1
|
Xu W, Chen Z, Ba Y, Zhang J, Wang W, Li Y, Zhang Q, Song J, Liu Y. Space heterogeneity of nitrogen removal functional genes, nitrogen transformation pathways and mechanisms in MEBR treating mariculture wastewater. BIORESOURCE TECHNOLOGY 2025; 415:131727. [PMID: 39481615 DOI: 10.1016/j.biortech.2024.131727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Membrane Electro-Bioreactor (MEBR), exhibited excellent nitrogen removal in mariculture wastewater treatment. However, the differences of microbial community and nitrogen transformation pathways on spatial scale caused by the mass transfer of reactive chlorine species (RCS) generated by electrooxidation were unclear. This study provided new insights into the space heterogeneity of ammonia transformation pathways and mechanisms. The results demonstrated an increase in the reduction of nitrate to nitrite through partial denitrification on the membrane. Coupling with dissimilatory nitrate reduction to ammonium and RCS, higher nitrate (0.3 mgN/L) and TN removal (2.6 mgN/L) was obtained in MEBR. Higher relative abundance of narGHI and nirB were obtained. Ammonia oxidation by biofilters was enhanced in MEBR, that ammonia removal contributed by biofilters was 32.0 %, 5.2 times higher than the membrane. Relative abundance of amoABC and Nitrosomonas in biofilters were the highest. The results will provide theoretical basis for reactor configuration and operation optimization.
Collapse
Affiliation(s)
- Wenhao Xu
- Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education 116023, China
| | - Zhiwei Chen
- Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education 116023, China
| | - Yu Ba
- Ansteel Engineering Technology Corporation Limited, Anshan 114021, China
| | - Jia Zhang
- Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education 116023, China
| | | | - Yihan Li
- Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education 116023, China
| | - Qian Zhang
- Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education 116023, China
| | - Jing Song
- Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education 116023, China.
| | - Ying Liu
- Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education 116023, China; College of Biosystems Engineering and Food Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Wang W, Zhang X, Ma B, Zhang H, Wang Q, Song Y, Ma Y. Rapid achievement of partial nitrification process by adopting the combined strategy of anoxic starvation and free ammonia inhibition. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 39258836 DOI: 10.1080/09593330.2024.2401645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
Partial nitrification (PN) is a prerequisite step for the short-cut nitrogen removal process, which is crucial to provide stable nitrite accumulation for subsequent units. The present study innovatively proposed a new strategy for the rapid establishment of PN by adopting short-term anoxic starvation combined with high free ammonia inhibition. The sludge obtained from the secondary sedimentation tank of a municipal wastewater treatment plant was starved for 7 days under anoxic conditions, and then wastewater with high ammonia nitrogen (400 mg L-1) was introduced. Within 17 days, stable nitrite accumulation was achieved in the sequencing batch reactor, and the nitrite accumulation rate reached more than 95.0%. The activity of ammonia monooxygenase enzyme increased from 0.0364 ± 0.0074 to 0.1275 ± 0.0021 μg NO2--N·mg-1 protein min-1, while that of hydroxylamine oxidoreductase enzyme increased from 1.5350 ± 0.0208 to 6.3852 ± 0.0400 EU g-1 SS. The relative abundance of Nitrosomonas increased from 0.10% to 25.90%, while that of Nitrospira consistently remained below 0.04%. And the relative abundance of short-cut denitrifying bacteria, including Truepera, OLB8, and OLB13 all increased. The results proved that the short-term anoxic starvation combined with high free ammonia inhibition was an effective strategy for rapid establishment of PN.
Collapse
Affiliation(s)
- Wenxiao Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Bingbing Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Han Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Qiong Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Yali Song
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| |
Collapse
|
3
|
Li Y, Dong W, Hou Z, Zhao Z, Xie J, Wang H, Huang X, Peng Y. Intermittent hydroxylamine dosing to strengthen stability of partial nitrification and nitrogen removal efficiency through continuous-flow anaerobic-aerobic-anoxic reactor treating municipal wastewater. BIORESOURCE TECHNOLOGY 2024; 406:130947. [PMID: 38897548 DOI: 10.1016/j.biortech.2024.130947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
Intermittent hydroxylamine (NH2OH) dosing strategy was applied to enhance the stability of partial nitrification and total nitrogen (N) removal efficiency (TNRE) in a continuous-flow process. The results showed 2 mg/L of NH2OH dosing (once every 6 h) could maintain stably partial nitrification with nitrite accumulation rate (NAR) of 91.6 % and TNRE of 92.6 %. The typical cycle suggested NH2OH dosing could promote simultaneous nitrification-denitrification (SND) and endogenous denitrification (END) while inhibit exogenous denitrification (EXD). Nitrification characteristics indicated the NH2OH dosing enhanced stability of partial nitrification by suppressing specific nitrite oxidation rate (SNOR), Nitrospira and nitrite oxidoreductase enzyme (Nxr). The microbial community suggested the aerobic denitrfiers, denitrifying glycogen accumulating organisms (DGAOs) and traditional denitrfiers were the potential contributor for advanced N removal. Moreover, NH2OH dosage was positively associated with NAR, SND and END. Overall, this study offers a feasible strategy to maintain sustainably partial nitrification that has great application potential.
Collapse
Affiliation(s)
- Yanchen Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zilong Hou
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Jin Xie
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Joint Laboratory of Urban High Strength Wastewater Treatment and Resource Utilization, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Xiao Huang
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Jin D, Zhang X, Zhang X, Zhou L, Zhu Z, Deogratias UK, Wu Z, Zhang K, Ji X, Ju T, Zhu X, Gao B, Ji L, Zhao R, Ruth G, Wu P. A critical review of comammox and synergistic nitrogen removal coupling anammox: Mechanisms and regulatory strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174855. [PMID: 39034010 DOI: 10.1016/j.scitotenv.2024.174855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/13/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Nitrification is highly crucial for both anammox systems and the global nitrogen cycle. The discovery of complete ammonia oxidation (comammox) challenges the inherent concept of nitrification as a two-step process. Its wide distribution, adaptability to low substrate environments, low sludge production, and low greenhouse gas emissions may make it a promising new nitrogen removal treatment process. Meanwhile, anammox technology is considered the most suitable process for future wastewater treatment. The diverse metabolic capabilities and similar ecological niches of comammox bacteria and anammox bacteria are expected to achieve synergistic nitrogen removal within a single system. However, previous studies have overlooked the existence of comammox, and it is necessary to re-evaluate the conclusions drawn. This paper outlined the ecophysiological characteristics of comammox bacteria and summarized the environmental factors affecting their growth. Furthermore, it focused on the enrichment, regulatory strategies, and nitrogen removal mechanisms of comammox and anammox, with a comparative analysis of hydroxylamine, a particular intermediate product. Overall, this is the first critical overview of the conclusions drawn from the last few years of research on comammox-anammox, highlighting possible next steps for research.
Collapse
Affiliation(s)
- Da Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xingxing Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Ufoymungu Kisa Deogratias
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xu Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Ting Ju
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xurui Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Bo Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Luomiao Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Rui Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Guerra Ruth
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, PR China.
| |
Collapse
|
5
|
Hu Y, Wang Y, Wang R, Wang X, Liu SJ. Dirammox-dominated microbial community for biological nitrogen removal from wastewater. Appl Microbiol Biotechnol 2024; 108:389. [PMID: 38904674 PMCID: PMC11192851 DOI: 10.1007/s00253-024-13214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/15/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024]
Abstract
Direct ammonia oxidation (Dirammox) might be of great significance to advance the innovation of biological nitrogen removal process in wastewater treatment systems. However, it remains unknown whether Dirammox bacteria can be selectively enriched in activated sludge. In this study, a lab-scale bioreactor was established and operated for 2 months to treat synthetic wastewater with hydroxylamine as a selection pressure. Three Dirammox strains (Alcaligenes aquatilis SDU_AA1, Alcaligenes aquatilis SDU_AA2, and Alcaligenes sp. SDU_A2) were isolated from the activated sludge, and their capability to perform Dirammox process was confirmed. Although these three Dirammox bacteria were undetectable in the seed sludge (0%), their relative abundances rapidly increased after a month of operation, reaching 12.65%, 0.69%, and 0.69% for SDU_A2, SDU_AA1, and SDU_AA2, respectively. Among them, the most dominant Dirammox (SDU_A2) exhibited higher nitrogen removal rate (32.35%) than the other two strains (13.57% of SDU_AA1 and 14.52% of SDU_AA2). Comparative genomic analysis demonstrated that the most dominant Dirammox bacterium (SDU_A2) possesses fewer complete metabolic modules compared to the other two less abundant Alcaligenes strains. Our findings expanded the understanding of the application of Dirammox bacteria as key functional microorganisms in a novel biological nitrogen and carbon removal process if they could be well stabilized. KEY POINTS: • Dirammox-dominated microbial community was enriched in activated sludge bioreactor. • The addition of hydroxylamine played a role in Dirammox enrichment. • Three Dirammox bacterial strains, including one novel species, were isolated.
Collapse
Affiliation(s)
- Yu Hu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Yulin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.
| | - Runhua Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaokang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|
6
|
Zhang M, He T, Wu Q, Chen M, Liang X. Hydroxylamine supplementation accelerated the rates of cell growth, aerobic denitrification and nitrous oxide emission of Pseudomonas taiwanensis EN-F2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120826. [PMID: 38608579 DOI: 10.1016/j.jenvman.2024.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Hydroxylamine can disrupt the protein translation process of most reported nitrogen-converting bacteria, and thus hinder the reproduction of bacteria and nitrogen conversion capacity. However, the effect of hydroxylamine on the denitrification ability of strain EN-F2 is unclear. In this study, the cell growth, aerobic denitrification ability, and nitrous oxide (N2O) emission by Pseudomonas taiwanensis were carefully investigated by addition of hydroxylamine at different concentrations. The results demonstrated that the rates of nitrate and nitrite reduction were enhanced by 2.51 and 2.78 mg/L/h after the addition of 8.0 and 12.0 mg/L hydroxylamine, respectively. The N2O production from nitrate and nitrite reaction systems were strongly promoted by 4.39 and 8.62 mg/L, respectively, through the simultaneous acceleration of cell growth and both of nitrite and nitrate reduction. Additionally, the enzymatic activities of nitrate reductase and nitrite reductase climbed from 0.13 and 0.01 to 0.22 and 0.04 U/mg protein when hydroxylamine concentration increased from 0 to 6.0 and 12.0 mg/L. This may be the main mechanism for controlling the observed higher denitrification rate and N2O release. Overall, hydroxylamine supplementation supported the EN-F2 strain cell growth, denitrification and N2O emission rates.
Collapse
Affiliation(s)
- Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Xiwen Liang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| |
Collapse
|
7
|
Jian J, Liao X, Mo Z, Li S, Li L, Chen S, Huang Z, Chen J, Dai W, Sun S. Feasibility of low-intensity ultrasound treatment with hydroxylamine to accelerate the initiation of partial nitrification and allow operation under intermittent aeration. J Environ Sci (China) 2024; 139:446-459. [PMID: 38105067 DOI: 10.1016/j.jes.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 12/19/2023]
Abstract
Partial nitrification is a key aspect of efficient nitrogen removal, although practically it suffers from long start-up cycles and unstable long-term operational performance. To address these drawbacks, this study investigated the effect of low intensity ultrasound treatment combined with hydroxylamine (NH2OH) on the performance of partial nitrification. Results show that compared with the control group, low-intensity ultrasound treatment (0.10 W/mL, 15 min) combined with NH2OH (5 mg/L) reduced the time required for partial nitrification initiation by 6 days, increasing the nitrite accumulation rate (NAR) and ammonia nitrogen removal rate (NRR) by 20.4% and 6.7%, respectively, achieving 96.48% NRR. Mechanistic analysis showed that NH2OH enhanced ammonia oxidation, inhibited nitrite-oxidizing bacteria (NOB) activity and shortened the time required for partial nitrification initiation. Furthermore, ultrasonication combined with NH2OH dosing stimulated EPS (extracellular polymeric substances) secretion, increased carbonyl, hydroxyl and amine functional group abundances and enhanced mass transfer. In addition, 16S rRNA gene sequencing results showed that ultrasonication-sensitive Nitrospira disappeared from the ultrasound + NH2OH system, while Nitrosomonas gradually became the dominant group. Collectively, the results of this study provide valuable insight into the enhancement of partial nitrification start-up during the process of wastewater nitrogen removal.
Collapse
Affiliation(s)
- Jianxiong Jian
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaojian Liao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihua Mo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shoupeng Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Lei Li
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shaojin Chen
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenhua Huang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Junhao Chen
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wencan Dai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Province Solid Waste Recycling and Heavy Metal Pollution Control Engineering Technology Research Center, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China.
| |
Collapse
|
8
|
Li G, Yu Y, Li X, Jia H, Ma X, Opoku PA. Research progress of anaerobic ammonium oxidation (Anammox) process based on integrated fixed-film activated sludge (IFAS). ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13235. [PMID: 38444262 PMCID: PMC10915381 DOI: 10.1111/1758-2229.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024]
Abstract
The integrated fixed-film activated sludge (IFAS) process is considered one of the cutting-edge solutions to the traditional wastewater treatment challenges, allowing suspended sludge and attached biofilm to grow in the same system. In addition, the coupling of IFAS with anaerobic ammonium oxidation (Anammox) can further improve the efficiency of biological denitrification. This paper summarises the research progress of IFAS coupled with the anammox process, including partial nitrification anammox, simultaneous partial nitrification anammox and denitrification, and partial denitrification anammox technologies, and describes the factors that limit the development of related processes. The effects of dissolved oxygen, influent carbon source, sludge retention time, temperature, microbial community, and nitrite-oxidising bacteria inhibition methods on the anammox of IFAS are presented. At the same time, this paper gives an outlook on future research focus and engineering practice direction of the process.
Collapse
Affiliation(s)
- Guang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Yunyong Yu
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Xingyu Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Hongsheng Jia
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Xiaoning Ma
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | | |
Collapse
|
9
|
Paritosh K, Kesharwani N. Biochar mediated high-rate anaerobic bioreactors: A critical review on high-strength wastewater treatment and management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120348. [PMID: 38457889 DOI: 10.1016/j.jenvman.2024.120348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 03/10/2024]
Abstract
Treatment of high-strength wastewater is critical for the aquatic environment and receiving water bodies around the globe. Untreated or partially treated high-strength wastewater may cause severe damage to the existing water bodies. Various high-rate anaerobic bioreactors have been developed in the last decades for treating high-strength wastewater. High-rate anaerobic bioreactors are effective in treating industrial wastewater and provide energy in the form of methane as well. However, the physical or chemical properties of high-strength industrial wastewater, sometimes, disrupt the functioning of a high-rate anaerobic bioreactor. For example, the disintegration of granular sludge in up flow anaerobic sludge blanket reactor or membrane blocking in an anaerobic membrane bioreactor are the results of a high-strength wastewater treatment which hamper the proper functioning and may harm the wastewater treatment plant economically. Biochar, if added to these bioreactors, may help to alleviate the ill-functioning of high-rate anaerobic bioreactors. The primary mechanisms by biochar work in these bioreactors are direct interspecies electron transfer, microbial immobilization, or gene level alternations in microbial structure. The present article explores and reviews the recent application of biochar in a high-rate anaerobic bioreactor treating high-strength industrial wastewater.
Collapse
Affiliation(s)
- Kunwar Paritosh
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland.
| | - Nupur Kesharwani
- Department of Civil Engineering, Government Engineering College, Bilaspur, Chhattisgarh, India
| |
Collapse
|
10
|
Zhang Z, Bo L, Wang S, Li C, Zhang X, Xue B, Yang X, He X, Shen Z, Qiu Z, Zhao C, Wang J. Multidrug-resistant plasmid RP4 inhibits the nitrogen removal capacity of ammonia-oxidizing archaea, ammonia-oxidizing bacteria, and comammox in activated sludge. ENVIRONMENTAL RESEARCH 2024; 242:117739. [PMID: 38007076 DOI: 10.1016/j.envres.2023.117739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
In wastewater treatment plants (WWTPs), ammonia oxidation is primarily carried out by three types of ammonia oxidation microorganisms (AOMs): ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and comammox (CMX). Antibiotic resistance genes (ARGs), which pose an important public health concern, have been identified at every stage of wastewater treatment. However, few studies have focused on the impact of ARGs on ammonia removal performance. Therefore, our study sought to investigate the effect of the representative multidrug-resistant plasmid RP4 on the functional microorganisms involved in ammonia oxidation. Using an inhibitor-based method, we first evaluated the contributions of AOA, AOB, and CMX to ammonia oxidation in activated sludge, which were determined to be 13.7%, 41.1%, and 39.1%, respectively. The inhibitory effects of C2H2, C8H14, and 3,4-dimethylpyrazole phosphate (DMPP) were then validated by qPCR. After adding donor strains to the sludge, fluorescence in situ hybridization (FISH) imaging analysis demonstrated the co-localization of RP4 plasmids and all three AOMs, thus confirming the horizontal gene transfer (HGT) of the RP4 plasmid among these microorganisms. Significant inhibitory effects of the RP4 plasmid on the ammonia nitrogen consumption of AOA, AOB, and CMX were also observed, with inhibition rates of 39.7%, 36.2%, and 49.7%, respectively. Moreover, amoA expression in AOB and CMX was variably inhibited by the RP4 plasmid, whereas AOA amoA expression was not inhibited. These results demonstrate the adverse environmental effects of the RP4 plasmid and provide indirect evidence supporting plasmid-mediated conjugation transfer from bacteria to archaea.
Collapse
Affiliation(s)
- Zhaohui Zhang
- School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, China.
| | - Lin Bo
- School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, China; Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Chenyu Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xi Zhang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Bin Xue
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xiaobo Yang
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Xinxin He
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhiqiang Shen
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhigang Qiu
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Jingfeng Wang
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China.
| |
Collapse
|
11
|
Ma X, Feng ZT, Zhou JM, Sun YJ, Zhang QQ. Regulation mechanism of hydrazine and hydroxylamine in nitrogen removal processes: A Comprehensive review. CHEMOSPHERE 2024; 347:140670. [PMID: 37951396 DOI: 10.1016/j.chemosphere.2023.140670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
As the new fashioned nitrogen removal process, short-cut nitrification and denitrification (SHARON) process, anaerobic ammonium oxidation (anammox) process, completely autotrophic nitrogen removal over nitrite (CANON) process, partial nitrification and anammox (PN/A) process and partial denitrification and anammox (PD/A) process entered into the public eye due to its advantages of high nitrogen removal efficiency (NRE) and low energy consumption. However, the above process also be limited by long-term start-up time, unstable operation, complicated process regulation and so on. As intermediates or by-metabolites of functional microorganisms in above processes, hydroxylamine (NH2OH) and hydrazine (N2H4) improved NRE of the above processes by promoting functional enzyme activity, accelerating electron transport efficiency and regulating distribution of microbial communities. Therefore, this review discussed effects of NH2OH and N2H4 on stability and NRE of above processes, analyzed regulatory mechanism from functional enzyme activity, electron transport efficiency and microbial community distribution. Finally, the challenges and limitations for nitric oxide (NO) and nitrous oxide (N2O) produced from regulation of NH2OH and N2H4 are discussed. In additional, perspectives on future trends in technology development are proposed.
Collapse
Affiliation(s)
- Xin Ma
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ze-Tong Feng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Jia-Min Zhou
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ying-Jun Sun
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Qian-Qian Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| |
Collapse
|
12
|
Wang X, Huang J, Qi Z, Kang R, Du C, Li D. The short and long-term effect of polystyrene nanoplastics on nitrifying sludge at high nitrite concentrations. J Environ Sci (China) 2024; 135:222-231. [PMID: 37778797 DOI: 10.1016/j.jes.2023.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 10/03/2023]
Abstract
The effect of nanoplastics (NPs) on nitrite oxidation bacteria (NOB) community in treating high-strength wastewater remains unclear, which seriously affects the stability of nitrogen removal process. In this study, highly active nitrifying sludge was enriched and exposed to 50 nm polystyrene NPs (PS-NPs) for short-term (1, 100, 500, and 1000 mg/L, 1.5 hr) and long-term (1, 10, 100 mg/L, 40 days) at high nitrite concentration. In contrast to previous studies, our results showed that the exposures to PS-NPs had little effect on nitrifying performances. After long-term exposure, the protein/polysaccharide ratios in extracellular polymeric substances (EPS) were positively correlated with PS-NPs concentrations (0.78-0.99). The produced reactive oxygen species (ROS) were gradually removed, and PS-NPs higher than 10 mg/L caused damage to membrane integrity. Long-term exposure for 40 days increased the community diversity and caused significant differences between the control and exposed communities. The control group were dominated by Nitrobacter and Exiguobacterium, while the exposure group was dominated by Bacillus, Mycobacterium, and Nitrospira. A noticeable shift in the NOB community from Nitrobacter (26.5% to 3.4%) to Nitrospira (1.61% to 14.27%) was observed. A KEGG analysis indicated a decrease in cell growth and death, cell motility and energy metabolism. It appeared that NOB could adapt to PS-NPs stress through enhanced secretion and removal of oxidative damage. Overall, this study provided new insights into the response mechanism of NOB to PS-NPs exposure.
Collapse
Affiliation(s)
- Xiaolong Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Jialu Huang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Zhiqiang Qi
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Ruiqin Kang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Chao Du
- Henan Licheng Environmental Technology Co., Ltd., Anyang 455000, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
13
|
Wang K, Li J, Gu X, Wang H, Li X, Peng Y, Wang Y. How to Provide Nitrite Robustly for Anaerobic Ammonium Oxidation in Mainstream Nitrogen Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21503-21526. [PMID: 38096379 DOI: 10.1021/acs.est.3c05600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Innovation in decarbonizing wastewater treatment is urgent in response to global climate change. The practical implementation of anaerobic ammonium oxidation (anammox) treating domestic wastewater is the key to reconciling carbon-neutral management of wastewater treatment with sustainable development. Nitrite availability is the prerequisite of the anammox reaction, but how to achieve robust nitrite supply and accumulation for mainstream systems remains elusive. This work presents a state-of-the-art review on the recent advances in nitrite supply for mainstream anammox, paying special attention to available pathways (forward-going (from ammonium to nitrite) and backward-going (from nitrate to nitrite)), key controlling strategies, and physiological and ecological characteristics of functional microorganisms involved in nitrite supply. First, we comprehensively assessed the mainstream nitrite-oxidizing bacteria control methods, outlining that these technologies are transitioning to technologies possessing multiple selective pressures (such as intermittent aeration and membrane-aerated biological reactor), integrating side stream treatment (such as free ammonia/free nitrous acid suppression in recirculated sludge treatment), and maintaining high activity of ammonia-oxidizing bacteria and anammox bacteria for competing oxygen and nitrite with nitrite-oxidizing bacteria. We then highlight emerging strategies of nitrite supply, including the nitrite production driven by novel ammonia-oxidizing microbes (ammonia-oxidizing archaea and complete ammonia oxidation bacteria) and nitrate reduction pathways (partial denitrification and nitrate-dependent anaerobic methane oxidation). The resources requirement of different mainstream nitrite supply pathways is analyzed, and a hybrid nitrite supply pathway by combining partial nitrification and nitrate reduction is encouraged. Moreover, data-driven modeling of a mainstream nitrite supply process as well as proactive microbiome management is proposed in the hope of achieving mainstream nitrite supply in practical application. Finally, the existing challenges and further perspectives are highlighted, i.e., investigation of nitrite-supplying bacteria, the scaling-up of hybrid nitrite supply technologies from laboratory to practical implementation under real conditions, and the data-driven management for the stable performance of mainstream nitrite supply. The fundamental insights in this review aim to inspire and advance our understanding about how to provide nitrite robustly for mainstream anammox and shed light on important obstacles warranting further settlement.
Collapse
Affiliation(s)
- Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
14
|
Lei S, Zhang J, Hu B, Zhao J, Yang W, Shi B, Chen Y, Zhao J. Improving nutrients removal of Anaerobic-Anoxic-Oxic process via inhibiting partial anaerobic mixture with nitrite in side-stream tanks: role of nitric oxide. BIORESOURCE TECHNOLOGY 2023; 382:129207. [PMID: 37217148 DOI: 10.1016/j.biortech.2023.129207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
A side-stream tank which was in parallel with the anoxic tank was used to improve the performance of the Anaerobic-Anoxic-Oxic process. The partial mixtures from the anaerobic tank were injected into the side-stream tank with the initial nitrite nitrogen (NO2--N) concentrations of 10 mg/L and 20 mg/L. When the initial NO2--N concentration in the tank was 20 mg/L, total nitrogen and total phosphorus removal efficiencies of the A2/O process increased from 72% and 48% to 90% and 89%, respectively. 2.23 mg/L of nitric oxide (NO) were observed in the side-stream tank. The abundance of Nitrosomonas sp. and Nitrospira sp. were varied from 0.98% and 6.13% to 2.04% and 1.13%, respectively. The abundances of Pseudomonas sp. and Acinetobacter sp. were increased from 0.81% and 0.74% to 6.69% and 5.48%, respectively. NO plays an important role for improving the nutrients removal of the A2/O process in the side-stream nitrite-enhanced strategy.
Collapse
Affiliation(s)
- Shuhan Lei
- School of Water and Environment, Chang' an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China
| | - Ju Zhang
- School of Water and Environment, Chang' an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China
| | - Bo Hu
- School of Civil Engineering, Chang' an University, Xi' an 710064, Shaanxi, China.
| | - Junkai Zhao
- School of Water and Environment, Chang' an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China
| | - Wenjuan Yang
- School of Water and Environment, Chang' an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China
| | - Bingfeng Shi
- School of Water and Environment, Chang' an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China
| | - Ying Chen
- School of Water and Environment, Chang' an University, Xi'an 710064, Shaanxi, China
| | - Jianqiang Zhao
- School of Water and Environment, Chang' an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China
| |
Collapse
|
15
|
Xin X, Li B, Liu X, Yang W, Liu Q. Starting-up performances and microbial community shifts in the coupling process (SAPD-A) with sulfide autotrophic partial denitrification (SAPD) and anammox treating nitrate and ammonium contained wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117298. [PMID: 36669311 DOI: 10.1016/j.jenvman.2023.117298] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
A novel coupling process (SAPD-A) with sulfide autotrophic partial denitrification (SAPD) (NO3--N→NO2--N) and anaerobic ammonium oxidation (Anammox) was developed using anaerobic sequencing batch reactor (ASBR) in this work. The integrated process comprised two stages. Firstly, the starting-up of SAPD process succeeded by gradually increasing the influent nitrate and sulfide in 95 days. The average nitrate removal efficiency (NRE) and NO2--N accumulation rates were 71.24% ± 0.21% and 46.44% ± 0.53% at SAPD process (days 75-95). Then, successful coupling process (SAPD-A) was implemented in two stages (stage I and stage II of SAPD-A). In stage I, it is feasible to promote the successful construction of SAPD-A process by elevating influent ammonium only based on SAPD system, making the NRE increased from 44.45% ± 0.46% (day 95) to 64.62% ± 0.12% at the end of stage I in SAPD-A system (day 126). Meanwhile, the ammonium nitrogen removal efficiency (ARE) and total nitrogen removal efficiency (TN-RE) also rose up to 42.46% ± 2.02% and 63.28% ± 0.54% respectively. Furthermore, the average ARE, NRE and TN-RE during the stage II in the bioreactor could reach 65.17% ± 1.45%, 74.50% ± 0.81% and 77.81% ± 0.37% by loading some biofilters (with of approximate 10% of the volume of the bioreactor) attached anaerobic ammonium oxidation bacteria (AnAOB). High-throughput sequencing results showed that the dominant genera concerning nitrogen removal were norank_f_norank_o_Fimbriimonadates (with the abundance of 2.88-8.54%), norank_ o_ norank _ c_ OM190 (2.48-4.41%), norank_f_norank_o_norank_c_WWE3 (11.01-17.69%), subgroup_10 (1.97-3.81%), Limnobacter(2.17-3.49%), norank_f_n orank_ o_norank_ c_OLB14 (2.03-5.23%), norank-f-PHOS-HE36 (2.18-5.5%), Ellin6067 (1.34-2.24%) and Candidatus_ Brocadia (1.95-2.42%) during the whole starting-up period of coupling SAPD-A process. Batch experiments revealed that the sulfide was fully oxidized within 2 h, with the maximum reaction rate of 38.30 ± 1.53 mg (L h)-1 in the first 1 h. Simultaneously, the concentration of nitrate sharply decreased from 53.08 ± 0.23 mg L-1 to 24.16 ± 0.42 mg L-1 with the reaction rate of 66.41 ± 2.12 mg (L h)-1 in 0.5 h. Also, the ammonium concentration significantly declined from 47.88 ± 0.34 mg L-1 to 10.98 ± 0.39 mg L-1 in 8 h. Anammox process was responsible for the dominant nitrogen removal in the coupling SAPD-A system.
Collapse
Affiliation(s)
- Xin Xin
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China.
| | - BaiXue Li
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China
| | - Xin Liu
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China
| | - Wenyu Yang
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China
| | - Qin Liu
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China
| |
Collapse
|
16
|
He T, Zhang M, Chen M, Wu Q, Yang L, Yang L. Klebsiella oxytoca (EN-B2): A novel type of simultaneous nitrification and denitrification strain for excellent total nitrogen removal during multiple nitrogen pollution wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 367:128236. [PMID: 36332872 DOI: 10.1016/j.biortech.2022.128236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The poor total nitrogen (TN) removal rate achieved using microorganisms to treat wastewater polluted with multiple types of nitrogen was improved using a novel simultaneous nitrification and denitrification strain (Klebsiella oxytoca EN-B2). Strain EN-B2 rapidly eliminated ammonium, nitrate, and nitrite, giving maximum elimination rates of 4.58, 7.46, and 7.83 mg/(L h), respectively, equivalent to TN elimination rates of 4.35, 6.92, and 7.11 mg/(L h), respectively. The simultaneous nitrification and denitrification system gave ammonium and nitrite elimination rates of 7.14 and 9.17 mg/(L h), respectively, and a TN elimination rate ≥ 9.0 mg/(L h). Nitrogen balance calculations indicated that 51.22 %, 31.62 % and 46.82 % of TN in systems containing only ammonium, nitrite, and nitrate, respectively, were lost as nitrogenous gases. The ammonia monooxygenase, hydroxylamine oxidoreductase, nitrate reductase and nitrite reductase enzyme activities were determined. The results indicated that strain EN-B2 can be used to treat wastewater polluted with multiple types of nitrogen.
Collapse
Affiliation(s)
- Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Li Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Lu Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
17
|
Chen J, Liang J, Li C, Dai J, Mai W, Wei Y. An enriched ammonia-oxidizing microbiota enables high removal efficiency of ammonia in antibiotic production wastewater. CHEMOSPHERE 2023; 310:136854. [PMID: 36243093 DOI: 10.1016/j.chemosphere.2022.136854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/22/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
High ammonia concentration hinders the efficient treatment of antibiotic production wastewater (APW). Developing effective ammonia oxidation wastewater treatment strategies is an ideal approach for facilitating APW treatment. Compared with traditional nitrification strategies, the partial nitrification process is more eco-friendly, less energy-intensive, and less excess sludge. The primary limiting factor of the partial nitrification process is increasing ammonia-oxidizing bacteria (AOB) while decreasing nitrite-oxidizing bacteria (NOB). In this study, an efficient AOB microbiota (named AF2) was obtained via enrichment of an aerobic activated sludge (AS0) collected from a pharmaceutical wastewater treatment plant. After a 52-day enrichment of AS0 in 250 mL flasks, the microbiota AE1 with 69.18% Nitrosomonas microorganisms was obtained. Subsequent scaled-up cultivation in a 10 L fermenter led to the AF2 microbiota with 59.22% Nitrosomonas. Low concentration of free ammonia (FA, < 42.01 mg L-1) had a negligible effect on the activity of AF2, and the nitrite-nitrogen accumulation rate (NAR) of AF2 was 98% when FA concentration was 42.01 mg L-1. The specific ammonia oxidation rates (SAORs) at 30 °C and 15 °C were 3.64 kg NH4+-N·kg MLVSS-1·d-1 and 1.43 kg NH4+-N·kg MLVSS-1·d-1 (MLVSS: mixed liquor volatile suspended solids). The SAOR was 0.52 kg NH4+-N·kg MLVSS-1·d-1 when the NaCl concentration was increased from 0 to 20 g L-1, showing that AF2 functioning was stable in a high-level salt environment. The ammonia oxidation performance of AF2 was verified by treating abamectin and lincomycin production wastewater. The NARs of AF2 used for abamectin and lincomycin production wastewater treatment were >90% and the SAORs were 2.39 kg NH4+-N·kg MLVSS-1·d-1 and 0.54 kg NH4+-N·kg MLVSS-1·d-1, respectively, which was higher than the traditional biological denitrification process. In summary, AF2 was effective for APW treatment via enhanced ammonia removal efficiency, demonstrating great potential for future industrial wastewater treatment.
Collapse
Affiliation(s)
- Jiamin Chen
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jiawei Liang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Research Center for Eco-friendly Wastewater Purifying Engineering Technology of Henan Province, Henan Junhe Environmental Protection Technology CO.LTD, Zhengzhou, Henan, 450001, PR China
| | - Chenjing Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jihua Dai
- Research Center for Eco-friendly Wastewater Purifying Engineering Technology of Henan Province, Henan Junhe Environmental Protection Technology CO.LTD, Zhengzhou, Henan, 450001, PR China
| | - Wenning Mai
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450051, PR China.
| |
Collapse
|
18
|
Zhang M, He T, Wu Q, Chen M. Efficient detoxication of hydroxylamine and nitrite through heterotrophic nitrification and aerobic denitrification by Acinetobacter johnsonii EN-J1. Front Microbiol 2023; 14:1130512. [PMID: 37138626 PMCID: PMC10149794 DOI: 10.3389/fmicb.2023.1130512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
The co-existence of hydroxylamine (NH2OH) and nitrite (NO2 --N) can aggravate the difficulty of wastewater treatment. The roles of hydroxylamine (NH2OH) and nitrite (NO2 --N) in accelerating the elimination of multiple nitrogen sources by a novel isolated strain of Acinetobacter johnsonii EN-J1 were investigated in this study. The results demonstrated that strain EN-J1 could eliminate 100.00% of NH2OH (22.73 mg/L) and 90.09% of NO2 --N (55.32 mg/L), with maximum consumption rates of 1.22 and 6.75 mg/L/h, respectively. Prominently, the toxic substances NH2OH and NO2 --N could both facilitate nitrogen removal rates. Compared with the control treatment, the elimination rates of nitrate (NO3 --N) and NO2 --N were enhanced by 3.44 and 2.36 mg/L/h after supplementation with 10.00 mg/L NH2OH, and those of ammonium (NH4 +-N) and NO3 --N were improved by 0.65 and 1.00 mg/L/h after the addition of 50.00 mg/L NO2 --N. Furthermore, the nitrogen balance results indicated that over 55.00% of the initial total nitrogen was transformed into gaseous nitrogen by heterotrophic nitrification and aerobic denitrification (HN-AD). Ammonia monooxygenase (AMO), hydroxylamine oxidoreductase (HAO), nitrate reductase (NR), and nitrite reductase (NIR), which are essential for HN-AD, were detected at levels of 0.54, 0.15, 0.14, and 0.01 U/mg protein, respectively. All findings confirmed that strain EN-J1 could efficiently execute HN-AD, detoxify NH2OH and NO2 --N, and ultimately promote nitrogen removal rates.
Collapse
|
19
|
Feng Y, Wu L, Zhang Q, Li X, Wang S, Peng Y. Double anammox process in the AOAO process of treating real low C/N sewage: Validation, enhancement, and quantification of the contribution of anammox in the oxic zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157866. [PMID: 35940268 DOI: 10.1016/j.scitotenv.2022.157866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Enhancement of anaerobic ammonium oxidation (anammox) process and enrichment of anammox bacteria in the oxic zone of mainstream sewage treatments are complex. Also, quantification of the anammox contribution for nitrogen removal in the oxic zone is hindered owing to the simultaneous occurrence of anammox and nitrification. An alternating anaerobic/oxic/anoxic/oxic bioreactor whose oxic zone boosted partial nitrification coupling anammox (PN/A) and anoxic zone boosted partial denitrification coupling anammox (PD/A), respectively, was operated to treat real sewage for >380 days. Desirable nitrogen removal (effluent total inorganic nitrogen (TIN) of 4.7 ± 1.9 mg N/L) was obtained from low carbon/nitrogen (3.6 ± 0.5) sewage with ammonium concentration of 52.5 ± 2.2 mg N/L in the influent. Under the condition of dissolved oxygen (DO) of 1.5-3 mg/L, anammox bacteria was still enriched within the aerobic biofilms, with the relative abundance increasing to 8.2 % (day 345) from 0 % (no biomass on day 1), which was higher than the value in the flocculent sludge (0.03 %) (P < 0.001). PN driven by flocculent sludge with high activity of ammonium oxidized bacteria (AOB) ensured sufficient nitrite supply for the anammox process with the existence of continuous DO. During the steady operation period, the maximum anammox contribution in the oxic zone was quantified to be 10.6 % by withdrawing aerobic biofilms from the system.
Collapse
Affiliation(s)
- Yan Feng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
20
|
Zhang L, Lin Y, Zhu Z, Li X, Wang S, Peng Y. Rapidly recovering and maintaining simultaneous partial nitrification, denitrification and anammox process through hydroxylamine addition to advance nitrogen removal from domestic sewage. BIORESOURCE TECHNOLOGY 2022; 360:127645. [PMID: 35868463 DOI: 10.1016/j.biortech.2022.127645] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The collapse of simultaneous partial nitrification, denitrification and anammox (SPNDA) system, caused by the destruction of partial nitrification (PN), is the most likely phenomenon to occur. Therefore, recovering the process quickly and maintaining efficient nitrogen removal is a valuable topic for research. In the anaerobic/aerobic/anoxic operation mode, SPNDA process was used to treat domestic sewage in a sequencing batch biofilm reactor. After the deterioration of PN effect, with the addition of hydroxylamine, the activity of ammonia-oxidizing bacteria in the nitrobacteria increased (61.0-91.3 %), whereas the accumulation of nitrite quickly recovered to 90.4 % within 5 days. Meanwhile, the nitrogen removal efficiency improved (61.8-95.6 %) and the effluent TN was 2.1 mg/L. Furthermore, Candidatus Brocadia was enriched (0.50-1.82 %) in the system. The results indicated that the addition of hydroxylamine was an effective strategy to recover and economically maintain the SPNDA process for advanced nitrogen removal from domestic sewage.
Collapse
Affiliation(s)
- Liyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yangang Lin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhuo Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
21
|
Zhao J, Zhao J, Yang W, Hu B, Huang T, Xie S, Lei S, Hou W. Mechanisms of NO and N 2O production by enriched nitrifying sludge in a sequencing batch reactor: Effects of hydroxylamine. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115237. [PMID: 35568014 DOI: 10.1016/j.jenvman.2022.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/09/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
NO and N2O as important greenhouse gases andtheir production mechanisms during nitrification are not completely understood. This study aimed to analyze the effect of hydroxylamine (NH2OH) on NO and N2O produced by nitrifying bacteria from activated sludge in a sequencing batch reactor (SBR). Experimental results showed that when nitrite (NO2-) accumulated during aerobic ammonia (NH4+) oxidation, N2O was the main product. The total amount of NO and N2O produced by NH2OH oxidation was positively correlated with dissolved oxygen (DO) levels. The imbalance of NH4+ oxidation caused by NH2OH addition was more conducive to the generation of NO and N2O under high DO conditions. When NH2OH was added into the reactor with NO2- as the substrate, the production of NO and N2O under high DO levels was mainly related to NH2OH oxidation. Under low DO conditions, NO and N2O from the biotic/abiotic hybrid pathways were more significant in the reactor of the coexistence of NO2- and NH2OH, which could be mainly caused by the pathways of nitrifier denitrification and abiotic reaction. Besides, limited amount of NO and N2O was generated by heterotrophic denitrification pathway during autotrophic nitrification. The implications for the above results are important for understanding the production of NO and N2O under NH2OH stress in nitrifying sludge reactor.
Collapse
Affiliation(s)
- Junkai Zhao
- School of Water and Environment, Chang'an University, Xi'an, 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region (Chang'an University), Ministry of Education, Xi'an, 710064, Shaanxi, China
| | - Jianqiang Zhao
- School of Water and Environment, Chang'an University, Xi'an, 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region (Chang'an University), Ministry of Education, Xi'an, 710064, Shaanxi, China.
| | - Wenjuan Yang
- School of Water and Environment, Chang'an University, Xi'an, 710064, Shaanxi, China.
| | - Bo Hu
- School of Civil Engineering, Chang'an University, Xi'an, 710061, Shaanxi, China
| | - Ting Huang
- School of Civil Engineering, Chang'an University, Xi'an, 710061, Shaanxi, China
| | - Shuting Xie
- School of Water and Environment, Chang'an University, Xi'an, 710064, Shaanxi, China
| | - Shuhan Lei
- School of Water and Environment, Chang'an University, Xi'an, 710064, Shaanxi, China
| | - Wei Hou
- Petro China ChangQing Oilfield Company, Xi'an, 710021, Shaanxi, China
| |
Collapse
|
22
|
Gao XY, Xie W, Liu Y, Ma L, Liu ZP. Alcaligenes ammonioxydans HO-1 antagonizes Bacillus velezensis via hydroxylamine-triggered population response. Front Microbiol 2022; 13:920052. [PMID: 35935184 PMCID: PMC9355588 DOI: 10.3389/fmicb.2022.920052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Antagonism is a common behavior seen between microbes in nature. Alcaligenes ammonioxydans HO-1 converts ammonia to nitrogen under aerobic conditions, which leads to the accumulation of extracellular hydroxylamine (HA), providing pronounced growth advantages against many bacterial genera, including Bacillus velezensis V4. In contrast, a mutant variant of A. ammonioxydans, strain 2-29, that cannot produce HA fails to antagonize other bacteria. In this article, we demonstrate that cell-free supernatants derived from the antagonistic HO-1 strain were sufficient to reproduce the antagonistic behavior and the efficiency of this inhibition correlated strongly with the HA content of the supernatant. Furthermore, reintroducing the capacity to produce HA to the 2-29 strain or supplementing bacterial co-cultures with HA restored antagonistic behavior. The HA-mediated antagonism was dose-dependent and affected by the temperature, but not by pH. HA caused a decline in biomass, cell aggregation, and hydrolysis of the cell wall in exponentially growing B. velezensis bulk cultures. Analysis of differential gene expression identified a series of genes modulating multicellular behavior in B. velezensis. Genes involved in motility, chemotaxis, sporulation, polypeptide synthesis, and non-ribosomal peptide synthesis were all significantly downregulated in the presence of HA, whereas autolysis-related genes showed upregulation. Taken together, these findings indicate that HA affects the population response of coexisting strains and also suggest that A. ammonioxydans HO-1 antagonize other bacteria by producing extracellular HA that, in turn, acts as a signaling molecule.
Collapse
Affiliation(s)
- Xi-Yan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Xie
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lan Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Zhao J, Lei S, Cheng G, Zhang J, Shi B, Xie S, Zhao J. Comparison of inhibitory roles on nitrite-oxidizing bacteria by hydroxylamine and hydrazine during the establishment of partial nitrification. BIORESOURCE TECHNOLOGY 2022; 355:127271. [PMID: 35526711 DOI: 10.1016/j.biortech.2022.127271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
The inhibitory roles of hydroxylamine (NH2OH) and hydrazine (N2H4) on nitrite-oxidizing bacteria were investigated in a comparative study. The results showed that nitrite accumulation was achieved by adding 5 mg-N/L NH2OH or N2H4 to two parallel sequencing batch reactors, with nitrite accumulation rate reaching 95.83% and 86.58% within 15 days after adopting aeration time control, respectively. Correspondingly, the maximum level of NO in typical cycles caused by NH2OH addition was 0.18 mg-N/L, which was higher than obtained for N2H4. NH2OH or N2H4 showed strong inhibition on Nitrospira and promoted the enrichment of Nitrosomonas, with the effects of NH2OH being more significant. However, nitritation began to deteriorate after the cessation of inhibitors addition. In conclusion, NH2OH was a better inhibitor than N2H4 for Nitrospira. The inhibitory role of NH2OH was primarily related to NO toxicity, while for N2H4 it was attributed to its own toxicity, with NO playing a smaller role.
Collapse
Affiliation(s)
- Junkai Zhao
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region (Chang'an University), Ministry of Education, Xi'an 710064, Shaanxi, China
| | - Shuhan Lei
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China
| | - Guangwei Cheng
- Sinochem Quanzhou Petrochemical Co. LTD., Sinochem Holding Co. LTD., Quanhui Petrochemical Park 263000, Quanzhou, Fujian, China
| | - Ju Zhang
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China
| | - Bingfeng Shi
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China
| | - Shuting Xie
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China
| | - Jianqiang Zhao
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region (Chang'an University), Ministry of Education, Xi'an 710064, Shaanxi, China.
| |
Collapse
|
24
|
Wang J, Wang H, Zhang R, Wei L, Cao R, Wang L, Lou Z. Variations of nitrogen-metabolizing enzyme activity and microbial community under typical loading conditions in full-scale leachate anoxic/aerobic system. BIORESOURCE TECHNOLOGY 2022; 351:126946. [PMID: 35248710 DOI: 10.1016/j.biortech.2022.126946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Influent loading determines the performance of leachate treatment plant (LTP) facing the dynamic conditions, but enzyme expression in microbial community is unclear. Here, six nitrogen-metabolizing enzymes were detected during nitrification failures (NF), high loading (HL), low loading (LL), and low carbon/nitrogen (LCN) in a 500 m3/d LTP. Nitrogen removal in LL was 15 ± 5% higher than that in HL. The activity of hydroxylamine oxidoreductase decreased by 90% as the influent total nitrogen increased from 2450 mg/L to 3100 mg/L, which might be a critical enzyme causing the nitrification failure. Denitrifying enzyme abated by 1.3% as the carbon/nitrogen dropped by 1% in LCN. With the influent chemical oxygen demand decreased from 22000 mg/L to 12000 mg/L, the relative abundance of norank_f_Saprospiraceae dropped from 33.66% to 11.94%, and finally disappeared, which seems to be an indicator of the high load operation. These findings provide the basis for improving the efficiency of LTPs.
Collapse
Affiliation(s)
- Jing Wang
- School of College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Hui Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, China
| | - Ruina Zhang
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd, Shanghai 200323, China
| | - Liu Wei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, China
| | - Ruijie Cao
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd, Shanghai 200323, China
| | - Luochun Wang
- School of College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
25
|
Wang J, Peng Y, Zhang Q, Su Y, Wang S, Li J. Advanced nitrogen removal in a single return anaerobic/aerobic/anoxic/aerobic (A nOAO) bioreactor treating municipal wastewater through hydroxylamine addition: Performance and microbial community. BIORESOURCE TECHNOLOGY 2022; 351:126926. [PMID: 35272034 DOI: 10.1016/j.biortech.2022.126926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The NH2OH dosing strategy for nitrogen removal was investigated in a single return continuous-flow anaerobic/aerobic/anoxic/aerobic (AnOAO) reactor fed with real municipal wastewater. A high nitrite accumulation ratio of 98% was achieved in only two days by continuously adding 10 mg/L NH2OH. When gradually reducing dosing frequency to one day every four days, effluent total nitrogen was as low as 4.8 ± 2.2 mg N/L with removal efficiency of 88.7 ± 5.3%, under aerobic HRT of 4.6 h, DO below 1.0 mg/L, and C/N of 2.8 without external carbon sources. Batch test showed that nitrite oxidizing bacteria (NOB) activity decreased by 81% after adding NH2OH, while ammonia oxidizing bacteria (AOB) activity remained stable. qPCR confirmed that NOB abundance decreased, and 16S rRNA sequencing further showed that g_Nitrospira belonging to NOB decreased significantly (P < 0.001). Overall, this study provides a novel strategy for advanced nitrogen removal from municipal wastewater in continuous flow systems.
Collapse
Affiliation(s)
- Jiao Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yunlong Su
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
26
|
Wang B, Qiao X, Hou F, Liu T, Pang H, Guo Y, Guo J, Peng Y. Pilot-scale demonstration of a novel process integrating Partial Nitritation with simultaneous Anammox, Denitrification and Sludge Fermentation (PN + ADSF) for nitrogen removal and sludge reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152835. [PMID: 34998749 DOI: 10.1016/j.scitotenv.2021.152835] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Anammox process is a cost-effective solution for nitrogen removal, whereas unsatisfactory effluent with nitrate accumulation is usually achieved in treating domestic sewage, owning to the unwanted prevalence of nitrite-oxidizing bacteria (NOB) and the intrinsic nitrate production by anammox bacteria. Herein, a pilot-scale system integrating Partial Nitritation and simultaneous Anammox, Denitrification and Sludge Fermentation (PN + ADSF) process was developed to treat real municipal wastewater. In this process, PN was accomplished in a sequencing batch reactor (SBR) using the strategy of intermittent hydroxylamine addition, while ADSF coupling anammox and heterotrophic denitrification was conducted in an up-flow anaerobic sludge blanket reactor (UASB) to further remove nitrogen. The pilot-scale system achieved total inorganic nitrogen (TIN) concentrations of 10.0 mg N/L in effluent and sludge reduction efficiency of 42.3% simultaneously. The characterization on microbial communities revealed that Candidatus Kuenenia and Thauera were the dominant functional bacteria for anammox and denitrification, respectively. Supported by the slow-release carbon sources from sludge fermentation, heterotrophic denitrification contributed to about 28% of nitrogen removed from the UASB, while anammox played a more important role in nitrogen removal. The pilot-scale demonstration confirmed that the PN + ADSF process is technically feasible for enhanced nitrogen removal and sludge reduction.
Collapse
Affiliation(s)
- Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China
| | - Xin Qiao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China
| | - Feng Hou
- SDIC Xinkai Water Environment Investment Co., Ltd, China Water Environment Group Ltd, Beijing, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Hongtao Pang
- SDIC Xinkai Water Environment Investment Co., Ltd, China Water Environment Group Ltd, Beijing, China
| | - Yuanyuan Guo
- SDIC Xinkai Water Environment Investment Co., Ltd, China Water Environment Group Ltd, Beijing, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, China.
| |
Collapse
|
27
|
Aparicio S, Robles Á, Ferrer J, Seco A, Borrás Falomir L. Assessing and modeling nitrite inhibition in microalgae-bacteria consortia for wastewater treatment by means of photo-respirometric and chlorophyll fluorescence techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152128. [PMID: 34863736 DOI: 10.1016/j.scitotenv.2021.152128] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Total nitrite (TNO2 = HNO2 + NO-2) accumulation due to the activity of ammonia-oxidizing bacteria (AOB) was monitored in microalgae-bacteria consortia, and the inhibitory effect of nitrite/free nitrous acid (NO2-N/FNA) on microalgae photosynthesis and inhibition mechanism was studied. A culture of Scenedesmus was used to run two sets of batch reactors at different pH and TNO2 concentrations to evaluate the toxic potential of NO2-N and FNA. Photo-respirometric tests showed that NO2-N accumulation has a negative impact on net oxygen production rate (OPRNET). Chlorophyll a fluorescence analysis was used to examine the biochemical effects of NO2-N stress and the mechanism of NO2-N inhibition. The electron transport rate (ETR), non-photochemical quenching (NPQ), and JIP-test revealed that the electron transport chain between Photosystems II and I (PS II and PS I) was hindered at NO2-N concentrations above 25 g N m-3. Electron acceptor QA was not able to reoxidize and could not transfer electrons to the next electron acceptor, QB, accumulating P680+ (excited PS II reaction center) and limiting oxygen production. A semi-continuous reactor containing a Scenedesmus culture was monitored by photo-respirometry tests and Chlorophyll a fluorescence to calibrate NO2-N inhibition (5-35 g N m-3). Non-competitive inhibition and Hill-type models were compared to select the best-fitting inhibition equations. Inhibition was correctly modeled by the Hill-type model and a half inhibition constant (KI) for OPRNET, NPQ, maximum photosynthetic rate (ETRMAX) and the performance index PIABS was 23.7 ± 1.2, 26.36 ± 1.10, 39 ± 2 and 26.5 ± 0.4, respectively.
Collapse
Affiliation(s)
- Stéphanie Aparicio
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, València, Spain.
| | - Ángel Robles
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, València, Spain
| | - José Ferrer
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
| | - Aurora Seco
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, València, Spain
| | - Luis Borrás Falomir
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, València, Spain
| |
Collapse
|
28
|
Huang T, Zhao J, Hu B, Zhao J, Yuan C. Effective restoration of partial nitritation and anammox biofilm process by short-term hydroxylamine dosing: Mechanism and microbial interaction. BIORESOURCE TECHNOLOGY 2021; 341:125910. [PMID: 34523549 DOI: 10.1016/j.biortech.2021.125910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The one-stage partial nitritation and anammox (PN-A) process frequently experiences deterioration from ammonium accumulation and nitrate build-up. In this study, hydroxylamine was dosed to restore the process from deterioration in a continuously aerated PN-A sequencing biofilm batch reactor, and the impact of hydroxylamine on the metabolism of PN-A process was studied. PN-A process was totally restored in 5 days via 10 mg N·L-1 hydroxylamine dosing, reducing nitrate-produced/ammonium-removed ratio from 28.5% to less than 11.0%. hydroxylamine dosing promoted biological production of nitric oxide and nitrous oxide and reduced the production of nitrate in the PN-A process. This study advanced the understanding of the metabolism versatility of hydroxylamine and nitric oxide as well as their function in interaction between aerobic ammonium oxidation bacteria and anaerobic ammonium oxidation bacteria, and proposed the potential application of hydroxylamine dosing in ammonium-contained wastewater treatment.
Collapse
Affiliation(s)
- Ting Huang
- School of Civil Engineering, Chang'an University, Xi'an 710064, Shaanxi, China
| | - Jianqiang Zhao
- School of water and environment, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China.
| | - Bo Hu
- School of Civil Engineering, Chang'an University, Xi'an 710064, Shaanxi, China
| | - Junkai Zhao
- School of water and environment, Chang'an University, Xi'an 710064, Shaanxi, China
| | - Chunbo Yuan
- School of Civil Engineering, Chang'an University, Xi'an 710064, Shaanxi, China
| |
Collapse
|
29
|
Han F, Li X, Zhang M, Liu Z, Han Y, Li Q, Zhou W. Solid-phase denitrification in high salinity and low-temperature wastewater treatment. BIORESOURCE TECHNOLOGY 2021; 341:125801. [PMID: 34438282 DOI: 10.1016/j.biortech.2021.125801] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen removal from wastewater is often deteriorated under high salinity and low temperature. Solid-phase denitrification (SPD) might improve total nitrogen removal efficiency (TNRE) by stably supplying carbon resources under adverse conditions. In this study, an SPD biofilm reactor was successfully established by inoculating halophilic sludge and filling poly (butanediol succinate) (PBS) granules, and achieved over 96% TNRE at low temperature. More extracellular polysaccharides were produced at low temperature. Microbial network analysis evidenced dominant heterotrophic denitrifiers (Marinicella, Fusibacter, Saccharicrinis and Vitellibacter) at 25 °C were replaced by genera Melioribacter, Marinobacter, Desulfatitalea and Thiomicrospira at 15 °C. At low temperature, genes nirS and narG might be mainly responsible for denitrification. Fluorescence spectrum coupled with fluorescence regional integration and parallel factor analysis revealed low temperature increased the proportion of proteins of soluble microbial products. This study provides guidance for the practical application of SPD in the treatment of high salinity and low-temperature wastewater.
Collapse
Affiliation(s)
- Fei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Xuan Li
- Shandong Academy for Environmental Planning, Jinan, Shandong 250002, China
| | - Mengru Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Zhe Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Yufei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Qian Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China.
| |
Collapse
|
30
|
Zhang L, Zhang Q, Dai J, Chen Y, Zhu Z, Li X, Peng Y. Rapidly achieving and optimizing simultaneous partial nitrification denitrification and anammox integrated process by hydroxylamine addition for advanced nitrogen removal from domestic wastewater. BIORESOURCE TECHNOLOGY 2021; 342:125987. [PMID: 34600317 DOI: 10.1016/j.biortech.2021.125987] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The achievement and stable maintenance of partial nitrification and partial anammox process for municipal sewage is a challenging research topic at present. In this study, a novel strategy of hydroxylamine (NH2OH) addition under low DO condition was adopted for rapidly achieving simultaneous partial nitrification denitrification and anammox process (SPNDA) to deal with domestic wastewater, the nitrite accumulation ratio (NAR) increased from 1% to 82% in the first 4 days. After the addition of NH2OH was stopped, the PN effect of SPNDA process remained relatively stable within 100 days. During the stable operation period with aerobic HRT of 5 h, the nitrogen removal efficiency was 87.9 ± 4.2%. Moreover, the abundance of denitrifying bacteria and Candidatus Brocadia increased from 1.79% and 0.062% to 22.49% and 0.38% respectively, which promoted nitrogen removal effect. Overall, this study provided a quickly way for achieving the cost-effective SPNDA process to enhance nitrogen removal with NH2OH addition.
Collapse
Affiliation(s)
- Liyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiatong Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yanhui Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhuo Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
31
|
Wang Z, Gao J, Zhang D, Dai H, Zhao Y, Li D, Cui Y, Duan W, Wu Z. Achieving stable and long-term partial nitrification of domestic wastewater by side-stream sludge treatment using a novel nitrite oxidation inhibitor chloroxylenol. BIORESOURCE TECHNOLOGY 2021; 342:125999. [PMID: 34600319 DOI: 10.1016/j.biortech.2021.125999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Using inhibitors to selectively suppress the activity of nitrite-oxidizing bacteria (NOB) was an emerging way to rapidly achieve partial nitrification (PN). This study explored the feasibility of inactivating NOB by a novel inhibitor chloroxylenol (PCMX) in real domestic wastewater. Different frequencies (periodic strategy and concentrative time strategy) of PCMX side-stream sludge treatment were used to achieve and maintain PN during 250 days. PN was realized by PCMX treatment once a day about 20 days, due to the inhibition of Nitrospira. PN was completely destroyed after 212 days by periodic strategy, caused by the increase of Candidatus Nitrotoga. PN maintained without PCMX in following 201 days by concentrative time strategy. The risks of PCMX were assessed and almost no PCMX was detected in the effluent of mainstream sequencing batch reactors. These results meant PN realized by PCMX side-stream sludge treatment was feasible and concentrative time strategy was a better operating strategy.
Collapse
Affiliation(s)
- Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China.
| | - Da Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Dingchang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Wanjun Duan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Zejie Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
32
|
Xie S, Zhao J, Zhang Q, Zhao J, Lei S, Ma X, Yan C. Improvement of the performance of simultaneous nitrification denitrification and phosphorus removal (SNDPR) system by nitrite stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147825. [PMID: 34034172 DOI: 10.1016/j.scitotenv.2021.147825] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
This study investigated a new way to improve the performance of simultaneous nitrification denitrification and phosphorus removal (SNDPR) system by regularly changing the anaerobic/micro-aerobic/anoxic mode to the anaerobic/anoxic mode with 30 mg/L of nitrite dosing. The results indicated that the removal efficiency of total inorganic nitrogen and PO43--P was improved from 75.44% and 85.14% to 98.89% and 98.17%, respectively. And the good performance of the SNDPR showed a long-time sustainability when the C/N ratio was 5. The results of microbial community illustrated that the abundance of the main nitrite-oxidizing bacteria (NOB), Nitrospira sp., dropped from 5.71% to 0.85% and the abundance of denitrifying polyphosphate-accumulating organisms (DPAOs), Pseudomonas sp. and Acinetobacter sp., increased by 5 times after nitrite stress. The high level of nitric oxide (NO) and free nitrite acid produced by addition of nitrite strongly suppressed the undesired organisms NOB and ordinary heterotrophic denitrifying organisms, and promoted the enrichment of DPAOs. The NO accumulated in the nitrite denitrification process could inhibit NOB and promote AOB. This study revealed that NO plays an important role in regulating the microbial community in the SNDPR system.
Collapse
Affiliation(s)
- Shuting Xie
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China
| | - Jianqiang Zhao
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China.
| | - Qianqian Zhang
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China.
| | - Junkai Zhao
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China
| | - Shuhan Lei
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China
| | - Xiaoqing Ma
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China
| | - Chunxiao Yan
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710064, Shaanxi, China
| |
Collapse
|
33
|
Deng L, Peng Y, Li J, Gao R, Li W, Du R. Enhanced simultaneous nitrogen and phosphorus removal from low COD/TIN domestic wastewater through nitritation-denitritation coupling improved anammox process with an optimal Anaerobic/Oxic/Anoxic strategy. BIORESOURCE TECHNOLOGY 2021; 322:124526. [PMID: 33338942 DOI: 10.1016/j.biortech.2020.124526] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Advanced nitrogen and phosphorus removal in a single-stage suspending-sludge system was achieved by employing a novel Anaerobic/Oxic/Anoxic (AOA) strategy over 200 days. Satisfactory total inorganic nitrogen (TIN) removal efficiency of 90.4% was achieved and effluent phosphorus was below 0.5 mg/L when treating domestic wastewater with the chemical oxygen demand (COD)/TIN as low as 2.98 ± 1.26. Stable nitritation was maintained with the ammonia residual and low dissolved oxygen of 0.2-0.5 mg/L at aerobic stage following by a post anoxic stage. The much higher activity of ammonia oxidation bacteria (12.99 mgN/gVSS/h) was achieved than the nitrite oxidation bacteria (0.09 mgN/gVSS/h). Notably, improved anammox performance was obtained without initial inoculation, contributing 47.4% to TIN removal. The abundance of Nitrosomonas increased from 0.12% to 0.95% (P < 0.001) and self-enrichment of anammox bacteria Ca. Brocadia was confirmed. It provided new insight into the advanced nutrient removal with comprehensible regulation and less aeration requirement.
Collapse
Affiliation(s)
- Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
34
|
Ayaz S, Dilgin Y, Apak R. Flow injection amperometric sensing of hydroxylamine at a Cu( ii)–neocuproine-functionalized multiwalled carbon nanotube/screen printed carbon electrode. NEW J CHEM 2021. [DOI: 10.1039/d1nj00824b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the electrocatalytic oxidation mechanism of NH2OH at modified electrode, firstly NH2OH reacted with [Cu(Ncp)2]2+ and oxidized to N2O. The formed [Cu(Ncp)2]+ was reoxidized by giving electrons to electrode resulting in enhancement of anodic current.
Collapse
Affiliation(s)
- Selen Ayaz
- Çanakkale Onsekiz Mart University
- Faculty of Science and Arts
- Department of Chemistry
- Turkey
| | - Yusuf Dilgin
- Çanakkale Onsekiz Mart University
- Faculty of Science and Arts
- Department of Chemistry
- Turkey
| | - Reşat Apak
- Istanbul University-Cerrahpasa
- Faculty of Engineering
- Department of Chemistry
- 34320 Istanbul
- Turkey
| |
Collapse
|