Investment Co., Ltd., China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Tao Y, Li L, Ning J, Xu W. Culturing partial-denitrification (PD) granules in continuous flow reactor with waste sludge as inoculum: performance, granular sludge characteristics and microbial community. ENVIRONMENTAL TECHNOLOGY 2024; 45:3751-3764. [PMID: 37345969 DOI: 10.1080/09593330.2023.2228993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/04/2023] [Indexed: 06/23/2023]
Abstract
Partial denitrification granular sludge (PDGS) can provide long-term stable nitrite for anaerobic ammonia oxidation (anammox). The cultivation of ordinary activated sludge from wastewater treatment plants into PDGS can further promote the application of PD in practical engineering. In this study, the feasibility of fast start-up of PDGS was explored by inoculating waste sludge in up-flow anaerobic sludge blanket (UASB) reactor with synergistic control of nitrogen load rate (NLR, 0.05-0.65 kg N/m3/d) and electron donor starvation (EDS) (240-168 mg L-1), and system performance, particle characteristics and microbial structure were studied. The results showed that PD-UASB started successfully within 48 days, the average nitrite accumulation rate (NTR) and nitrate removal ratio (NRR) reached 79.6% and 82.5% after successful initiation, accompanied by high abundance of PD bacteria (Thauera, Pseudomonas, unclassflied commamonadaceae and Limnobacter) (25.3%). The increase of PD activity, and the difference between nitrate reductase (NAR) and nitrite reductase (NIR) contributed to nitrite production. Besides, the sludge shifted from flocculated (≤0.5 mm, 95.37%) to granulated state (0.5-2 mm, 64.74%), which could be due to the increase of extracellular polymers (EPS) (especially T-EPS) and metabolism of specific microorganisms (Bacteroidota and Chloroflexi, 19.92%). Good sludge granulation promoted the settleability of PD (the SVI5 was 47.248 mL/ g. ss after successful start-up). In summary, good PD sludge granulation process could be achieved in a short time by synergistically controlling NLR and EDS.
Collapse
Affiliation(s)
- Youqi Tao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, People's Republic of China
| | - Linjing Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, People's Republic of China
| | - Jianyong Ning
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, People's Republic of China
| | - Wenlai Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Zhao Q, Zhang L, Li J, Jia T, Deng L, Liu Q, Sui J, Zhang Q, Peng Y. Carbon-Restricted Anoxic Zone as an Overlooked Anammox Hotspot in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21767-21778. [PMID: 38096549 DOI: 10.1021/acs.est.3c07017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The anoxic zone serves as the core functional unit in municipal wastewater treatment plants (MWWTPs). Unfortunately, in most cases, the downstream range of the anoxic zone is severely lacking in available organic carbon and thus contributes little to the removal of nutrients. This undesirable range is termed the "carbon-restricted anoxic zone", representing an insurmountable drawback for traditional MWWTPs. This study uncovers a previously overlooked role for the carbon-restricted anoxic zone: a hotspot for anaerobic ammonium oxidation (anammox). In a continuous-flow pilot-scale plant treating municipal wastewater (55 m3/d), virgin biocarriers were introduced into the carbon-restricted anoxic zone (downstream 25% of the anoxic zone with BOD5 of 5.9 ± 2.3 mg/L). During the 517-day monitoring, anammox bacteria highly self-enriched within the biofilms, with absolute and relative abundance reaching up to (9.4 ± 0.1) × 109 copies/g-VSS and 6.17% (Candidatus Brocadia), respectively. 15N isotopic tracing confirmed that anammox overwhelmingly dominated nitrogen metabolism, responsible for 92.5% of nitrogen removal. Following this upgrade, the contribution ratio of the carbon-restricted anoxic zone to total nitrogen removal increased from 9.2 ± 4.1% to 19.2 ± 4.2% (P < 0.001), while its N2O emission flux decreased by 84.5% (P < 0.001). These findings challenge stereotypes about the carbon-restricted anoxic zone and highlight the multiple environmental implications of this newfound anammox hotspot.
Collapse
Affiliation(s)
- Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiyu Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jun Sui
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd, Guangdong 510075, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
4
|
Zhou L, Chen J, Zhang X, Zhu Z, Wu Z, Zhang K, Wang Y, Wu P, Zhang X. Efficient nitrogen removal from municipal wastewater by an autotrophic-heterotrophic coupled anammox system: The up-regulation of key functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166359. [PMID: 37595900 DOI: 10.1016/j.scitotenv.2023.166359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The metabolic pathways based on key functional genes were innovatively revealed in the autotrophic-heterotrophic coupled anammox system for real municipal wastewater treatment. The nitrogen removal performance of the system was stabilized at 88.40 ± 3.39 % during the treatment of real municipal wastewater. The relative abundances of the nitrification functional genes ammonia oxidase (amoA/B/C), hydroxylamine oxidoreductase (hao), and nitrite oxidoreductases (nxrA/B) were increased by 1.2-2.4 times, and these three nitrification functional genes were mostly contributed by Nitrospira that dominated the efficient nitrification of the system. The relative abundance of anammox bacteria Candidatus Brocadia augmented from 0.35 % to 0.75 %, accompanied with the increased expression of hydrazine synthase (hzs) and hydrazine dehydrogenase (hdh), resulting in the major role of anammox (81.24 %) for nitrogen removal. The expression enhancement of the functional genes nitrite reductase (narG/H, napA/B) that promoted partial denitrification (PD) of the system weakened the adverse effects of the sharp decline in the population of PD microbe Thauera (from 5.7 % to 2.2 %). The metabolic module analysis indicated that the carbon metabolism pathways of the system mainly included CO2 fixation and organic carbon metabolism, and the stable enrichment of autotrophic bacteria ensured stable CO2 fixation. Furthermore, the enhanced expression of the glucokinases (glk, GCK, HK, ppgk) and the abundant pyruvate kinase (PK) achieved stable hydrolysis ability of organic carbon metabolism function of the system. This study offers research basics to practical application of the mainstream anammox process.
Collapse
Affiliation(s)
- Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, PR China.
| | - Xingxing Zhang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
5
|
Zhao J, Wu Y, Wang J, Gu R, Ding Z, Liu Z, Zhang Y, Yu D, Wang X. Nitrite soaking pretreatment induced initial denitrifying nitrite accumulation. BIORESOURCE TECHNOLOGY 2023; 387:129605. [PMID: 37544538 DOI: 10.1016/j.biortech.2023.129605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Partial denitrification (PD) could be another method for obtaining nitrite. However, PD startup takes a long time limiting its investigation and application. This study proposed nitrite soaking as a pretreatment method for starting PD. Results showed that denitrifying nitrite accumulation (4.20 mg/L) emerged after previously soaking by 10 mg/L nitrite for 9 h. When the duration was 6 h, comparing different soaked nitrite concentrations, the highest denitrifying nitrite accumulation amount (4.92 mg/L) was obtained in the 20 mg/L group. Nevertheless, high pH of 9 and frequent feeding could further advantage denitrifying nitrite accumulation. Pretreatment as a disturbance would impel the microbial community to change from complete denitrification towards PD.
Collapse
Affiliation(s)
- Ji Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yuzhe Wu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jimiao Wang
- Qingdao Water Group Co. Ltd., Qingdao 266100, China
| | - Ruihuan Gu
- Qingdao Water Group Co. Ltd., Qingdao 266100, China
| | - Zhigang Ding
- Qingdao Water Group Environmental Energy Co. Ltd., Qingdao 266002, China
| | - Zhen Liu
- Qingdao Water Group Environmental Energy Co. Ltd., Qingdao 266002, China
| | - Yan Zhang
- Qingdao Water Group Environmental Energy Co. Ltd., Qingdao 266002, China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaoxia Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
6
|
Zhao Y, Li J, Liu Q, Qi Z, Li X, Zhang Q, Sui J, Wang C, Peng Y. Fast start-up and stable operation of mainstream anammox without inoculation in an A 2/O process treating low COD/N real municipal wastewater. WATER RESEARCH 2023; 231:119598. [PMID: 36669306 DOI: 10.1016/j.watres.2023.119598] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
It is of great significance to start up the anammox process in the most commonly used anaerobic-anoxic-oxic (A2/O) process in treating mainstream municipal wastewater. Recently, partial-denitrification/anammox (PD/A) has attracted increasing interest as a new avenue in mainstream. This study investigated the in situ start-up of PD/A process in a traditional A2/O process. The PD/A system was rapidly started up within 60 days by adding virgin carriers into the anoxic zone and then run stably for the next 90 days. The in situ anammox activity reached 1.0 ± 0.1 mg NH4+-N/L/h contributing 37.9 ± 6.2% of total nitrogen removal. As a result, the nitrogen removal efficiency of the system increased by 16.9%. The anammox bacteria (AnAOB) on the anoxic biofilms were enriched with a doubling time of 14.53d, and the relative abundance reached 2.49% on day 150. Phylogenetic analysis showed the dominant AnAOB was related to Ca. Brocadia sp. 40, which was the only detected anammox genus in the anoxic biofilm from start-up to stable operation. Batch tests and qPCR results revealed that compared with the floc sludge, the anoxic biofilms exhibited NO2- accumulation driven by PD and performed a better coordination between denitrifiers and AnAOB. Overall, this study provides great confidence for the in situ fast start-up of mainstream anammox using conventional activated sludge.
Collapse
Affiliation(s)
- Yang Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiyu Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Zhao Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Jun Sui
- Shouhui Lantian Engineering and Technology Co.Ltd, Guangdong 510075, China
| | - Chuanxin Wang
- Shouhui Lantian Engineering and Technology Co.Ltd, Guangdong 510075, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
7
|
Xie C, Zhang Q, Li X, Dan Q, Qin L, Wang C, Wang S, Peng Y. Highly efficient transformation of slowly-biodegradable organic matter into endogenous polymers during hydrolytic fermentation for achieving effective nitrite production by endogenous partial denitrification. WATER RESEARCH 2023; 230:119537. [PMID: 36587520 DOI: 10.1016/j.watres.2022.119537] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The utilization of slowly-biodegradable organic matter (SBOM) to provide nitrite efficiently for anaerobic ammonia oxidation (anammox) process is an essential topic. High nitrite concentration without inhibition of exogenous organic matter is optimal condition for anammox process. In this study, hydrolytic fermentation (HF) of SBOM was applied to drive an endogenous partial denitrification (EPD) process (nitrate to nitrite) during an anaerobic-anoxic operation in a starch-fed system. With a limited production of exogenous organic matter (22.3 ± 4.9 mg COD/L), 79.0% of SBOM was transformed into poly-hydroxyalkanoates (PHA) through a pathway of simultaneous HF-absorption and endogenous polymer synthesis, corresponding to a hydrolytic fermentation ratio of 86.0%. A high nitrate to nitrite transformation ratio of 85.4% was achieved under an influent carbon to nitrogen ratio of 4.8. Denitrifying glycogen-accumulating organisms (DGAOs) was enriched from 0.6% to 10.9%, with an increase from 0.7 to 1.0 of nitrate reductase genes to nitrite reductase genes ratio. Subsequently, nitrate reduction rate was 5.6-fold higher than the nitrate reduction rate. A prominent migration of exogenous complete denitrification to EPD was accomplished. Furthermore, the starch-fed system exhibited performance with significant adaptability and stability in the presence of different SBOMs (dissolved protein and primary sludge). Therefore, the HF-EPD system achieved efficient nitrite production through EPD with the addition of various SBOMs, providing a potential alternative to anammox systems for the treatment of SBOM-rich wastewater.
Collapse
Affiliation(s)
- Chen Xie
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiongpeng Dan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Luyang Qin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Chuanxin Wang
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd., China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
8
|
Yuan F, Sun Y, Jiang X, Liu T, Kang B, Freguia S, Feng L, Chen Y. Dioctyl phthalate enhances volatile fatty acids production from sludge anaerobic fermentation: Insights of electron transport and metabolic functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160102. [PMID: 36370796 DOI: 10.1016/j.scitotenv.2022.160102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
As one of the most widely used phthalate plasticizers, dioctyl phthalate (DOP) has been detected in wastewater and accumulates in sludge through wastewater treatment, which may adversely affect further sludge treatment. However, the role of DOP on sludge anaerobic fermentation and its mechanism are not yet clear. Therefore, this study focused on the effect of DOP on the volatile fatty acids (VFAs) generation via the anaerobic fermentation of sludge. The results demonstrated that the presence of DOP had a considerable contribution to the generation of VFAs, and the maximum production of VFAs reached 4769 mg COD/L at 500 mg/kg DOP, which was 1.57 folds that of the control. Mechanistic investigation showed that DOP mainly enhanced the hydrolysis, acidification and related enzymes activities of sludge. VFAs-producing microorganisms (e.g., Clostridium and Conexibacter) were also enriched under DOP exposure. Importantly, the presence of DOP increased the electron transfer activity by 26 %, consequently facilitating the organics conversion and fermentation process. Notably, the functional gene expressions involved in substrate metabolism and VFAs biosynthesis were enhanced with DOP, resulting in increased VFAs production from sludge. The results obtained in this study offered a new strategy for the control of pollutants and the recycling of valuable products from sludge.
Collapse
Affiliation(s)
- Feiyi Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yi Sun
- Downhole Technical Service Branch, Bohai Drilling Engineering Co., Ltd, National Petroleum Corporation, 8, Second Street, Economic and Technological Development Zone, Tianjin 300450, PR China
| | - Xiupeng Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Tao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Bo Kang
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
9
|
He Y, Mao H, Makinia J, Drewnowski J, Wu B, Xu J, Xie L, Lu X. Impact of soluble organic matter and particulate organic matter on anammox system: Performance, microbial community and N 2O production. J Environ Sci (China) 2023; 124:146-155. [PMID: 36182125 DOI: 10.1016/j.jes.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 06/16/2023]
Abstract
In this study, the effects of soluble readily biodegradable COD (sCOD) and particulate slowly biodegradable COD (pCOD) on anammox process were investigated. The results of the long-term experiment indicated that a low sCOD/N ratio of 0.5 could accelerate the anammox and denitrification activity, to reach as high as 84.9%±2.8% TN removal efficiency. Partial denitrification-anammox (PDN/anammox) and denitrification were proposed as the major pathways for nitrogen removal, accounting for 91.3% and 8.7% of the TN removal, respectively. Anammox bacteria could remain active with high abundance of anammox genes to maintain its dominance. Candidatus Kuenenia and Thauera were the predominant genera in the presence of organic matter. Compared with sCOD, batch experiments showed that the introduction of pCOD had a negative effect on nitrogen removal. The contribution of denitrification to nitrogen removal decreased from approximately 14% to 3% with increasing percentage of pCOD. In addition, the analysis result of the process data using an optimized ASM1 model indicated that high percentage of pCOD resulted in serious N2O emission (the peak value up to 0.25 mg N/L), which was likely due to limited mass diffusion and insufficient available carbon sources for denitrification. However, a high sCOD/N ratio was beneficial for alleviating N2O accumulation.
Collapse
Affiliation(s)
- Yingying He
- Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Hongyu Mao
- Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Jakub Drewnowski
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Bing Wu
- Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Jun Xu
- Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Li Xie
- Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China.
| | - Xi Lu
- Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China.
| |
Collapse
|
10
|
Hollas CE, Rodrigues HC, Bolsan AC, Venturin B, Bortoli M, Antes FG, Steinmetz RLR, Kunz A. Swine manure treatment technologies as drivers for circular economy in agribusiness: A techno-economic and life cycle assessment approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159494. [PMID: 36257411 DOI: 10.1016/j.scitotenv.2022.159494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion has been employed as a technology capable of adding value to waste coupled with environmental impact mitigation. However, many issues need to be elucidated to ensure the systems viability based on this technology. In this sense, the present study evaluated technically, environmentally, and economically, four configurations of swine waste treatment systems focused on the promotion of decarbonization and circularity of the swine chain. For this, a reference plant, based on a compact treatment process named SISTRATES® (Portuguese acronym for swine effluent treatment system) was adopted to serve as a model for comparison and validation. The results showed the importance of prioritization of the energy recuperation routes through anaerobic digestion, providing increased economic benefits and minimizing environmental damage. Thus, the SISTRATES® configuration was the one that presented the best designs in a circular context, maximizing the recovery of energy and nutrients, along with the reduction of greenhouse gas emissions, ensuring the sustainability of the pig production chain.
Collapse
Affiliation(s)
- C E Hollas
- Universidade Estadual do Oeste do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil
| | - H C Rodrigues
- Universidade Tecnológica Federal do Paraná, 85660-000 Dois Vizinhos, PR, Brazil
| | - A C Bolsan
- Universidade Tecnológica Federal do Paraná, 85660-000 Dois Vizinhos, PR, Brazil
| | - B Venturin
- Universidade Estadual do Oeste do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil
| | - M Bortoli
- Universidade Tecnológica Federal do Paraná, 85601-970 Francisco Beltrão, PR, Brazil
| | - F G Antes
- Embrapa Suínos e Aves, 89715-899 Concórdia, SC, Brazil
| | | | - A Kunz
- Universidade Estadual do Oeste do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil; Embrapa Suínos e Aves, 89715-899 Concórdia, SC, Brazil.
| |
Collapse
|
11
|
Characteristics of NO2--N accumulation in partial denitrification during granular sludge formation. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Zhang L, Hao S, Dou Q, Dong T, Qi WK, Huang X, Peng Y, Yang J. Multi-Omics Analysis Reveals the Nitrogen Removal Mechanism Induced by Electron Flow during the Start-up of the Anammox-Centered Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16115-16124. [PMID: 36215419 DOI: 10.1021/acs.est.2c02181] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Significant progress in understanding the key enzymes or species of anammox has been made; however, the nitrogen removal mechanism in complex coupling systems centered on anammox remains limited. In this study, by the combination of metagenomics-metatranscriptomics analyses, the nitrogen removal in the anammox-centered coupling system that entails partial denitrification (PD) and hydrolytic acidification (HA, A-PDHA) was elucidated to be the nitrogen transformation driven by the electron generation-transport-consumption process. The results showed that a total nitrogen (TN) removal efficiency of >98%, with a TN effluence of <1 mg/L and a TN removal contribution via anammox of >98%, was achieved after 59 days under famine operation and alkaline conditions during the start-up process. Further investigation confirmed that famine operation promoted the activity of genes responsible for electron generation in anammox, and increased the abundance or expression of genes related to electron consumption. Alkaline conditions enhanced the electron generation for PD by upregulating the activity of glyceraldehyde 3-phosphate dehydrogenase and strengthened electron transfer by increasing the gene encoding quinone pool. Altogether, these variations in the electron flow led to efficient nitrogen removal. These results improve our understanding of the nitrogen removal mechanism and application of the anammox-centered coupling systems in treating nitrogen wastewater.
Collapse
Affiliation(s)
- Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Tingjun Dong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Wei Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Xiaowu Huang
- Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong515063, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing100124, China
| | - Jiachun Yang
- Shuifa Shandong Water Development Group Co. Ltd.Shandong274200, China
| |
Collapse
|
13
|
Du R, Li C, Liu Q, Fan J, Peng Y. A review of enhanced municipal wastewater treatment through energy savings and carbon recovery to reduce discharge and CO 2 footprint. BIORESOURCE TECHNOLOGY 2022; 364:128135. [PMID: 36257527 DOI: 10.1016/j.biortech.2022.128135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Municipal wastewater treatment that mainly performed by conventional activated sludge (CAS) process faces the challenge of intensive aeration-associated energy consumption for oxidation of organics and ammonium, contributing to significant directly/indirectly greenhouse gas (GHG) emissions from energy use, which hinders the achievement of carbon neutral, the top priority mission in the coming decades to cope with the global climate change. Therefore, this article aimed to offer a comprehensive analysis of recently developed biological treatment processes with the focus on reducing discharge and CO2 footprint. The biotechnologies including "Zero Carbon", "Low Carbon", "Carbon Capture and Utilization" are discussed, it suggested that, by integrating these processes with energy-saving and carbon recovery, the challenges faced in current wastewater treatment plants can be overcome, and a carbon-neutral even be possible. Future research should investigate the integration of these methods and improve anammox contribution as well as minimize organics lost under different scales.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Cong Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
14
|
Hao Z, Zhang L, Zhang Q, Peng Y, Shi L, Li Y. Rapidly achieving partial denitrification from nitrate wastewater in a alkaline fermentation system with primary sludge as inoculated sludge and fermentable substrate. BIORESOURCE TECHNOLOGY 2022; 360:127528. [PMID: 35760246 DOI: 10.1016/j.biortech.2022.127528] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
In order to promote practical engineering application of anaerobic ammonium oxidation(anammox) process, reduction of primary sludge(PS) in wastewater treatment plants(WWTPs) and removal of nitrate contaminant, a single-stage simultaneous alkaline fermentation coupled with partial denitrification(SAFPD) system was established successfully in this study. Nitrite production was rapidly achieved from nitrate wastewater with PS as inoculated sludge and fermentable substrate under anaerobic and anoxic operating conditions. During the stable operation period, the primary sludge reduction(PSR) and productivity of organic matters were 27.9% and 483.8mgCOD/gVSS, with nitrate removal of 90.7%, NO3- to NO2- transformation ratio(NTR) of 80.0%. After 125 days of acclimation, the relative abundance of Thauera, Dechloromonas and Candidatus_Competibacter increased from 0.17%, 0.02% and 0.05% to 11.58%, 4.28% and 5.6% respectively. Above results showed that this SAFPD system not only realized the reduction of PS and nitrate removal, but also laid a solid foundation for anammox process with its high nitrite production.
Collapse
Affiliation(s)
- Zhichao Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Liangliang Shi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yanan Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
15
|
Effects of pH Adjustment on the Release of Carbon Source of Particulate Organic Matter (POM) in Domestic Sewage. SUSTAINABILITY 2022. [DOI: 10.3390/su14137746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of anaerobic hydrolytic fermentation to develop more available carbon sources from domestic sewage influent particulate organic matter (POM) has received increasing attention. However, the slow hydrolysis rate of POM limits the application of this technology. This study aimed to improve the carbon source release efficiency of POM by pH adjustment and to reveal the hydrolysis mechanism. Results showed that adjusting the initial pH of POM to 3, 9, and 11 enhanced carbon source release in the anaerobic hydrolysis fermentation process of POM. The pretreatment under pH value of 11 contributed to the highest yield and productivity of carbon source, reaching the soluble chemical oxygen demand (SCOD) of 2782 mg/L at the 4th day. The pH 3 pretreatment was more beneficial for phosphorus resource recovery, which contributed to the highest release concentration of PO43−-P, reaching 48.2 mg/L at the 3rd day, accounting for 90% of TP. Microbial community structure analysis indicated that pH 11 preconditioning promoted the enrichment of proteolytic bacteria (Proteocatella and Proteiniclasticum) and polysaccharide hydrolytic bacteria (Trichococcus and Acinetobacter) and inhibited the growth of acetate-consuming methanogenic archaea, which contributed to the highest carbon release of POM in domestic sewage.
Collapse
|
16
|
Li X, Peng Y, Zhang J, Du R. Multiple roles of complex organics in polishing THP-AD filtrate with double-line anammox: Inhibitory relief and bacterial selection. WATER RESEARCH 2022; 216:118373. [PMID: 35366495 DOI: 10.1016/j.watres.2022.118373] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Anammox process has been widely regarded as an energy-efficient method for sludge digestion filtrate treatment. However, the complex high-strength organics in the filtrate, especially of Anaerobic Digestion after Thermal Hydrolysis Pretreatment (THP-AD), brings serious threat to anammox bacteria, and the high nitrate residue in effluent remains another significant barrier in operation. In this study, a novel double-line anammox-mediated system, integrating the Partial Nitrification/Anammox (PNA) with Partial Denitrification/Anammox (PDA) processes in separately sequencing batch reactors (SBRs), was developed to polish the THP-AD filtrate. When the real THP-AD filtrate (1946.5 mg NH4+-N/L, 2076.0 mg COD/L) was fed to the front PNA reactor (SBRPNA) with 5-fold dilution, effluent total nitrogen (TN) remained at 93.0 mg/L. Notably, the final effluent TN was effectively polished to as low as 8.8 mg/L by the following PDA reactor (SBRPDA), which was fed with the SBRPNA effluent and real domestic wastewater (71.0 mg NH4+-N/L, 209.1 mg COD/L). More severe inhibition on anammox activity was observed in SBRPNA rather than SBRPDA by refractory organics in filtrate. Fortunately, it could be alleviated with the enhanced degradability of particulate organics and aromatic protein-like compounds, attributed to the enrichment of class Anaerolineae in both SBRPNA and SBRPDA. This further stimulated the electron donor supply for PDA process with much lower external carbon source demand. 16S rRNA sequencing analysis revealed that Candidatus Brocadia as dominant anammox bacteria were efficiently enriched in both SBRPNA and SBRPDA, indicating its unexpected toughness and adaptability to the complex organic compounds in THP-AD filtrate. Overall, this study suggested that the novel double-line anammox would be a promising alternative for cost-efficient nitrogen removal from high-strength wastewater containing complex organic matter.
Collapse
Affiliation(s)
- Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jingwen Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
17
|
Wu Y, Zhang X, Chen J, Wang C, Zhang X, Chen J, Cai T, Liu W, Li X, Wu P. Effective utilization of refractory dissolved organic matters in domestic sewage allows to enhanced nitrogen removal by integrated fermentation, nitrification, denitratation and anammox process. BIORESOURCE TECHNOLOGY 2022; 354:127227. [PMID: 35477106 DOI: 10.1016/j.biortech.2022.127227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
To take full advantage of refractory dissolved organic matters (rDOMs) and generate sufficient nitrate for domestic sewage treatment, this study presented a novel integrated fermentation, nitrification, denitratation and anammox (IFNDA) process in a combined ABR-CSTR reactor. The results showed that an advanced total nitrogen (TN) removal efficiency of 94.1% was obtained after over 190 days operation, resulting in effluent TN concentration as low as 3.6 mg/L. The system nitrogen removal was dominated by anammox with a high proportion of 88.6%. The high conversion rate of acetic acid (54.0%) and volatile fatty acids (64.5%) from rDOMs in domestic sewage by in-situ fermentation drove efficient denitratation. Microflora analysis indicated that the enriched Commamonas (3.5%) and Longilinea (3.3%) dominated hydrolysis and acidogenesis of organics, and Methanosaeta (9.0%) obligated acetoclastic methanogenesis in two-stage fermentation process. Thauera (8.4%) and Candidatus Brocadia (2.5%) were the core bacteria for nitrogen metabolism in the IFNDA system.
Collapse
Affiliation(s)
- Yiling Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xingxing Zhang
- Environmental Microbiome and Biotechnology Lab, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Junjiang Chen
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chaochao Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiaqiao Chen
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Tianning Cai
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenru Liu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiang Li
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
18
|
Xie T, Zeng Z, Li L. Achieving partial denitrification using organic matter in brewery wastewater as carbon source. BIORESOURCE TECHNOLOGY 2022; 349:126849. [PMID: 35158032 DOI: 10.1016/j.biortech.2022.126849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
To find a cost-effective carbon source for partial denitrification (PD), brewery wastewater was utilized to test the viability of initiating PD. The Sbre (sludge from the biological treatment tank of Tsingtao Brewery Plant sewage treatment station) and Slab (sludge from laboratory) were fed with brewery wastewater at CODCr/NO3--N (C/N) ratios of 8.0-10.0 and 5.0 for 95 days at 25 ± 1 °C, respectively. The mean NO3--N to NO2--N transformation ratio (NTR) in long-term operation was 40.0% in the Sbre system and 83.2% in the Slab system. Batch tests with C/N ratio of 2.2-4.4 were conducted after 95 days incubation and the result suggested that C/N ratio of 4.3 ± 0.1 contributed more to NO2--N accumulation in both systems. Thauera bacteria, known to be beneficial for NO2--N accumulation, became the dominant community. The relative abundances of Thauera on day 95 in the Sbre and Slab system were 83.36% and 79.11%, respectively.
Collapse
Affiliation(s)
- Tian Xie
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhijie Zeng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Lingling Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
19
|
Sun H, Huang K, Zhang X, Ren H, Ye L. Stable isotope probing reveals specific assimilating bacteria of refractory organic compounds in activated sludge. WATER RESEARCH 2022; 212:118105. [PMID: 35074670 DOI: 10.1016/j.watres.2022.118105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Activated sludge in wastewater treatment bioreactors contains diverse bacteria, while little is known about the community structure of bacteria responsible for degradation of refractory organic compounds (ROCs). In this study, 10 ROCs frequently detected in sewage were investigated, and the potential bacteria degrading these ROCs were analyzed by DNA stable isotope probing and high-throughput sequencing. The results showed that the bacterial communities responsible for degradation of different ROCs were largely different. A total of 84 bacterial genera were found to be involved in degrading at least one of the 10 ROCs, however, only six genera (Acinetobacter, Bacteroides, Bosea, Brevundimonas, Lactobacillus and Pseudomonas) were common to all 10 ROCs. This suggests that different ROCs may have specific assimilating bacteria in the activated sludge. Our results also showed that these ROC-degrading bacteria are difficult to isolate by conventional methods and that most of them have relatively low relative abundance in municipal wastewater treatment bioreactors. Development of new technologies to increase the abundance and activity of these bacteria may significantly improve the removal efficiency of ROCs from wastewater.
Collapse
Affiliation(s)
- Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
20
|
Zhang X, Miao Y, Yu D, Qiu Y, Zhao J, Wang X. Culturing partial denitrification biofilm in side stream incubator with ordinary activated sludge as inoculum: One step closer to mainstream Anammox upgrade. BIORESOURCE TECHNOLOGY 2022; 347:126679. [PMID: 34999188 DOI: 10.1016/j.biortech.2022.126679] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Recently, adding carriers into anoxic zone is proposed for mainstream Anammox upgrade, which relied on the denitrifiers responsible for partial denitrification (PD) to generate essential nitrite for Anammox bacteria. Still, their low abundance in the naturally formed biofilm leads to insufficient nitrite supply. This study investigated the sequential culturing of PD biofilm. By inoculating ordinary activated sludge, the PD process was quickly established within 54-day. During that, decreasing carbon to nitrogen ratio and anoxic duration in order might be effective strategies. Adding carriers shifted the microbial community, especially the proliferation of Flavobacterium. When solely using the mature PD biofilm, high nitrate to nitrite transformation ratio (>70%) was obtained. Meanwhile, both nitrate-reducing and nitrite-generating processes slowed down and lasted ∼90 min. In addition, abundant Simplicispira candidate for PD was detected in biofilm. This study also suggests that regularly harvesting PD-related functional bacteria from a side-stream incubator promotes mainstream Anammox upgrade.
Collapse
Affiliation(s)
- Xincheng Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yuanyuan Miao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yanling Qiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Ji Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiaoxia Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
21
|
Liu W, Hao S, Ma B, Zhang S, Li J. In-situ fermentation coupling with partial-denitrification/anammox process for enhanced nitrogen removal in an integrated three-stage anoxic/oxic (A/O) biofilm reactor treating low COD/N real wastewater. BIORESOURCE TECHNOLOGY 2022; 344:126267. [PMID: 34737049 DOI: 10.1016/j.biortech.2021.126267] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Mainstream partial-denitrification with anammox (PD-anammox) process faced the challenge of complex organics involved in real sewage. Herein, PD-anammox coupled with in-situ fermentation was successfully achieved in a full biofilm system formed by three-stage anoxic/oxic reactor to treat real wastewater with low COD/N of 3.6. The total nitrogen (TN) removal efficiency was enhanced to 78.4% ± 3.6% with average TN and ammonium concentrations in effluent of 10.6 and 0.5 mg N/L, respectively. Batch tests confirmed that partial-denitrification was the major nitrite provider for anammox in the anoxic biofilm, while in-situ fermentation could decompose the complex organics to readily-biodegradable organics for full- or partial-denitrification. Additionally, a significant anammox bacteria (Candidatus Brocadia) population was detected in the second (3.53%) and third (4.46%) anoxic zones, while denitrifiers and fermentative bacteria were mainly enriched in the first anoxic zone. This study presents a feasible approach for PD-anammox process in practical application under mainstream condition.
Collapse
Affiliation(s)
- Wenlong Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shufeng Hao
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100022, China
| | - Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Shujun Zhang
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100022, China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
22
|
Jiang L, Zhang Y, Shen Q, Mao Y, Zhang Q, Ji F. The metabolic patterns of the complete nitrates removal in the biofilm denitrification systems supported by polymer and water-soluble carbon sources as the electron donors. BIORESOURCE TECHNOLOGY 2021; 342:126002. [PMID: 34852445 DOI: 10.1016/j.biortech.2021.126002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, two denitrification bio-filters adopted polycaprolactone (PCL) and sodium acetate (NaAc) as polymer and water-soluble carbon sources respectively. With the increasing influent nitrate concentrations, NaAc bio-filter always had shorter HRT to achieve complete nitrate removal. Furthermore, the optimal volumetric denitrification rate in NaAc bio-filter was 0.728 g N/(L·d), which was higher than 0.561 g N/(L·d) in PCL bio-filter. For nitrates removal, the costs of bio-filters supported by NaAc and PCL were 24.93 and 120.25 CNY/kg N respectively. Although Proteobacteria in PCL bio-filter was abundant with 83.98%, NaAc bio-filter had better denitrification performance, due to the appropriate ratio of nitrate removal microorganisms and organic matters degradation organisms. The total abundance value of the denitrification genera is NaAc (16.06%) < PCL (41.19%). However, PCL bio-filter had poor denitrification performance, due to the lower adequacy of PCL depolymerization enzymes and the low expression of the key genes for denitrification.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yifang Zhang
- North China Municipal Engineering Design and Research Institute, Tianjin 300381, PR China
| | - Qiushi Shen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yuanxiang Mao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qian Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
23
|
Zhang L, Hao S, Wang Y, Lan S, Dou Q, Peng Y. Rapid start-up strategy of partial denitrification and microbially driven mechanism of nitrite accumulation mediated by dissolved organic matter. BIORESOURCE TECHNOLOGY 2021; 340:125663. [PMID: 34333347 DOI: 10.1016/j.biortech.2021.125663] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The rapid start-up of Partial denitrification (PD; nitrate to nitrite) was investigated based on the analysis of microbially driven mechanism of nitrite accumulation mediated by Dissolved organic matter (DOM) in this study. The nitrate to Nitrite transformation ratio (NTR) > 90% and effluent nitrate < 5 mg/L were achieved in 17 days by feeding with lower nitrate of ~ 35 mg/L and removing the idling period. And the enhanced nitrite accumulation when applying the above strategy is related to the decreased utilization of the aliphatic DOM during nitrite reduction process. Additionally, the rapid enriched Thauera and OLB13 (37.21%) and inhibited norank_f__Blastocatellaceae (2.86%), and the increased disparity (2.0-fold) between the genes involved in nitrite generation (e.g., narH) and for nitrite reduction (e.g., nirK) jointly contributed to PD start-up. While the genes (e.g., DLD) related to producing electrons from aliphatic DOM also up-regulated by 0.1-fold, which led to the increased nitrate removal and NTR.
Collapse
Affiliation(s)
- Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yueping Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shuang Lan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
24
|
Bonassa G, Bolsan AC, Hollas CE, Venturin B, Candido D, Chini A, De Prá MC, Antes FG, Campos JL, Kunz A. Organic carbon bioavailability: Is it a good driver to choose the best biological nitrogen removal process? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147390. [PMID: 33964770 DOI: 10.1016/j.scitotenv.2021.147390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Organic carbon can affect the biological nitrogen removal process since the Anammox, heterotrophic and denitrifying bacteria have different affinities and feedback in relation to carbon/nitrogen ratio. Therefore, we reviewed the wastewater carbon concentration, its biodegradability and bioavailability to choose the appropriate nitrogen removal process between conventional (nitrification-denitrification) and Anammox-based process (i.e. integrated with the partial nitritation, nitritation, simultaneous partial nitrification and denitrification or partial-denitrification). This review will cover: (i) strategies to choose the best nitrogen removal route according to the wastewater characteristics in relation to the organic matter bioavailability and biodegradability; (ii) strategies to efficiently remove nitrogen and the remaining carbon from effluent in anammox-based process and its operating cost; (iii) an economic analysis to determine the operational costs of two-units Anammox-based process when compared with the commonly applied one-unit Anammox system (partial-nitritation-Anammox). On this review, a list of alternatives are summarized and explained for different nitrogen and biodegradable organic carbon concentrations, which are the main factors to determine the best treatment process, based on operational and economic terms. In summary, it depends on the wastewater carbon biodegradability, which implies in the wastewater treatment cost. Thus, to apply the conventional nitrification/denitrification process a CODb/N ratio higher than 3.5 is required to achieve full nitrogen removal efficiency. For an economic point of view, according to the analysis the minimum CODb/gN for successful nitrogen removal by nitrification/denitrification is 5.8 g. If ratios lower than 3.5 are applied, for successfully higher nitrogen removal rates and the economic feasibility of the treatment, Anammox-based routes can be applied to the wastewater treatment plant.
Collapse
Affiliation(s)
| | | | | | - Bruno Venturin
- Western Paraná State University, 85819-110 Cascavel, PR, Brazil
| | - Daniela Candido
- Federal University of Fronteira Sul, 99700-000 Erechim, Brazil
| | - Angélica Chini
- Western Paraná State University, 85819-110 Cascavel, PR, Brazil
| | - Marina C De Prá
- Federal University of Technology - Parana (UTFPR), 85660-000 Dois Vizinhos, PR, Brazil
| | | | - José Luis Campos
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, 2503500 Viña del Mar, Chile
| | - Airton Kunz
- Western Paraná State University, 85819-110 Cascavel, PR, Brazil; Federal University of Fronteira Sul, 99700-000 Erechim, Brazil; Embrapa Suínos e Aves, 89715-899 Concórdia, SC, Brazil.
| |
Collapse
|
25
|
Jiang H, Wang Z, Ren S, Qiu J, Li X, Peng Y. Culturing sludge fermentation liquid-driven partial denitrification in two-stage Anammox process to realize advanced nitrogen removal from mature landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125568. [PMID: 33773256 DOI: 10.1016/j.jhazmat.2021.125568] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/16/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The two-stage partial nitrification (PN)-Anammox process, during long term treatment of high-ammonia nitrogen leachate, faces challenges such as the adaptation of nitrite oxidation bacteria (NOB) and failure of real-time control of pH. Resultant instabilities including NH4+-N and NO3--N accumulation were overcome by culturing sludge fermentation liquid (SFL)-driven partial denitrification (PD) in situ in the Anammox process. Biodegradation of slowly biodegradable organics (SBO) in SFL created organics restriction condition, which limited the activity of denitrification bacteria and achieved its balance with Anammox bacteria. Produced NO3--N is reduced to NO2--N through PD, which further improved the removal of NH4+-N through Anammox. NO2--N was utilized timely by Anammox bacteria, which avoid further reduction of NO2--N to N2, and result in a high nitrate to nitrite transformation ratio (NTR) of 93.3%. Satisfactory nitrogen removal efficiency (NRE) and nitrogen removal rate (NRR) of 99.6% and 822.0 ± 9.0 g N/(m3∙d) were obtained, respectively. Key genera related to degradation of SBO, PD and Anammox were enriched. The value of narG/(nirK+nirS) increased from 0.05 on day 1-0.15 on day 250. Combining SFL-driven PD with two-stage Anammox process provided a novel insight for applying this process to realize advanced nitrogen removal in practical engineering.
Collapse
Affiliation(s)
- Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jingang Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
26
|
Shi L, Li X, Zhang Q, Peng Y. Effectively stimulating partial denitrification to utilize dissolved slowly-biodegradable organic matter by introducing in-situ biosorption and hydrolytic acidification. BIORESOURCE TECHNOLOGY 2021; 333:125175. [PMID: 33895667 DOI: 10.1016/j.biortech.2021.125175] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
In this study, partial denitrification (PD, nitrate → nitrite) using dissolved slowly-biodegradable organic matter (DSBOM) was effectively established by introducing biosorption and hydrolytic acidification (HA) as a pretreatment for carbon capture and conversion. After 119 days of optimized operation, an efficient nitrate to nitrite transformation of 80% was achieved, with an influent nitrate level of 40 mg/L and DSBOM level of 183.8 mg/L. There was a significant shift from exogenous PD to endogenous PD, with energy supplied by HA products of captured DSBOM, i.e., acetate, saccharide and intracellular poly-hydroxyalkanoates (PHAs), jointly facilitating nitrite production. This was well explained by that genera Dechloromonas (26.7%), possibly responsible for carbon HA and nitrite production, were enriched; while abundant enzymes for glycolysis, acetate fermentation and PHAs storage, and 2.6 times more nitrate reductases than nitrite reductases were identified. These results highlight a novel carbon capture reuse and PD-based anammox strategy to cost-effectively treat nitrogen.
Collapse
Affiliation(s)
- Liangliang Shi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
27
|
Jiang H, Yang P, Wang Z, Ren S, Qiu J, Liang H, Peng Y, Li X, Zhang Q. Efficient and advanced nitrogen removal from mature landfill leachate via combining nitritation and denitritation with Anammox in a single sequencing batch biofilm reactor. BIORESOURCE TECHNOLOGY 2021; 333:125138. [PMID: 33895670 DOI: 10.1016/j.biortech.2021.125138] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
A novel combined partial nitrification-Anammox and partial denitrification-Anammox (PnA/PdA) single sequencing batch biofilm reactor (SBBR) was established to realize efficient and advanced nitrogen removal from mature landfill leachate with low biodegradability. Nitrogen removal rate and nitrogen removal efficiency were increased to 2.83 ± 0.06 kgN/(m3∙d) and 98.6 ± 0.2% by stepwise increase of dissolved oxygen (DO, from 0.5 to 3.5 mg/L) and continuous carbon source feeding. Comparable activities of ammonia oxidation bacteria and Anammox bacteria were realized during aerobic period. More organic carbon was redirected from complete denitrification to partial denitrification during anoxic period. The main pathway PnA jointly synergized with PdA, which contributed to 76.04% and 19.44% nitrogen removal, respectively. Nitrosomonas, Thauera, and Kuenenia dominated in floc sludge (0.78%, 5.38%, and 1.14%, respectively) and biofilm (0.34%, 5.18%, and 0.98%, respectively). Overall, this study provides new insight into the high-efficiency treatment of landfill leachate at full-scale landfill sites.
Collapse
Affiliation(s)
- Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Pei Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Engineering Technology Research Center of Beijing MSW Comprehensive Treatment and Utilization, Environmental Engineering Technology Co, Ltd., Beijing, PR China
| | - Zhong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jingang Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Haoran Liang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
28
|
Yao M, Duan L, Song Y, Hermanowicz SW. Degradation mechanism of Ibuprofen via a forward osmosis membrane bioreactor. BIORESOURCE TECHNOLOGY 2021; 321:124448. [PMID: 33316700 DOI: 10.1016/j.biortech.2020.124448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Ibuprofen (IBU) is a non-steroidal drug that is classified as a trace organic compound (TrOC). A forward osmosis membrane bioreactor (FOMBR) has traditionally been a favored technology for wastewater treatment. In this study, the IBU degradation mechanism was clarified using an FOMBR. The results indicated that the average removal efficiencies of contaminants were greater than 96.32%. The ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) results demonstrated that there were 10 intermediates and 5 possible pathways during the IBU degradation. Decarboxylation and hydroxylation may be the primary pathways of IBU degradation. The microbial results illustrated that Proteobacteria was dominant and of utmost importance in the degradation process. Thauera and Azoarcus were the dominant genera that participated in contaminant degradation.
Collapse
Affiliation(s)
- Meichen Yao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Slawomir W Hermanowicz
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518071, China; Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
29
|
Shi L, Du R, Peng Y, Li Y. Simultaneous carbon reutilization for primary sludge and stable nitrite production in a hydrolytic acidification coupled with partial denitrification system to treat nitrate contaminant. BIORESOURCE TECHNOLOGY 2020; 318:124062. [PMID: 32916459 DOI: 10.1016/j.biortech.2020.124062] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Partial denitrification (PD, nitrate → nitrite) is a promising process for the hazardous nitrate removal by producing nitrite for Anammox. In this study, the startup and performance of PD using slowly biodegradable organic matter in primary sludge was explored by combining with in-situ hydrolytic acidification (HA). Results showed that efficient PD was established with 61.3% nitrite production at an influent nitrate level of 50 mg/L, with a simultaneous 23.1% reduction in volatile sludge mass. Efficient electron donors including acetate (13.2%), dissolved saccharide (11.9%), and intracellular poly-hydroxyalkanoates (22.5%) were generated from sludge HA, jointly promoting desirable nitrite production. Microbial analysis revealed that adding primary sludge significantly increased community diversity; however, the specific genera Dechloromonas (11.9%) and Thauera (10.5%) remained stably enriched to facilitate the efficient sludge reduction and nitrite production. These findings provide a novel strategy for simultaneously treating primary sludge, nitrate contaminant, and domestic wastewater using a HAPD and Anammox process.
Collapse
Affiliation(s)
- Liangliang Shi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Yanan Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|