1
|
Pinnarat T, Marom P, Silpradit W. Solubility effect of deep eutectic solvent and ethanol concentration on corncob lignin extraction. BIORESOURCE TECHNOLOGY 2024; 414:131627. [PMID: 39401655 DOI: 10.1016/j.biortech.2024.131627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
This research investigates the solubility effect of deep eutectic solvent (DES) mass ratio and ethanol-water solution concentration on corncob lignin extraction. The objective is to propose a solubility matching technique based on like-dissolves-like theory to optimize lignin extraction conditions. The choline chloride (ChCl):lactic acid (LA) mass ratio that maximized lignin extraction was determined by varying DES mass ratio between 1:2 and 1:5, and ethanol-water solution (5-95 % (v/v)) was added to precipitate lignin. By using the solubility matching technique, the maximum lignin extraction was achieved at 1:4 ChCl:LA mass ratio, and 70 % (v/v) ethanol-water concentration yielded the highest lignin precipitation. Lignin is highly soluble where the solubility (δ-values) of lignin, DES, and precipitant are similar. Unlike conventional trial-and-error methods, the solubility matching technique relies on δ-values calculated by the Hildebrand and Scott equation. The proposed technique can also be applied to optimize the extraction conditions of other biomass materials.
Collapse
Affiliation(s)
- Tanawan Pinnarat
- Department of Chemical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| | - Phakasinee Marom
- Department of Chemical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| | - Warunya Silpradit
- Department of Chemical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
2
|
Zhao P, Pu F, Su C, Wan Y, Huang T, Hou X, Cai D. Towards valorization of rice straw into bioethanol and lignin: Emphasizing critical role of deep eutectic solvent components in biorefining process. BIORESOURCE TECHNOLOGY 2024; 399:130635. [PMID: 38552860 DOI: 10.1016/j.biortech.2024.130635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Deep eutectic solvents (DESs) offer a potential opportunity in biomass utilization industries. This work emphasized the impact of hydrogen bond donors (HBD) and acceptors (HBA) on deconstruction and valorization of rice straw. Acidity, alkyl chain length, hydrogen bonding ability and functional groups of HBD and HBA appeared to be important factors affecting the fractionated pulps and lignins, which further influenced ethanol fermentation. Among the candidate DESs, lactic acid/guanidine hydrochloride (LGH) was proved to be the most suitable one due to the excellent delignification and xylan removal. For the downstream fermentation process, 0.47 g g-1 of bioethanol with 0.55 g/L h-1 of productivity can be obtained from the LGH pulp's hydrolysate. Mass balance showed 302.8 g bioethanol and 119.0 g technical lignin can be co-generated from 1 kg dried rice straw. This "green" valorization strategy offers a promising scheme in biorefinery of lignocelluloses.
Collapse
Affiliation(s)
- Pengfei Zhao
- School of Biomedical and Pharmaceutical Science, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Fulong Pu
- School of Biomedical and Pharmaceutical Science, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Changsheng Su
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yefan Wan
- School of Biomedical and Pharmaceutical Science, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Texin Huang
- School of Biomedical and Pharmaceutical Science, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xuedan Hou
- School of Biomedical and Pharmaceutical Science, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
3
|
Li F, Li Q, Lv J, Huang M, Ling Z, Meng Y, Chen F, Ji Z. A novel seawater hydrothermal-deep eutectic solvent pretreatment enhances the production of fermentable sugars and tailored lignin nanospheres from Pinus massoniana. Int J Biol Macromol 2024; 267:131596. [PMID: 38621560 DOI: 10.1016/j.ijbiomac.2024.131596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Lignocellulose biorefinery depended on effective pretreatment strategies is of great significance for solving the current global crisis of ecosystem and energy security. This study proposes a novel approach combining seawater hydrothermal pretreatment (SHP) and microwave-assisted deep eutectic solvent (MD) pretreatment to achieve an effective fractionation of Pinus massoniana into high value-added products. The results indicated that complex ions (Mg2+, Ca2+, and Cl-) in natural seawater served as Lewis acids and dramatically promoted the depolymerization of mannose and xylan into oligosaccharides with 40.17 % and 75.43 % yields, respectively. Subsequent MD treatment realized a rapid and effective lignin fractionation (~90 %) while retaining cellulose. As a result, the integrated pretreatment yielded ~85 % of enzymatic glucose, indicating an eightfold increase compared with untreated pine. Because of the increased hydrophobicity induced by the formation of acyl groups during MD treatment, uniform lignin nanospheres were successfully recovered from the DES. It exhibited low dispersibility (PDI = 2.23), small molecular weight (1889 g/mol), and excellent oxidation resistance (RSI = 5.94), demonstrating promising applications in functional materials. The mechanism of lignin depolymerization was comprehensively elucidated via FTIR, 2D-HSQC NMR, and GPC analyses. Overall, this study provides a novel and environmentally friendly strategy for lignocellulose biorefinery and lignin valorization.
Collapse
Affiliation(s)
- Fucheng Li
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qiang Li
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiachen Lv
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mingjun Huang
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yao Meng
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fushan Chen
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhe Ji
- College of Marine Science and Bioengineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
4
|
Xie Y, Liu X, Liu L, Zhou Y, Wang Z, Huang C, He H, Zhai Y. Deep eutectic solvents pretreatment enhances methane production from anaerobic digestion of waste activated sludge: Effectiveness evaluation and mechanism elucidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120615. [PMID: 38518499 DOI: 10.1016/j.jenvman.2024.120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Anaerobic digestion (AD) is a prevalent waste activated sludge (WAS) treatment, and optimizing methane production is a core focus of AD. Two DESs were developed in this study and significantly increased methane production, including choline chloride-urea (ChCl-Urea) 390% and chloride-ethylene glycol (ChCl-EG) 540%. Results showed that ChCl-Urea mainly disrupted extracellular polymeric substances (EPS) structures, aiding in initial sludge solubilization during pretreatment. ChCl-EG, instead, induced sludge self-driven organic solubilization and enhanced hydrolysis and acidification processes during AD process. Based on the extent to which the two DESs promoted AD for methane production, the AD process can be divided into stage Ⅰ and stage Ⅱ. In stage Ⅰ, ChCl-EG promoted methanogenesis more significantly, microbiological analysis showed both DESs enriched aceticlastic methanogens-Methanosarcina. Notably, ChCl-Urea particularly influenced polysaccharide-related metabolism, whereas ChCl-EG targeted protein-related metabolism. In stage Ⅱ, ChCl-Urea was more dominant than ChCl-EG, ChCl-Urea bolstered metabolism and ChCl-EG promoted genetic information processing in this stage. In essence, this study investigated the microbial mechanism of DES-enhanced sludge methanogenesis and provided a reference for future research.
Collapse
Affiliation(s)
- Yu Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xiaoping Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Liming Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China; Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto, 612-8135, Japan
| | - Yin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zhexian Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Cheng Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Hongkui He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| |
Collapse
|
5
|
Wu W, Zhu P, Luo L, Lin H, Tao Y, Ruan L, Wang L, Qing Q. p-Toluenesulfonic acid enhanced neutral deep eutectic solvent pretreatment of soybean straw for efficient lignin removal and enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2024; 395:130338. [PMID: 38237641 DOI: 10.1016/j.biortech.2024.130338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Deep eutectic solvent (DES) is a newly-emerged green solvent for efficient pretreatment of lignocellulosic feedstock. To improve the component fractionation performance of neutral DES, p-toluenesulfonic acid (p-TsOH) was employed as catalyst to form a novel ternary DES with benzyltriethylammonium chloride (TEBAC) and glycerol (Gly) for pretreatment of soybean straw. Under the optimum reaction conditions (TEBAC:Gly = 1:12, 1.6 wt% p-TsOH and reacted at 90 °C for 160 min), the lignin and hemicellulose removal from soybean straw were amounted to 92.0 % and 88.2 %, respectively. The pretreated substrate showed satisfactory enzymatic hydrolysis performance, as the glucose and reducing sugar concentrations reached 37.3 g/L and 42.3 g/L, respectively, after 72 h saccharification under the action of cellulase with a relatively low enzyme loading of 10 FPU/g cellulose.This method provides an efficient and mild route for utilization of agricultural waste and production of platform monosaccharides.
Collapse
Affiliation(s)
- Wenxuan Wu
- College of Biotechnology and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Peiwen Zhu
- College of Biotechnology and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Liping Luo
- College of Biotechnology and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hongyan Lin
- College of Biotechnology and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yuheng Tao
- College of Biotechnology and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Lingyu Ruan
- College of Biotechnology and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Liqun Wang
- College of Biotechnology and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China.
| | - Qing Qing
- College of Biotechnology and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
6
|
Zheng F, Chen J, Wang J, Zhuang H. Transformation of corncob into high-value xylooligosaccharides using glycoside hydrolase families 10 and 11 xylanases from Trichoderma asperellum ND-1. BIORESOURCE TECHNOLOGY 2024; 394:130249. [PMID: 38154735 DOI: 10.1016/j.biortech.2023.130249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Effective production of xylooligosaccharides (XOS) with lower proportion of xylose entails unique and robust xylanases. In this study, two novel xylanases from Trichoderma asperellum ND-1 belonging to glycoside hydrolase families 10 (XynTR10) and 11 (XynTR11) were over-expressed in Komagataella phaffii X-33 and characterized to be robust enzymes with high halotolerance and ethanol tolerant. Both enzymes displayed strict substrate specificity towards beechwood xylan and wheat arabinoxylan. (Glu153/Glu258) and (Glu161/Glu252) were key catalytic sites for XynTR10 and XynTR11. Notably, XynTR11 could rapidly degrade xylan/XOS into xylobiose without xylose via transglycosylation. Direct degradation of corncob using XynTR10 and XynTR111 displayed that while XynTR10 yielded 77% xylobiose and 25% xylose, XynTR11 yielded much less xylose (11%) and comparable amounts of xylobiose (63%). XynTR10 or XynTR111 has great potential as a catalyst for bioconversion of xylan-containing agricultural waste into high-value products (biofuel or XOS), which is of significant benefit for the economy and environment.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China
| | - Jiaqiang Wang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Huan Zhuang
- Department of ENT and Head & Neck Surgery, The Children's Hospital Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310051, China
| |
Collapse
|
7
|
Xu X, Gai J, Li Y, Zhang Z, Wu S, Song K, Hu J, Chu Q. Integrated acetic acid and deep eutectic solvent pretreatment on poplar for co-production of xylo-oligosaccharides, fermentable sugars and lignin antioxidants/adsorbents. Int J Biol Macromol 2024; 259:129138. [PMID: 38171445 DOI: 10.1016/j.ijbiomac.2023.129138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Efficient fractionation of lignocellulosic biomass in usable forms of hemicellulose, cellulose and lignin is very important for the sustainable lignocellulosic biorefinery. Herein, poplar sawdust was pretreated with an integrated process composed of acetic acid pre-hydrolysis (170 °C, 60 min) for xylo-oligosaccharides (XOS) production and mild deep eutectic solvent (90-130 °C, 60 min) post-delignification for recovering lignin fractions, resulting in easily hydrolyzed cellulose fraction. Results showed that, after integrated pretreatment and enzymatic hydrolysis, 51 % of xylan and 92 % of glucan in raw biomass could be converted to XOS (DP 2-6) and glucose, respectively, while 71 % of the original lignin could be recovered in DES solvent. The resulting XOS were proven to ensure the growth of probiotics, Bifidobacterium adolescentis. Besides, the lignin macromolecules recovered from DES solvent showed high-purity (around 95 %), low-molecular weight (Mw around 2000), small particle size (270-170 nm) and high-PhOH (3.08 mmol/g) content, which were likely relevant to the excellent antioxidant activity (RSI = 15.16) and adsorbent activity (Pb(II) 461.89 mg/g lignin). Finally, mass balance and energy analysis revealed that the integrated pretreatment could be used as a promising approach for the production of bio-based chemicals and materials from woody biomass.
Collapse
Affiliation(s)
- Xiaojie Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, China
| | - Junming Gai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, China
| | - Yiran Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, China
| | - Zhiheng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, China
| | - Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, China
| | - Kai Song
- College of Ecology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N1Z4, Canada
| | - Qiulu Chu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, No.159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
8
|
Chen X, Liu Q, Li B, Wang N, Liu C, Shi J, Liu L. Unveiling the potential of novel recyclable deep eutectic solvent pretreatment: Effective separation of lignin from poplar hydrolyzed residue. Int J Biol Macromol 2024; 259:129354. [PMID: 38218303 DOI: 10.1016/j.ijbiomac.2024.129354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/01/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
To effectively convert the fermentable sugars present in lignocellulosic biomass into biofuels and additional value-added products, it is crucial to remove lignin from the biomass. With the intention of expeditiously remove lignin from poplar wood and improve cellulose saccharification, an innovative ternary deep eutectic solvent (DES) benzyl triethyl ammonium chloride-ethylene glycol-FeCl3 (T-EG-F) was studied for the pretreatment of poplar hydrolyzed residue (PHR). The results revealed that following T-EG-F DES pretreatment at 130 °C for 4 h, the lignin removal rate reached 91.88 %. The effect of DES on PHR and regenerated lignin was comprehensively investigated using X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), Thermogravimetric (TG) and other characterization methods, providing valuable insights into the mechanism of this innovative biomass pretreatment. Moreover, there was a significant improvement in the enzyme digestibility of the DES pretreatment residue. At 48 h, the enzyme load of 30 FPU/g cellulose achieved a remarkable enzyme digestibility of 97.31 %, and this value exhibited a notable increase of 6.56 times compared to the untreated poplar sample. In addition, the T-EG-F could be recycled and reused. This study demonstrates that the potential of T-EG-F DES pretreatment as a green and efficient method for lignin dissociation from lignocellulosic biomass, offering a promising approach for biomass component separation.
Collapse
Affiliation(s)
- Xiaomiao Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qianjing Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Baoguo Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Caoyunrong Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| |
Collapse
|
9
|
Tang W, Huang C, Tang Z, He YC. Employing deep eutectic solvent synthesized by cetyltrimethylammonium bromide and ethylene glycol to advance enzymatic hydrolysis efficiency of rape straw. BIORESOURCE TECHNOLOGY 2023; 387:129598. [PMID: 37532057 DOI: 10.1016/j.biortech.2023.129598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
An efficient deep eutectic solvent (DES) was synthesized by cetyltrimethylammonium bromide (CTAB) and ethylene glycol (EG) and employed to treat rape straw (RS) for advancing enzymatic saccharification in this work. By optimizing the pretreatment parameters, the results displayed that the novel DES was strongly selective towards removing lignin and xylan while preserving cellulose. Under optimum conditions with 1:6 of CTAB: EG in DES, 180 °C and 80 min, the enzymatic hydrolysis efficiency of RS was enhanced by 46.0% due to the 62.2% of delignification and 53.2% of xylan removal during CTAB: EG pretreatment. In terms of the recalcitrant structure of RS, DES pretreatment caused the increment of cellulosic accessibility, reduction of hydrophobicity and surface area of lignin, and migration of cellulosic crystalline structure, which was associated with its enzymatic hydrolysis efficiency. Overall, this study presented an emerging method for the effective fractionation and valorization of lignocellulosic biomass within biorefinery technology.
Collapse
Affiliation(s)
- Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Caoxing Huang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhengyu Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China.
| |
Collapse
|
10
|
Zhang H, Li X, Kang M, Li Z, Wang X, Jing X, Han J. Sustainable ultrasound-assisted extraction of Polygonatum sibiricum saponins using ionic strength-responsive natural deep eutectic solvents. ULTRASONICS SONOCHEMISTRY 2023; 100:106640. [PMID: 37816271 PMCID: PMC10568126 DOI: 10.1016/j.ultsonch.2023.106640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
The sustainable extraction of saponins was investigated using natural deep eutectic solvents (NADESs) combined with ultrasound-assisted extraction. A novel NADES (butyric acid-urea) that was responsive to ionic strength was designed and used as the extractant. Ultrasound treatment and a catalyst ferric chloride with plant cell wall breaking function were applied to improve the extraction efficiency.Since the solubility of the NADES varied significantly with ionic strength, 95% of NADES was readily separated from the water phase after the addition of sodium chloride, while saponins remained in the water phase for easy collection. The reuse capacity of NADES, the eco-friendliness of the extraction method, and the antioxidant activity of the extract were further evaluated.NADES was continuously recovered and used to extract Polygonatum sibiricum powder: the yield of saponins did not decrease after five cycles of recovery and re-extraction. The penalty point on the "Eco-scale" suggested that the extraction method was "green" (i.e. eco-friendly).Compared with ethanol extracts, the NADES extracts showed a higher saponin concentration and antioxidant activity.The study can contribute to the sustainable and green extraction of hydrophilic active substances in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Hongli Zhang
- College of Science, China Agricultural University, Beijing 100193, China; College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xinpeng Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Miao Kang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhanrong Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Jiajun Han
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Chen Y, Yang D, Tang W, Ma C, He YC. Improved enzymatic saccharification of bulrush via an efficient combination pretreatment. BIORESOURCE TECHNOLOGY 2023; 385:129369. [PMID: 37343793 DOI: 10.1016/j.biortech.2023.129369] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Glycerol (Gly) was selected as hydrogen-bond-donor for preparing ChCl-based DES (ChCl:Gly), and the mixture of ChCl:Gly (20 wt%) and NaOH (4 wt%) was utilized for combination pretreatment of bulrush at 100 °C for 60 min (severity factor LogRo = 1.78). The effects of DES pretreatment on the chemical composition, microstructure, crystal structure, and cellulase hydrolysis were explored. NaOH-ChCl:Gly could remove lignin (80.1%) and xylan (66.8%), and the enzymatic digestibility of cellulose reached 87.9%. The accessibility of bulrush was apparently increased to 645.2 mg/g after NaOH-ChCl:Gly pretreatment. The hydrophobicity and lignin surface area were reduced to 1.56 L/g and 417 m2/g, respectively. The crystallinity of cellulose was increased from 20.8% to 55.6%, and great changes in surface morphology were observed, which explained the improvement of enzymatic hydrolysis efficiency. Overall, DES combined with alkali treatment could effectively promote the removal of lignin and xylan in bulrush, thus the relative saccharification activity was greatly affected.
Collapse
Affiliation(s)
- Ying Chen
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Dong Yang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, PR China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
12
|
Magalhães S, Fernandes C, Pedrosa JFS, Alves L, Medronho B, Ferreira PJT, Rasteiro MDG. Eco-Friendly Methods for Extraction and Modification of Cellulose: An Overview. Polymers (Basel) 2023; 15:3138. [PMID: 37514527 PMCID: PMC10386580 DOI: 10.3390/polym15143138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cellulose is the most abundant renewable polymer on Earth and can be obtained from several different sources, such as trees, grass, or biomass residues. However, one of the issues is that not all the fractionation processes are eco-friendly and are essentially based on cooking the lignocellulose feedstock in a harsh chemical mixture, such as NaOH + Na2S, and water, to break loose fibers. In the last few years, new sustainable fractionation processes have been developed that enable the obtaining of cellulose fibers in a more eco-friendly way. As a raw material, cellulose's use is widely known and established in many areas. Additionally, its products/derivatives are recognized to have a far better environmental impact than fossil-based materials. Examples are textiles and packaging, where forest-based fibers may contribute to renewable and biodegradable substitutes for common synthetic materials and plastics. In this review, some of the main structural characteristics and properties of cellulose, recent green extraction methods/strategies, chemical modification, and applications of cellulose derivatives are discussed.
Collapse
Affiliation(s)
- Solange Magalhães
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Catarina Fernandes
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
- MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
| | - Jorge F S Pedrosa
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Luís Alves
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Bruno Medronho
- MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Ed. 8, 8005-139 Faro, Portugal
- FSCN, Surface and Colloid Engineering, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Paulo J T Ferreira
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Maria da Graça Rasteiro
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
13
|
Zhang Y, Xin D, Wen P, Chen X, Jia L, Lu Z, Zhang J. Comparison of Alkaline Sulfite Pretreatment and Acid Sulfite Pretreatment with Low Chemical Loading in Saccharification of Poplar. Appl Biochem Biotechnol 2023; 195:4414-4428. [PMID: 36696039 DOI: 10.1007/s12010-023-04351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
Sulfite pretreatment is a productive process for lignin dissolution in lignocelluloses and to reduce the hydrophobicity of lignin by sulfonation, thus promoting the hydrolyzability of the substrate. Previously, sulfite pretreatment needs high dosages of chemicals and thus results in the high cost of the pretreatment and the great pressure of environmental pollution. To overcome these problems, it was crucial to research whether alkaline sulfite pretreatment (ALS) and acid sulfite pretreatment (ACS) with low chemical loading could enhance the saccharification of poplar. In this work, the results indicated that with low loading of chemicals in sulfite pretreatment, ALS pretreatment (1.6% Na2SO3 and 0.5% NaOH) at 180 °C removed more lignin, resulted in lower hydrophobicity and higher cellulase adsorption capacity of poplar than ACS pretreatment (1.6% Na2SO3 and 0.5% H2SO4) at 180 °C. A satisfying glucose yield of 84.9% and a xylose yield of 76.0% were obtained from poplar after ALS pretreatment with 1.6% Na2SO3 and 0.5% NaOH at 180 °C for 1 h using 10 FPU cellulase/g dry matter, saving sodium sulfite by 60.0% compared to the loading of sulfite in traditional sulfite pretreatment. The strategy developed in this work reduced chemical loading and cellulase loading in alkali sulfite pretreatment for the saccharification of poplar.
Collapse
Affiliation(s)
- Ying Zhang
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Donglin Xin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Peiyao Wen
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Xiang Chen
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Lili Jia
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Zhoumin Lu
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China.
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| |
Collapse
|
14
|
Li J, Liu B, Liu L, Luo Y, Zeng F, Qin C, Liang C, Huang C, Yao S. Pretreatment of poplar with eco-friendly levulinic acid to achieve efficient utilization of biomass. BIORESOURCE TECHNOLOGY 2023; 376:128855. [PMID: 36898555 DOI: 10.1016/j.biortech.2023.128855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Organic acid pretreatment is an effective method for green separation of lignocellulosic biomass. However, repolymerization of lignin seriously affects the dissolution of hemicellulose and the conversion of cellulose during organic acid pretreatment. Therefore, a new organic acid pretreatment, levulinic acid (Lev) pretreatment, was studied for the deconstruction of lignocellulosic biomass without adding additional additives. The preferred separation of hemicellulose was realized at Lev concentration 7.0%, temperature 170 °C, and time 100 min. The separation of hemicellulose increased from 58.38% to 82.05% compared with acetic acid pretreatment. It was found that the repolymerization of lignin was effectively inhibited in the efficient separation of hemicellulose. This was attributed to the fact that γ-valerolactone (GVL) is a good green scavenger of lignin fragments. The lignin fragments in the hydrolysate were effectively dissolved. The results provided theoretical support for creating green and efficient organic acid pretreatment and effectively inhibiting lignin repolymerization.
Collapse
Affiliation(s)
- Jiao Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Lu Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yadan Luo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Fanyan Zeng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
15
|
Dai Q, Bai Y, Fu B, Yang F. Multifunctional Bacterial Cellulose Films Enabled by Deep Eutectic Solvent-Extracted Lignin. ACS OMEGA 2023; 8:7430-7437. [PMID: 36873000 PMCID: PMC9979238 DOI: 10.1021/acsomega.2c06123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Inspired by natural plant cells, lignin is utilized as a filler and a functional agent to modify bacterial cellulose (BC). By mimicking the lignin-carbohydrate structure, deep eutectic solvent (DES)-extracted lignin serves as a glue to strength the BC films and endows the films with diverse functionality. The lignin isolated by the DES (formed by choline chloride and lactic acid) is rich in phenol hydroxyl groups (5.5 mmol/g) and exhibits a narrow molecular weight distribution. A good interface compatibility can be obtained in the composite film, and lignin fills the void/gaps between BC fibrils. The integration of lignin endows the films with enhanced water-proof, mechanical, UV shielding, gas barrier, and antioxidant abilities. The BC/lignin composite film with 0.4 g of lignin addition (BL-0.4) exhibits an oxygen permeability and a water vapor transmission rate of 0.4 mL/m2/day/Pa and 0.9 g/m2/day, respectively. The multifunctional films are promising candidates for packing materials and exhibit a broad application prospect in the field of petroleum-based polymer replacement.
Collapse
Affiliation(s)
- Qihang Dai
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yunhua Bai
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Fu
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fan Yang
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- School
of Management Science and Engineering, Nanjing
University of Finance and Economics, Nanjing, Jiangsu 210023, China
| |
Collapse
|
16
|
Zhou M, Fakayode OA, Ren M, Li H, Liang J, Zhou C. Green and sustainable extraction of lignin by deep eutectic solvent, its antioxidant activity, and applications in the food industry. Crit Rev Food Sci Nutr 2023; 64:7201-7219. [PMID: 36815260 DOI: 10.1080/10408398.2023.2181762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Lignin, an amorphous biomacromolecule abundantly distributed in the plant kingdom, has gained considerable attention due to its intrinsic bioactivities and renewable nature. Owing to its polyphenolic structure, lignin has a variety of human health activities, including antioxidant, antimicrobial, antidiabetic, antitumor, and other activities. The extraction of lignin from various sources in a green and sustainable manner is critical in the food industry. Deep eutectic solvent (DES) has recently been recognized as a class of safe and environmentally friendly media capable of efficiently extracting lignin. This article comprehensively reviews the recent advances in lignin extraction using DES, discusses the influential factors on the antioxidant activity of lignin, interprets the relationship between antioxidant activity and lignin structure, and overviews the applications of lignin in the food industry. We aim to highlight the advantages of DES in lignin extraction and valorization from the nutrition and food views.
Collapse
Affiliation(s)
- Man Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Department of Agricultural and Food Engineering, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Manni Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jiakang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
17
|
Sun LL, Yue Z, Sun SC, Li Y, Cao XF, Sun SN. Microwave-assisted choline chloride/1,2-propanediol/methyl isobutyl ketone biphasic system for one-pot fractionation and valorization of Eucalyptus biomass. BIORESOURCE TECHNOLOGY 2023; 369:128392. [PMID: 36435421 DOI: 10.1016/j.biortech.2022.128392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
The developing of pretreatment method to break the biomass barrier of lignocellulosic is a challenging task for achieve high value utilization. A fast microwave-assisted choline chloride/1,2-propanediol/methyl isobutyl ketone biphasic system was constructed for pretreating Eucalyptus to the production of furfural and cellulose-rich residues and the extraction of lignin. Results showed that the combination of AlCl3·6H2O and HCl had the best catalytic ability for furfural production among the examined catalysts. Under the optimal conditions (140 °C, 15 min, 0.075 M AlCl3·6H2O, 0.05 M HCl), the furfural yield of 55.4 %, the glucose yield of 90.3 % and the delignification rate of 92.4 % could be achieved. Moreover, the extracted lignin samples with a low polydispersity (1.55-1.73) and molecular weight (1380-2040 g/mol) are promising to act as precursor for the value-add products processing. These findings demonstrated an ultrafast pretreatment process with excellent results in biomass fractionation and comprehensive utilization of biomass components.
Collapse
Affiliation(s)
- Li-Li Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Zhuang Yue
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Chao Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yu Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
18
|
Hu M, Yuan L, Cai Z, Zhang W, Fu Q, Ji D. Ammonia fiber expansion-assisted deep eutectic solvent treatment for wheat straw fraction separation and bioconversion. BIORESOURCE TECHNOLOGY 2023; 367:128242. [PMID: 36332855 DOI: 10.1016/j.biortech.2022.128242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
In this study, an ammonia fiber expansion (AFEX)-assisted deep eutectic solvent (DES) pretreatment method was developed for the rapid separation of wheat straw fractions, which reduced the pretreatment time for DES and improved the pretreatment efficiency. This study describes the feasibility of the AFEX-assisted DES pretreatment in terms of both progressive and parallel relationships and analyzes the subsequent enzymatic effect in generating glucose from cellulose. Ammonia fiber expansion-assisted DES one-pot pretreatment at 120 °C, for 1.5 h resulted in an enzymatic efficiency of 98.0 ± 3.1 %. Moreover, the enzyme efficiency remained greater than 85 % after three recovery cycle experiments. The comparison between regenerated-lignin (d-lignin) and alkaline-lignin showed that regenerated lignin has a lower molecular weight and belongs to para-hydroxy-phenyl-guaiacyl-syringyl (H-G-S) type lignin. This study developed is a green and efficient pretreatment process with great potential in the separation and utilization of biomass fractions.
Collapse
Affiliation(s)
- Mingyang Hu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Lin Yuan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Ziyuan Cai
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Weihua Zhang
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China; Shandong Green Fertilizer Technology Innovation Center, Linyi 276700, PR China
| | - Qiang Fu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Dandan Ji
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; Shandong Green Fertilizer Technology Innovation Center, Linyi 276700, PR China.
| |
Collapse
|
19
|
Liu X, Cheng J, Huang C, Wang J, Fang G, Shen K, Meng X, Ragauskas AJ. Alkali-facilitated deep eutectic solvent for effective bamboo saccharification. BIORESOURCE TECHNOLOGY 2023; 367:128297. [PMID: 36370941 DOI: 10.1016/j.biortech.2022.128297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Herein, a Na2S promoted deep eutectic solvent (DES) was established to reduce the natural recalcitrance of moso bamboo (MB) and improve the subsequent enzymatic saccharification. It was found that the addition of Na2S (Choline chloride/Ethylene glycol/Na2S) dramatically promoted the deconstructions of lignin with highest removal of 74.67 %, but at the same time preserved glucan and hemicellulose to the maximum extent. With the fractionation, the enzymatic saccharification yield of pretreated MB can reach 100 % under the pretreatment condition of 140 °C, and lignin could be readily recovered with a high yield of 81.47 %. The proposed DES is superior to normal alkaline DES in terms of the higher lignin removal and recovery yield, carbohydrate preservation and enzymatic digestibility, which indicated Na2S as a novel and powerful reinforcer enhancing the DES fractionation efficiency.
Collapse
Affiliation(s)
- Xuze Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Jinyuan Cheng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China.
| | - Jia Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Kuizhong Shen
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
20
|
Ying W, Li X, Lian Z, Xu Y, Zhang J. An integrated process using acetic acid hydrolysis and deep eutectic solvent pretreatment for xylooligosaccharides and monosaccharides production from wheat bran. BIORESOURCE TECHNOLOGY 2022; 363:127966. [PMID: 36113818 DOI: 10.1016/j.biortech.2022.127966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Organic acid hydrolysis for xylooligosaccharides (XOS) production from lignocelluloses provides the benefits of simple operation, rapid reaction and high XOS yield. However, no literature reported the XOS production from wheat bran (WB) by organic acid hydrolysis. In this paper, acetic acid (AA) hydrolysis was employed to produce XOS from WB. After AA hydrolysis (5 %, v/v, 170 °C, 20 min) of 100 g/L WB, the concentrations of X2, X3, X4, X5 and X6 were 2.4, 5.0, 1.9, 1.9 and 1.4 g/L respectively and the total XOS yield was 62.9 %, which was the highest among the previous researches. The arabinose yield reached 76.1 %. Then, AA-hydrolyzed WB was delignified by deep eutectic solvent (DES) pretreatment and the resulting residue had the glucose and xylose yields of 83.8 % and 54.8 %, respectively. This work offers a productive method for the conversion of WB into XOS, arabinose and glucose by AA hydrolysis and DES pretreatment.
Collapse
Affiliation(s)
- Wenjun Ying
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xudong Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhina Lian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China.
| |
Collapse
|
21
|
Yang R, Dong A, Meng X, Sheng Y, Wang F, Xia C, Aladejana JT, Fang Z, Zhao R, Zhan X, Li J. Ultra-Thin Wood-Based Acoustic Diaphragms Fabricated via an Environmentally Friendly Strategy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47089-47099. [PMID: 36194129 DOI: 10.1021/acsami.2c13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An acoustic diaphragm is a crucial component that regulates sound quality in earphones and loudspeakers. Natural wood with inherent good acoustic resonance and vibration spectrum is widely used in sound devices. However, using natural wood to produce an acoustic diaphragm is still a big challenge because making ultra-thin wood is hard and it warps easily. Therefore, this study introduces a new method for preparing ultra-thin wood acoustic diaphragms less than 10 μm in thickness, relying on delignification, sulfonation, and densifying techniques. The innovative sulfonation process increased the intermolecular hydrogen bond force, which significantly improved the tensile strength and Young's modulus of the wood diaphragm, up to 195 MPa and 27.1 GPa, respectively. Compared with the commonly used diaphragms in the market, this wood diaphragm exhibits an excellent specific dynamic elastic modulus up to 95.1 GPa/g cm3, indicating better acoustic properties. Also, the resonance frequency was up to 1240 Hz, 4.5 times higher than the titanium diaphragm among high-end products. Besides, the drying shrinkage rate of the ultra-thin wood diaphragm is only 1.2%, indicating excellent dimensional stability. This high-quality wood acoustic diaphragm has a very high application prospect and outstanding attributes for promoting the development of acoustic devices. Moreover, the reaction reagent can be recycled after preparation, and the selected reagents are green and environmentally friendly.
Collapse
Affiliation(s)
- Rui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu210037, China
- Dehua Tubaobao New Decoration Material Co., Ltd., Huzhou313200, China
| | - Anran Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu210037, China
| | - Xiangzhen Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu210037, China
| | - Yequan Sheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu210037, China
| | - Fang Wang
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, Jiangsu210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu210037, China
| | - John Tosin Aladejana
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu210037, China
- Dehua Tubaobao New Decoration Material Co., Ltd., Huzhou313200, China
| | - Zhen Fang
- Shandong Laboratory of Yantai Advanced Material and Green Manufacture, Yantai264006, China
| | - Rui Zhao
- Nanjing META Technology Center, Nanjing, Jiangsu210034, China
| | - Xianxu Zhan
- Dehua Tubaobao New Decoration Material Co., Ltd., Huzhou313200, China
| | - Jianzhang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu210037, China
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing100083, China
| |
Collapse
|
22
|
Liu B, Liu L, Deng B, Huang C, Zhu J, Liang L, He X, Wei Y, Qin C, Liang C, Liu S, Yao S. Application and prospect of organic acid pretreatment in lignocellulosic biomass separation: A review. Int J Biol Macromol 2022; 222:1400-1413. [PMID: 36195224 DOI: 10.1016/j.ijbiomac.2022.09.270] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
Abstract
As a clean and efficient method of lignocellulosic biomass separation, organic acid pretreatment has attracted extensive research. Hemicellulose or lignin is selectively isolated and the cellulose structure is preserved. Effective fractionation of lignocellulosic biomass is achieved. The separation characteristics of hemicellulose or lignin by different organic acids were summarized. The organic acids of hemicellulose were separated into hydrogen ionized, autocatalytic and α-hydroxy acids according to the separation mechanism. The separation of lignin depends on the dissolution mechanism and spatial effect of organic acids. In addition, the challenges and prospects of organic acid pretreatment were analyzed. The separation of hemicellulose and enzymatic hydrolysis of cellulose were significantly affected by the polycondensation of lignin, which is effectively inhibited by the addition of green additives such as ketones or alcohols. Lignin separation was improved by developing a deep eutectic solvent treatment based on organic acid pretreatment. This work provides support for efficient cleaning of carbohydrate polymers and lignin to promote global carbon neutrality.
Collapse
Affiliation(s)
- Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Lu Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Baojuan Deng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jiatian Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Linlin Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xinliang He
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuxin Wei
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry,1 Forestry Drive, Syracuse, NY 13210, United States
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
23
|
Development of Sustainable Biorefinery Processes Applying Deep Eutectic Solvents to Agrofood Wastes. ENERGIES 2022. [DOI: 10.3390/en15114101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The growing demand for renewable energies and the application of sustainable and economically viable biorefinery processes have increased the study and application of lignocellulosic biomass. However, due to lignocellulosic biomass recalcitrance hindering its efficient utilization, the pretreatment in the biorefinery is an essential stage for success in the process. Therefore, Deep Eutectic Solvent (DES) has emerged as a promising green pretreatment. During this study, the effect of choline chloride [ChCl]:glycerol and [ChCl]:urea on sugarcane bagasse and brewery bagasse is evaluated. Results have demonstrated that using [ChCl]:glycerol in SCB reduced about 80% and 15% for acid-soluble lignin and Klason lignin, respectively, and improved efficiency on saccharification yields, achieving conversions of 60, 80, and 100% for glucan, xylan, and arabinan, correspondingly. In the case of BSG saccharification yields, about 65% and 98% are attained for glucan and xylan, respectively, when [ChCl]:glycerol was employed. These results confirm the effectiveness and facility of DES pretreatment as a suitable method that can improve the biorefinery processes.
Collapse
|
24
|
Structural elucidation and targeted valorization of poplar lignin from the synergistic hydrothermal-deep eutectic solvent pretreatment. Int J Biol Macromol 2022; 209:1882-1892. [PMID: 35489620 DOI: 10.1016/j.ijbiomac.2022.04.162] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/16/2023]
Abstract
Elucidating the structural variations of lignin during the pretreatment is very important for lignin valorization. Herein, poplar wood was pretreated with an integrated process, which was composed of AlCl3-catalyzed hydrothermal pretreatment (HTP, 130-150 °C, 1.0 h) and mild deep-eutectic solvents (DES, 100 °C, 10 min) delignification for recycling lignin fractions. Confocal Raman Microscopy (CRM) was developed to visually monitor the delignification process during the HTP-DES pretreatment. NMR characterizations (2D-HSQC and 31P NMR) and elemental analysis demonstrated that the lignin fractions had undergone the following structural changes, such as dehydration, depolymerization, condensation. Molecular weights (GPC), microstructure (SEM and TEM), and antioxidant activity (DPPH analysis) of the lignins revealed that the DES delignification resulted in homogeneous lignin fragments (1.32 < PDI < 1.58) and facilitated the rapid assemblage of lignin nanoparticles (LNPs) with controllable nanoscale sizes (30-210 nm) and excellent antioxidant activity. These findings will enhance the understanding of structural transformations of the lignin during the integrated process and maximize the lignin valorization in a current biorefinery process.
Collapse
|
25
|
Zhao X, Huang C, Lin W, Bian B, Lai C, Ling Z, Yong Q. A structure-activity understanding of the interaction between lignin and various cellulase domains. BIORESOURCE TECHNOLOGY 2022; 351:127042. [PMID: 35318146 DOI: 10.1016/j.biortech.2022.127042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
To elucidate the structure-activity relationship between lignin and various cellulase domains, four lignin fractions with specific structures and molecular weight were prepared from bamboo kraft lignin (BKL) and used to investigate the adsorption mechanism between different cellulase domains by fluorescence spectroscopy and SDS-PAGE. Endo-cellulase 6B exhibited a higher affinity to BKL fractions than the carbohydrate-binding module (CBM4A) of cellulase, which is positively correlated to molecular weight. The thermodynamic mechanism showed that the adsorption between BKL fractions and endo-cellulase 6B was dominated by van der Waals and electrostatic forces, while hydrophobic force is the driver for BKL fractions to adsorb CBM4A. Structure-activity relationship between lignin fractions and cellulase domain revealed that thermodynamics and interaction forces were more easily affected by the structure of BKL, including S/G ratio, molecular weight and hydrophobicity. The aforementioned results demonstrated that lignin's structure plays a critical role in its adsorption with various cellulase domains.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenqian Lin
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bin Bian
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenhuan Lai
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
26
|
Bai Y, Zhang XF, Wang Z, Zheng T, Yao J. Deep eutectic solvent with bifunctional Brønsted-Lewis acids for highly efficient lignocellulose fractionation. BIORESOURCE TECHNOLOGY 2022; 347:126723. [PMID: 35063623 DOI: 10.1016/j.biortech.2022.126723] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Green and low cost deep eutectic solvents (DESs) are promising to replace the solid acids and ionic liquids in biomass fractionation process. To enhance the lignocellulose pretreatment efficiency, an acidic DES that composed of Brønsted acid (ZnCl2) as hydrogen bond acceptor and Lewis acid (lactic acid) as hydrogen bond donator was designed. This bifunctional DES was used for the extraction of lignin from poplar sawdust. Under the optimal pretreatment condition, the ZnCl2-lactic acid DES could recover 95.2 wt% of lignin with a purity of 92.1%. The recovered lignin demonstrated a low polydispersity of 1.67 and small amount of β-aryl-ethers. Moreover, the acidic DES had a good recyclability and reusability. Such performance was attributed to the presence of bifunctional acid sites, which help selectively cleave lignin-carbohydrate complex linkages. The acidity and polarity of Brønsted acid can be modulated by the Lewis acid, thus synergistically promote the lignin extraction and production.
Collapse
Affiliation(s)
- Yunhua Bai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tianran Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
27
|
Sidiras D, Politi D, Giakoumakis G, Salapa I. Simulation and optimization of organosolv based lignocellulosic biomass refinery: A review. BIORESOURCE TECHNOLOGY 2022; 343:126158. [PMID: 34673192 DOI: 10.1016/j.biortech.2021.126158] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Organosolv pretreatment can be considered as the core of the lignocellulosic biomass fractionation within the biorefinery concept. Organosolv facilitates the separation of the major fractions (cellulose, hemicelluloses, lignin), and their use as renewable feedstocks to produce bioenergy, biofuels, and added-value biomass derived chemicals. The efficient separation of these fractions affects the economic feasibility of the biorefinery complex. This review focuses on the simulation of the organosolv pretreatment and the optimization of (i) feedstock delignification, (ii) sugars production (mainly from hemicelluloses), (iii) enzymatic digestibility of the cellulose fraction and (iv) quality of lignin. Simulation is used for the technoeconomic optimization of the biorefinery complex. Simulation and optimization implement a holistic approach considering the efficient technological, economic, and environmental performance of the biorefinery operational units. Consequently, an optimized organosolv stage is the first step for a sustainable, economically viable biorefinery complex in the concept of industrial ecology and zero waste circular economy.
Collapse
Affiliation(s)
- Dimitrios Sidiras
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534, Piraeus, Greece.
| | - Dorothea Politi
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534, Piraeus, Greece
| | - Georgios Giakoumakis
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534, Piraeus, Greece
| | - Ioanna Salapa
- Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, University of Piraeus, 80 Karaoli & Dimitriou, GR 18534, Piraeus, Greece
| |
Collapse
|
28
|
Lou R, Zhang X. Evaluation of pretreatment effect on lignin extraction from wheat straw by deep eutectic solvent. BIORESOURCE TECHNOLOGY 2022; 344:126174. [PMID: 34737047 DOI: 10.1016/j.biortech.2021.126174] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
To investigate the effect of hemicellulose removal on subsequent choline chloride and lactic acid (ChCl-LA) based deep eutectic solvent (DES) extraction of wheat straw lignin, ChCL-LA of DES and hot water presoaking pretreatments were used for hemicellulose prehydrolysis. Both presoakings led to a significant hemicellulose removal and introduced morphological changes on fiber cell wall surface. DES presoaking also instigated ether bonds cleavage between lignin and hemicellulose and selectively removed lignin in compound middle lamella (CML) and cell corner (CC) leading to cell wall disruption and swelling which facilitated lignin extraction. Hot water presoaking removed more hemicellulose and caused a migration of lignin to fibers surface, but did not improve subsequent lignin extraction. This study demonstrated that a two-stage DES treatment method, presoaking at room temperature followed by extracting at an elevated temperature, is a viable process to produce high yield and purity of lignin.
Collapse
Affiliation(s)
- Rui Lou
- College of Mechanical and Electronic Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China.
| | - Xiao Zhang
- Voilland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, Richland, WA 99354, USA
| |
Collapse
|
29
|
Su Y, Fang L, Wang P, Lai C, Huang C, Ling Z, Sun S, Yong Q. Efficient production of xylooligosaccharides rich in xylobiose and xylotriose from poplar by hydrothermal pretreatment coupled with post-enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2021; 342:125955. [PMID: 34547709 DOI: 10.1016/j.biortech.2021.125955] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
A promising approach for production of value-added xylooligosaccharides (XOS) from poplar was developed by combining hydrothermal pretreatment and endo-xylanase post-hydrolysis. Results showed that the 35.4% XOS (DP 2-6) and 17.6% low DP xylans (DP > 6) were obtained at the identified optimal condition (170 °C, 50 min) for hydrothermal pretreatment. Structural features of low DP xylans generated during the hydrothermal pretreatment were examined, revealing that low DP xylans are mainly comprised of 4-O-methylglucuronic xylan and are involved in lignin carbohydrate complexes. Moreover, higher pretreatment intensity promoted the cleavage of side-chain substituents including arabinose and glucuronic acid groups. The subsequent endo-xylanase hydrolysis of the pretreatment liquor hydrolyzed low DP xylans, contributing to a significant improvement in xylobiose and xylotriose proportions. This combined strategy resulted in a XOS with conversion yield of 44.6% containing 78.7% xylobiose and xylotriose starting from the initial xylan in raw poplar.
Collapse
Affiliation(s)
- Yan Su
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Lingyan Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Peng Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Shaolong Sun
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China.
| |
Collapse
|
30
|
Short-time deep eutectic solvents pretreatment enhanced production of fermentable sugars and tailored lignin nanoparticles from abaca. Int J Biol Macromol 2021; 192:417-425. [PMID: 34582914 DOI: 10.1016/j.ijbiomac.2021.09.140] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022]
Abstract
Deep eutectic solvents (DES) pretreatment is a promising approach to decrease "biomass recalcitrance" and boost the cellulose bioconversion as well as lignin valorization. In this study, a short-time DES pretreatment strategy was performed to enhance the production of high-yield fermentable sugars and tailored lignin nanoparticles (LNPs) from abaca. The glucose yield reached 92.4% under the optimal pretreatment condition (110 °C, 30 min), which was dramatically increased in comparison with that (9.5%) of control abaca. Simultaneously, nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) techniques indicated that the removed and regenerated DES lignin fractions displayed depolymerized structures and have relatively low molecular weight with relatively homogeneous morphology and narrow size distribution. Transmission electron microscope (TEM) analysis indicated that these lignin fractions are LNPs and the size of the optimal LNPs fraction is ranged from 30 nm to 50 nm. Moreover, all the DES lignin exhibited excellent antioxidant activities as compared to the commercial antioxidant butylated hydroxytoluene (BHT), which can be used as a promising natural antioxidant in industry. In short, this study demonstrated that the short-time DES pretreatment will improve the enzymatic digestibility and facilitate the controllable production and valorization of LNPs from abaca biomass, which will further promote the economic and overall benefits of biorefinery.
Collapse
|
31
|
Ma CY, Xu LH, Zhang C, Guo KN, Yuan TQ, Wen JL. A synergistic hydrothermal-deep eutectic solvent (DES) pretreatment for rapid fractionation and targeted valorization of hemicelluloses and cellulose from poplar wood. BIORESOURCE TECHNOLOGY 2021; 341:125828. [PMID: 34461401 DOI: 10.1016/j.biortech.2021.125828] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
A synergistic pretreatment that realizing effective fractionation and targeted valorization can guarantee the implementability to future biorefinery scenario. In the present study, a stepwise approach using hydrothermal and deep eutectic solvents (DES) pretreatment was developed to preferentially dissociate hemicelluloses and further remove lignin from poplar, while retaining a cellulose-rich substrate that can be easily digested via enzymatic saccharification to obtain glucose. Results showed that the hydrothermal filtrate is mainly composed of xylooligosaccharide (XOS), monosaccharides, byproducts, and xylan-type hemicelluloses, which have homogenous structures and uniform molecular weights distribution as well as excellent antioxidant activity. Subsequent DES pretreatment further removed the lignin barriers, leading to a remarkable increase in the saccharification efficiency from 15.72% to 96.33% under optimum conditions for enzymatic hydrolysis. In short, the integrated pretreatment is effective for dissociating and chemical conversion of poplar wood, which was reasonable to promote the frontier of highly available biorefinery.
Collapse
Affiliation(s)
- Cheng-Ye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Ling-Hua Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Chen Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Kai-Ning Guo
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
32
|
Shen B, Hou S, Jia Y, Yang C, Su Y, Ling Z, Huang C, Lai C, Yong Q. Synergistic effects of hydrothermal and deep eutectic solvent pretreatment on co-production of xylo-oligosaccharides and enzymatic hydrolysis of poplar. BIORESOURCE TECHNOLOGY 2021; 341:125787. [PMID: 34419877 DOI: 10.1016/j.biortech.2021.125787] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Full utilization of lignocellulose is critical for its biorefinery development. In this study, a sustainable biorefinery process based upon poplar sawdust was established using sequential hydrothermal and deep eutectic solvent treatment (HP-DES). Results showed that single hydrothermal pretreatment (HP) could produce 53.2% xylo-oligosaccharides (XOS) (based on raw xylan), while the enzymatic digestibility was low. Conversely, single DES treatment achieved effective enzymatic digestibility but low XOS yields. As compared to HP, both DES treatment and HP-DES showed high selectivity for lignin removal and high glucose yield. Surprisingly, most of HP-DES residues had obviously lower enzymatic digestibilities than those of single DES residues. This was mainly explained by the differences of the surface lignin contents between DES and HP-DES residues. Moreover, nearly complete enzymatic hydrolysis of HP-DES residues was achieved with the addition of bovine serum albumin. This work demonstrated this HP-DES yielded XOS, fermentable sugar, and pure lignin with high processibility.
Collapse
Affiliation(s)
- Buzhen Shen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Shuwen Hou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yuan Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chundong Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yan Su
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China
| |
Collapse
|
33
|
Wang W, Lee DJ. Lignocellulosic biomass pretreatment by deep eutectic solvents on lignin extraction and saccharification enhancement: A review. BIORESOURCE TECHNOLOGY 2021; 339:125587. [PMID: 34303094 DOI: 10.1016/j.biortech.2021.125587] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Biomass recalcitrance hinders efficient utilization of lignocellulosic biomass, making pretreatment process a crucial step for successful biorefinery process. Pretreatment processes have been developed for processing biomass, while technical obstacles including intensive energy requirement, high operational cost, equipment corrosions resulted from currently applied techniques promote the development of new pretreatment process for biomass. The deep eutectic solvent (DES) has been recognized as a promising solvent for biomass pretreatment, although the DES application toward biomass is still in its nascent stage. This review summarized the current researches using DES for biomass pretreatment, focusing particularly on lignin extraction and saccharification enhancement of lignocellulosic biomass. The mechanisms for biomass fractionation using DES as agents are introduced. Prospect and challenge were outlined.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Chemistry Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
34
|
Nguyen LT, Tran MH, Lee EY. Co-upgrading of ethanol-assisted depolymerized lignin: A new biological lignin valorization approach for the production of protocatechuic acid and polyhydroxyalkanoic acid. BIORESOURCE TECHNOLOGY 2021; 338:125563. [PMID: 34284296 DOI: 10.1016/j.biortech.2021.125563] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
This study presents a promising biological co-upgrading of ethanol-assisted depolymerized lignin (EDL) into protocatechuic acid (PCA) and polyhydroxyalkanoic acid (PHA) without any separation process. A depolymerized alkali lignin containing various G-lignin-type monomers at a concentration of 77 mg/mL was used for co-upgrading. An engineered Pseudomonas putida KT2440 strain was constructed by knocking out the protocatechuate 3, 4-dioxygenase, expression of the formaldehyde utilization pathway, and the expression of aldehyde dehydrogenase to enhance the efficiency of the ethanol utilization pathway. The growth and production of value-added bioproducts have been promoted by the utilization of formaldehyde, resulted in 6.73 ± 0.26 mg/L of PCA with a 17.5% (w/w) yield of total lignin monomers, and 303.66 ± 26.75 mg/L of PHA with 21.26% (w/w) of dry cell weight from 0.5 mL EDL. Moreover, the ethanol solvent used for lignin depolymerization was also utilized along with depolymerized lignin for co-upgrading to value-added products.
Collapse
Affiliation(s)
- Linh Thanh Nguyen
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - My Ha Tran
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
35
|
Zhao X, Meng X, Ragauskas AJ, Lai C, Ling Z, Huang C, Yong Q. Unlocking the secret of lignin-enzyme interactions: Recent advances in developing state-of-the-art analytical techniques. Biotechnol Adv 2021; 54:107830. [PMID: 34480987 DOI: 10.1016/j.biotechadv.2021.107830] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/07/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
Bioconversion of renewable lignocellulosics to produce liquid fuels and chemicals is one of the most effective ways to solve the problem of fossil resource shortage, energy security, and environmental challenges. Among the many biorefinery pathways, hydrolysis of lignocellulosics to fermentable monosaccharides by cellulase is arguably the most critical step of lignocellulose bioconversion. In the process of enzymatic hydrolysis, the direct physical contact between enzymes and cellulose is an essential prerequisite for the hydrolysis to occur. However, lignin is considered one of the most recalcitrant factors hindering the accessibility of cellulose by binding to cellulase unproductively, which reduces the saccharification rate and yield of sugars. This results in high costs for the saccharification of carbohydrates. The various interactions between enzymes and lignin have been explored from different perspectives in literature, and a basic lignin inhibition mechanism has been proposed. However, the exact interaction between lignin and enzyme as well as the recently reported promotion of some types of lignin on enzymatic hydrolysis is still unclear at the molecular level. Multiple analytical techniques have been developed, and fully unlocking the secret of lignin-enzyme interactions would require a continuous improvement of the currently available analytical techniques. This review summarizes the current commonly used advanced research analytical techniques for investigating the interaction between lignin and enzyme, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy (FLS), and molecular dynamics (MD) simulations. Interdisciplinary integration of these analytical methods is pursued to provide new insight into the interactions between lignin and enzymes. This review will serve as a resource for future research seeking to develop new methodologies for a better understanding of the basic mechanism of lignin-enzyme binding during the critical hydrolysis process.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chenhuan Lai
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
36
|
Serna-Vázquez J, Ahmad MZ, Boczkaj G, Castro-Muñoz R. Latest Insights on Novel Deep Eutectic Solvents (DES) for Sustainable Extraction of Phenolic Compounds from Natural Sources. Molecules 2021; 26:5037. [PMID: 34443623 PMCID: PMC8401793 DOI: 10.3390/molecules26165037] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
Phenolic compounds have long been of great importance in the pharmaceutical, food, and cosmetic industries. Unfortunately, conventional extraction procedures have a high cost and are time consuming, and the solvents used can represent a safety risk for operators, consumers, and the environment. Deep eutectic solvents (DESs) are green alternatives for extraction processes, given their low or non-toxicity, biodegradability, and reusability. This review discusses the latest research (in the last two years) employing DESs for phenolic extraction, solvent components, extraction yields, extraction method characteristics, and reviewing the phenolic sources (natural products, by-products, wastes, etc.). This work also analyzes and discusses the most relevant DES-based studies for phenolic extraction from natural sources, their extraction strategies using DESs, their molecular mechanisms, and potential applications.
Collapse
Affiliation(s)
- Julio Serna-Vázquez
- Tecnologico de Monterrey, Campus Ciudad de México, Calle del Puente 222, Ejidos de Huipulco, Ciudad de México 14380, Mexico;
| | - Mohd Zamidi Ahmad
- Organic Materials Innovation Center (OMIC), Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland;
| | - Roberto Castro-Muñoz
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland;
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
| |
Collapse
|
37
|
Yin C, Wang M, Ma Q, Bian H, Ren H, Dai H, Cheng J. Valorization of Rice Straw via Hydrotropic Lignin Extraction and Its Characterization. Molecules 2021; 26:molecules26144123. [PMID: 34299398 PMCID: PMC8305794 DOI: 10.3390/molecules26144123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 11/27/2022] Open
Abstract
Rice straw hydrotropic lignin was extracted from p-Toluene sulfonic acid (p-TsOH) fractionation with a different combined delignification factor (CDF). Hydrotropic lignin characterization was systematically investigated, and alkaline lignin was also studied for the contrast. Results showed that the hydrotropic rice straw lignin particle was in nanometer scopes. Compared with alkaline lignin, the hydrotropic lignin had greater molecular weight. NMR analysis showed that β-aryl ether linkage was well preserved at low severities, and the unsaturation in the side chain of hydrotropic lignin was high. H units and G units were preferentially degraded and subsequently condensed at high severity. High severity also resulted in the cleavage of part β-aryl ether linkage. 31P-NMR showed the decrease in aliphatic hydroxyl groups and the increasing carboxyl group content at high severity. The maximum weight loss temperature of the hydrotropic lignin was in the range of 330–350 °C, higher than the alkaline lignin, and the glass conversion temperature (Tg) of the hydrotropic lignin was in the range of 107–125 °C, lower than that of the alkaline lignin. The hydrotropic lignin has high β-aryl ether linkage content, high activity, nanoscale particle size, and low Tg, which is beneficial for its further valorization.
Collapse
Affiliation(s)
- Chongxin Yin
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (M.W.); (H.B.); (H.R.); (H.D.)
| | - Min Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (M.W.); (H.B.); (H.R.); (H.D.)
| | - Qingzhi Ma
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Huiyang Bian
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (M.W.); (H.B.); (H.R.); (H.D.)
| | - Hao Ren
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (M.W.); (H.B.); (H.R.); (H.D.)
| | - Hongqi Dai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (M.W.); (H.B.); (H.R.); (H.D.)
| | - Jinlan Cheng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; (C.Y.); (M.W.); (H.B.); (H.R.); (H.D.)
- Correspondence:
| |
Collapse
|