1
|
Parab C, Yadav KD. A review on green waste composting, role of additives and composting methods for process acceleration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63473-63500. [PMID: 39495446 DOI: 10.1007/s11356-024-35429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Effective disposal of green waste has been a challenging task faced by urban bodies for a long time. Composting can be an effective method to manage green waste by recovering nutrients that can be used as organic manure. However, there are some limitations to green waste composting, such as a low degradation rate and the requirement for high manpower and space. Many researchers have studied ways to minimize the limitations of green waste composting through different approaches. These include the use of co-composting materials, inoculating agents, and process modifications such as multi-stage composting. In this review, we systematically summarized the physicochemical characteristics of green waste and green waste compost, optimum ratios of additives, and process modifications during the composting of green waste reported in various articles. This review is helpful for early-career researchers and individuals new to the field of green waste composting by providing them with key concepts and recent developments in the field. The study suggests that the sustainable selection of additives or methods for composting green waste should depend on resource availability, climatic conditions, and the characterization of the feedstock.
Collapse
Affiliation(s)
- Chandrashekhar Parab
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India.
| | - Kunwar D Yadav
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| |
Collapse
|
2
|
Li F, Yuan Q, Li M, Zhou J, Gao H, Hu N. Nitrogen retention and emissions during membrane-covered aerobic composting for kitchen waste disposal. ENVIRONMENTAL TECHNOLOGY 2024; 45:4397-4407. [PMID: 37615415 DOI: 10.1080/09593330.2023.2252162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The composting performance and nitrogen transformation during membrane-covered aerobic composting of kitchen waste were investigated. The aerobic composting products of the kitchen waste had a high seed germination index of ∼180%. The application of the membrane increased the mean temperature in the early cooling stage of composting by 4.5℃, resulted in a lower moisture content, and reduced the emissions of NH3 and N2O by 48.5% and 44.1%, respectively, thereby retaining 7.9% more nitrogen in the compost. The adsorption of the condensed water layer under inner-membrane was the reason for reducing NH3 emissions, and finite element modeling revealed that the condensed water layer was present throughout the composting process with a maximum thickness of ∼2 mm in the thermophilic stage. The reduction of N2O emissions was related to the micro-positive pressure in the reactor, which promoted the distribution of oxygen, thus weakening denitrification. In addition, the membrane cover decreased the diversity of the bacterial community and increased the diversity of ammonia-oxidizing strains. This study confirmed that membrane-covered composting was suitable for kitchen waste management and could be used as a strategy to mitigate NH3 and N2O emissions.
Collapse
Affiliation(s)
- Fei Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Qingbin Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Meng Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Haofeng Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Nan Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Wang L, Chang R, Ren Z, Meng X, Li Y, Gao M. Mature compost promotes biodegradable plastic degradation and reduces greenhouse gas emission during food waste composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172081. [PMID: 38554961 DOI: 10.1016/j.scitotenv.2024.172081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Mature compost can promote the transformation of organic matter (OM) and reduce the emission of polluting gases during composting, which provides a viable approach to reduce the environmental impacts of biodegradable plastics (BPs). This study investigated the impact of mature compost on polybutylene adipate terephthalate (PBAT) degradation, greenhouse gas (GHG) emission, and microbial community structure during composting under two treatments with mature compost (MC) and without (CK). Under MC, visible plastic rupture was advanced from day 14 to day 10, and a more pronounced rupture was observed at the end of composting. Compared with CK, the degradation rate of PBAT in MC was increased by 4.44 % during 21 days of composting. Thermobifida, Ureibacillus, and Bacillus, as indicator species under MC treatment, played an important role in PBAT decomposition. Mature compost reduced the total global warming potential (GWP) by 25.91 % via inhibiting the activity of bacteria related to the production of CH4 and N2O. Functional Annotation of Prokaryotic Taxa (FAPROTAX) further revealed that mature compost addition increased relative abundance of bacteria related to multiple carbon (C) cycle functions such as methylotrophy, hydrocarbon degradation and cellulolysis, inhibited nitrite denitrification and denitrification, thus alleviating the emission of GHGs. Overall, mature compost, as an effective additive, exhibits great potential to simultaneously mitigate BP and GHG secondary pollution in co-composting of food waste and PBAT.
Collapse
Affiliation(s)
- Lingxiao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ruixue Chang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiping Ren
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xin Meng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Miao Gao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Xu Z, Gao X, Li G, Nghiem LD, Luo W, Zhang F. Microbial Sources and Sinks of Nitrous Oxide during Organic Waste Composting. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7367-7379. [PMID: 38644786 DOI: 10.1021/acs.est.3c10341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Composting is widely used for organic waste management and is also a major source of nitrous oxide (N2O) emission. New insight into microbial sources and sinks is essential for process regulation to reduce N2O emission from composting. This study used genome-resolved metagenomics to decipher the genomic structures and physiological behaviors of individual bacteria for N2O sources and sinks during composting. Results showed that several nosZ-lacking denitrifiers in feedstocks drove N2O emission at the beginning of the composting. Such emission became negligible at the thermophilic stage, as high temperatures inhibited all denitrifiers for N2O production except for those containing nirK. The nosZ-lacking denitrifiers were notably enriched to increase N2O production at the cooling stage. Nevertheless, organic biodegradation limited energy availability for chemotaxis and flagellar assembly to restrain nirKS-containing denitrifiers for nitrate reduction toward N2O sources but insignificantly interrupt norBC- and nosZ-containing bacteria (particularly nosZ-containing nondenitrifiers) for N2O sinks by capturing N2O and nitric oxide (NO) for energy production, thereby reducing N2O emission at the mature stage. Furthermore, nosZII-type bacteria included all nosZ-containing nondenitrifiers and dominated N2O sinks. Thus, targeted strategies can be developed to restrict the physiological behaviors of nirKS-containing denitrifiers and expand the taxonomic distribution of nosZ for effective N2O mitigation in composting.
Collapse
Affiliation(s)
- Zhicheng Xu
- Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xingzu Gao
- Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo 2007, NSW, Australia
| | - Wenhai Luo
- Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Fusuo Zhang
- Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Zhang W, Bei K, Jin Z, Zhao M, Wu S, Jiang S, Jin H, Zheng X. Subtle magnesium liberation of self-fabricated functional filler actuates highly efficient phosphorus removal from source-separated urine by SBBR. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24360-24374. [PMID: 38443536 DOI: 10.1007/s11356-024-32727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Domestic wastewater source-separated treatment has attracted wide attention due to the efficiency improvement of sewage treatment systems, energy saving, resource reuse, and the construction and operation cost saving of pipeline networks. Nonetheless, the excess source-separated urine still demands further harmless treatment. Sequencing batch biofilm reactor (SBBR), a new type of composite biofilm reactor developed by filling different fillers into the sequential batch reactor (SBR) reactor, has higher pollutant removal performance and simpler operation and maintenance. However, the phosphorus removal ability of the SBBR filling with conventional fillers is still limited and needs further improvement. In this study, we developed two new fillers, the self-fabricated filler A and B (SFA/SFB), and compared their source-separated urine treatment performance. Long-term treatment experimental results demonstrated that the SBBR systems with different fillers had good removal performance on the COD and TN in the influent, and the removal rate increased with the increasing HRT. However, only the SBBR system with the SFA showed excellent PO43--P and TP removal performance, with the removal rates being 83.7 ± 11.9% and 77.3 ± 13.7% when the HRT was 1 d. Microbial community analysis results indicated that no special bacteria with strong phosphorus removal ability were present on the surface of the SFA. Adsorption experimental results suggested that the SFA had better adsorption performance for phosphorus than the SFB, but it could not always have stronger phosphorus adsorption and removal performance during long-term operation due to the adsorption saturation. Through a series of characterizations such as SEM, XRD, and BET, it was found that the SFA had a looser structure due to the use of different binder and production processes, and the magnesium in the SFA gradually released and reacted with PO43- and NH4+ in the source-separated urine to form dittmarite and struvite, thus achieving efficient phosphorus removal. This study provides a feasible manner for the efficient treatment of source-separated urine using the SBBR system with self-fabricated fillers.
Collapse
Affiliation(s)
- Weinan Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Ke Bei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Zhan Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Suqing Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Shunfeng Jiang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Huachang Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
- Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Cheng J, Zhang L, Gao X, Shi T, Li G, Luo W, Qi C, Xu Z. Multi-stage aeration regime to regulate organic conversion toward gas alleviation and humification in food waste digestate composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120809. [PMID: 38583382 DOI: 10.1016/j.jenvman.2024.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Aerobic composting has been considered as a pragmatic technique to convert food waste digestate into high-quality biofertiliser. Nevertheless, massive gaseous emission and immature product remain the primary challenges in food waste digestate composting. Thus, the performance of multi-stage aeration regimes to improve gaseous emissions and organic humification during food waste digestate composting was investigated in this study. In addition to continuous aeration with a constant intensity of 0.3 L kg·dry mass (DM)-1·min-1, two multi-stage decreased aeration regimes were designed as "0.3-0.2-0.1" and "0.3-0.1-0.1" L·kg·DM-1·min-1 from the thermophilic to cooling and then mature stages, respectively. Results showed that the decreased aeration regimes could alleviate nitrous oxide (N2O) and ammonia (NH3) emission and slightly enhance humification during composting. The alleviated N2O and NH3 emission were mainly contributed by abiotically reducing gaseous release potential as well as biotically inactivating denitrifers (Pusillimonas and Pseudidiomarina) and proliferating Atopobium to reduce nitrate availability under lower aeration supply. The "0.3-0.2-0.1 L kg·DM-1·min-1" regime exhibited a more excellent performance to alleviate N2O and NH3 emission by 27.5% and 16.3%, respectively. Moreover, the decreased aeration regimes also favored the enrichment of functional bacteria (Caldicoprobacter and Syntrophomonas) to accelerate lignocellulosic biodegradation and thus humic acid synthesis by 6.5%-11.2%. Given its better performance to improve gaseous emissions and humification, the aeration regime of "0.3-0.2-0.1 L kg·DM-1·min-1" are recommended in food waste digestate composting in practice.
Collapse
Affiliation(s)
- Jingwen Cheng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Tong Shi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Zhang X, Zhang D, Yan Y, Wang R, Chi Y, Zhang D, Zhou P, Chu S. Enhancing aerobic composting performance of high-salt oily food waste with Bacillus safensis YM1. BIORESOURCE TECHNOLOGY 2024; 397:130475. [PMID: 38387845 DOI: 10.1016/j.biortech.2024.130475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
To alleviate the inhibitory effects of salt and oil on food waste compost, the compost was inoculated with salt-tolerant and oil-degrading Bacillus safensis YM1. The YM1 inoculation could effectively improve compost maturation index. Compared with uninoculated group, the oil content and Cl- concentration in the 0.5% YM1-inoculated compost decreased significantly by 19.7% and 8.1%, respectively. The addition of the YM1 inoculant substantially altered the richness and composition of the microbial community during composting, as evidenced by the identification of 47 bacterial and 42 fungal biomarker taxa. The enrichment of some oil-degrading salt-tolerant microbes (Bacillus, Haloplasma, etc.) enhanced nutrient conversion, which is crucial for the improved maturity of the YM1 compost. This study demonstrated that YM1 could regulate both abiotic and biotic processes to improve high-salt and oily food waste composting, which may be an effective inoculant in the industrial-scale composting.
Collapse
Affiliation(s)
- Xia Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Bor S. Luh Food Safety Research Center, Shanghai 200240, People's Republic of China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Bor S. Luh Food Safety Research Center, Shanghai 200240, People's Republic of China
| | - Yiru Yan
- School of Agriculture and Biology, Shanghai Jiaotong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Bor S. Luh Food Safety Research Center, Shanghai 200240, People's Republic of China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Bor S. Luh Food Safety Research Center, Shanghai 200240, People's Republic of China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiaotong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Bor S. Luh Food Safety Research Center, Shanghai 200240, People's Republic of China
| | - Dongwei Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Bor S. Luh Food Safety Research Center, Shanghai 200240, People's Republic of China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiaotong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Bor S. Luh Food Safety Research Center, Shanghai 200240, People's Republic of China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiaotong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Bor S. Luh Food Safety Research Center, Shanghai 200240, People's Republic of China.
| |
Collapse
|
8
|
Yang J, Du Z, Huang C, Li W, Xi B, Zhu L, Wu X. Dynamics of microbial functional guilds involved in the humification process during aerobic composting of chicken manure on an industrial scale. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21044-21056. [PMID: 38381293 DOI: 10.1007/s11356-024-32390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Proper composting treatment of poultry manure waste is recommended before its use as a fertilizer. This involves many bioprocesses driven by microorganisms. Therefore, it is important to understand microbial mechanisms behind these bioprocesses in manure composting systems. Many efforts have been made to study the microbial community structure and diversity in these systems using high-throughput sequencing techniques. However, the dynamics of microbial interaction and functionality, especially for key microbial functional guilds, are not yet fully understood. To address these knowledge gaps, we collected samples from a 150-day industrial chicken manure composting system and performed the microbial network analysis based on the sequencing data. We found that the family Bacillaceae and genus Bacillus might play important roles in organic matter biodegradation at the mesophilic/thermophilic phases. Genera Virgibacillus, Gracilibacillus, Nocardiopsis, Novibacillus, and Bacillaceae_BM62 were identified as the key ones for humic acid synthesis at the mature phases. These findings improve our understanding about the fundamental mechanisms behind manure composting and can aid the development of microbial agents to promote manure composting performance.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Beiyuan Road, Chaoyang District, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhe Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Beiyuan Road, Chaoyang District, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Beiyuan Road, Chaoyang District, Beijing, 100012, China.
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Beiyuan Road, Chaoyang District, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Beiyuan Road, Chaoyang District, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lin Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Beiyuan Road, Chaoyang District, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xinxin Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Beiyuan Road, Chaoyang District, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
9
|
Zhang L, Yang Y, Bao Z, Zhang X, Yao S, Li Y, Li G, Wang D, Li Q, Yuan J. Plant-derived biochar amendment for compost maturity improvement and gaseous emission reduction in food waste composting: Insight from bacterial community and functions. CHEMOSPHERE 2024; 352:141457. [PMID: 38378050 DOI: 10.1016/j.chemosphere.2024.141457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
This study assessed the impact of different plant-derived biochar (cornstalk, rice husk, and sawdust) on bacterial community and functions for compost maturity and gaseous emissions during the composting of food waste. Results showed that all biochar strengthened organic biotransformation and caused a higher germination index on day 12 (over 100%), especially for rice husk biochar to enhance the growth of Thermobifida related to aerobic chemoheterotrophy. Rice husk biochar also achieved a relatively higher reduction efficiency of methane (85.8%) and ammonia (82.7%) emissions since its greater porous structure. Besides, the growth of Pseudomonas, Pusillimonas, and Desulfitibacter was restricted to constrict nitrate reduction, nitrite respiration, and sulfate respiration by optimized temperature and air permeability, thus reducing nitrous oxide and hydrogen sulfide emissions by 48.0-57.3% by biochar addition. Therefore, rice husk biochar experienced the optimal potential for maturity increment and gaseous emissions mitigation.
Collapse
Affiliation(s)
- Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Ziyang Bao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Xuanshuo Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Sheng Yao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China.
| | - Dingmei Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China.
| |
Collapse
|
10
|
Li M, Duan L, Li S, Wang D, Gao Q, Yu H, Zhang J, Jia Y. Differences in greenhouse gas emissions and microbial communities between underground and conventionally constructed wastewater treatment plants. BIORESOURCE TECHNOLOGY 2024; 396:130421. [PMID: 38320713 DOI: 10.1016/j.biortech.2024.130421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Large quantities of greenhouse gases (GHGs) are emitted into the atmosphere during wastewater treatment. In this study, GHG and microbial samples were collected from four wastewater treatment plants (WWTPs), and their differences and relationships were assessed. The study showed that, compared with conventionally constructed WWTPs, well-established gas collection systems in underground WWTPs facilitate comprehensive collection and accurate accounting of GHGs. In aboveground WWTPs, capped anoxic ponds promote methane production releasing it at 2-8 times the rate of uncapped emissions, in contrast to nitrous oxide emissions. Moreover, a stable subsurface environment allows for smaller fluctuations in daily GHG emissions and higher microbial diversity and abundance. This study highlights differences in GHG emission fluxes and microbial communities in differently constructed WWTPs, which are useful for control and accurate accounting of GHG emissions.
Collapse
Affiliation(s)
- Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Shilong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Dawei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Juanjuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yanyan Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
11
|
Wang X, Liu N, Zeng R, Liu G, Yao H, Fang J. Change of core microorganisms and nitrogen conversion pathways in chicken manure composts by different substrates to reduce nitrogen losses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14959-14970. [PMID: 38285254 DOI: 10.1007/s11356-024-31901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Due to the rapid development of animal husbandry, the associated environmental problems cannot be ignored, with the management of livestock and poultry manure emerging as the most prominent issue. Composting technology has been widely used in livestock and poultry manure management. A deeper understanding of the nitrogen conversion process during composting offers a theoretical foundation for selecting compost substrates. In this study, the effects of sawdust (CK) and spent mushroom compost (T1) as auxiliary materials on nitrogen as well as microbial structure in the composting process when composted with chicken manure were investigated. At the end of composting, the nitrogen loss of T1 was reduced by 17.18% relative to CK. When used as a compost substrate, spent mushroom compost accelerates the succession of microbial communities within the compost pile and alters the core microbial communities within the microbial community. Bacterial genera capable of cellulose degradation (Fibrobacter, Herbinix) are new core microorganisms that influence the assimilation of nitrate reduction during compost maturation. Using spent mushroom compost as a composting substrate increased the enzyme activity of nitrogen assimilation while decreasing the enzyme activity of the denitrification pathway.
Collapse
Affiliation(s)
- Xinyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Naiyuan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Rong Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Co., LTD, Changsha, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China.
| |
Collapse
|
12
|
Ji Y, Cao Y, Wang Y, Wang C, Qin Z, Cai W, Yang Y, Yan S, Guo X. Effects of adding lignocellulose-degrading microbial agents and biochar on nitrogen metabolism and microbial community succession during pig manure composting. ENVIRONMENTAL RESEARCH 2023; 239:117400. [PMID: 37838195 DOI: 10.1016/j.envres.2023.117400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
This study assessed the influence of the additions of lignocellulose-degrading microbial agents and biochar on nitrogen (N) metabolism and microbial community succession during pig manure composting. Four treatments were established: CK (without additives), M (lignocellulose-degrading microbial agents), BC (biochar), and MBC (lignocellulose-degrading microbial agents and biochar). The results revealed that all treatments with additives decreased N loss compared with CK. In particular, the concentrations of total N and NO3--N were the highest in M, which were 21.87% and 188.67% higher than CK, respectively. Meanwhile, the abundance of denitrifying bacteria Flavobacterium, Enterobacter, and Devosia reduced with additives. The roles of Anseongella (nitrifying bacterium) and Nitrosomonas (ammonia-oxidizing bacterium) in NO3--N transformation were enhanced in M and BC, respectively. N metabolism pathway prediction indicated that lignocellulose-degrading microbial agents addition could enhance N retention effectively mainly by inhibiting denitrification. The addition of biochar enhanced oxidation of NH4+-N to NO2--N and N fixation, as well as inhibited denitrification. These results revealed that the addition of lignocellulose-degrading microbial agents individually was more conducive to improve N retention in pig manure compost.
Collapse
Affiliation(s)
- Yahui Ji
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yanzhuan Cao
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yan Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Chang Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zhenghui Qin
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Wenrun Cai
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Shuangdui Yan
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
13
|
Rao JN, Parsai T. A comprehensive review on the decentralized composting systems for household biodegradable waste management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118824. [PMID: 37696186 DOI: 10.1016/j.jenvman.2023.118824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 09/13/2023]
Abstract
Municipal solid waste primarily consists of household biodegradable waste (HBW). HBW treatment is a crucial step in many countries due to rapid urbanization. Composting is an effective technique to treat HBW. However, conventional composting systems are unable to produce matured compost (MC), as well as releasing huge amounts of greenhouse and odorous gases. Therefore, this review attempts to suggest suitable composting system to manage HBW, role of additives and bulking agents in composting process, identify knowledge gaps and recommend future research directions. Centralized composting systems are unable to produce MC due to improper sorting and inadequate aeration for composting substrate. Recently, decentralized compost systems (DCS) are becoming more popular due to effective solid waste reduction at the household and/or community level itself, thereby reducing the burden on municipalities. Solid waste sorting and aeration for the composting substrate is easy at DCS, thereby producing MC. However, Mono-composting of HBW in DCS leads to production of immature compost and release greenhouse and odorous gases due to lower free air space and carbon-to-nitrogen ratios, and higher moisture content. Mixing HBW with additives and bulking agents in DCS resulted in a proper initial substrate for composting, allowing rapid degradation of substrate due to longer duration of thermophilic phase and produce MC within a shorter duration. However, people have lack of awareness about solid waste management is the biggest challenge. More studies are needed to eliminate greenhouse and odorous gases emissions by mixing different combinations of bulking agents and additives (mainly microbial additives) to HBW in DCS.
Collapse
Affiliation(s)
- Jakki Narasimha Rao
- Research scholar, School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| | - Tanushree Parsai
- Assistant professor, Department of Civil Engineering, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
14
|
Zhang L, Gao X, Li Y, Li G, Luo W, Xu Z. Optimization of free air space to regulate bacterial succession and functions for alleviating gaseous emissions during kitchen waste composting. BIORESOURCE TECHNOLOGY 2023; 387:129682. [PMID: 37586431 DOI: 10.1016/j.biortech.2023.129682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
This study investigated the effects of free air space (FAS) (45%, 55%, 65%) on bacterial dynamics for gaseous emissions during kitchen waste composting. Results show that FAS increase from 45% to 65% elevated oxygen diffusivity to inhibit bacteria for fermentation (e.g. Caldicoprobacter and Ruminofilibacter) to reduce methane emission by 51%. Moreover, the increased FAS accelerated heat loss to reduce temperature and the abundance of thermophiles (e.g. Thermobifida and Thermobacillus) for aerobic chemoheterotrophy to mitigate ammonia emission by 32%. Nevertheless, the reduced temperature induced the growth of Desulfitibacter and Desulfobulbus for sulfate/sulfite respiration to boost hydrogen sulphide emission. By contrast, FAS at 55% achieved the highest germination index and favored the proliferation of nitrifiers and denitrifiers (e.g. Roseiflexus and Steroidobacter) to improve nitrate availability, thus slightly enhancing nitrous oxide emission. Thus, FAS at 55% exhibits the optimal performance for gaseous emission reduction and maturity enhancement in kitchen waste composting.
Collapse
Affiliation(s)
- Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Chen X, Zhao Y, Yang L, Yang Y, Wang L, Wei Z, Song C. Identifying the specific pathways to improve nitrogen fixation of different straw biochar during chicken manure composting based on its impact on the microbial community. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:8-16. [PMID: 37531741 DOI: 10.1016/j.wasman.2023.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
The application of straw biochar to chicken manure composting mitigated nitrogen loss. However, the impact of biochar derived from different types of straw on nitrogen fixation in chicken manure composting is discrepant, and the specific pathways remain unclear. Therefore, this study aimed to clarify the specific pathways of maize straw biochar (M) and rice straw biochar (R) to improve nitrogen fixation during chicken manure composting. The nitrogen losses in control (no addition, CK), M, and R composting were 51.84 %, 33.47 %, and 38.24 %, respectively, suggesting that adding straw biochar effectively improved nitrogen fixation. Microbial community analysis suggested that inhibiting denitrification and NH4+-N transformation by microorganisms was the primary means of improving nitrogen fixation. Meanwhile, biochar addition reduced the number of bacteria participating in nitrogen transformation and strengthened the NO3--N and total organic nitrogen transformation processes, among which the effect of M composting was stronger. The stronger effect was attributed to the significant role of the core microorganisms in M composting in shifting the transformation processes of the nitrogen components (P < 0.05). Therefore, the function of different straw biochar was determined by its different impacts on the microbial community, highlighting the important role of microbial community variability.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liu Yang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunan Yang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
16
|
Zou SP, Liu RS, Luo Y, Bo CT, Tang SQ, Xue YP, Zheng YG. Effects of fungal agents and biochar on odor emissions and microbial community dynamics during in-situ treatment of food waste. BIORESOURCE TECHNOLOGY 2023; 380:129095. [PMID: 37100303 DOI: 10.1016/j.biortech.2023.129095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
The effects of the co-addition of fungal agents and biochar on physicochemical properties, odor emissions, microbial community structure, and metabolic functions were investigated during the in-situ treatment of food waste. The combined addition of fungal agents and biochar decreased cumulative NH3, H2S, and VOCs emissions by 69.37%, 67.50%, and 52.02%, respectively. The predominant phyla throughout the process were Firmicutes, Actinobacteria, Cyanobacteria, and Proteobacteria. Combined treatment significantly impacted the conversion and release of nitrogen from the perspective of the variation of nitrogen content between different forms. FAPROTAX analysis revealed that the combined application of fungal agents and biochar could effectively inhibit nitrite ammonification and reduce the emission of odorous gases. This work aims to clarify the combined effect of fungal agents and biochar on odor emission and provide a theoretical basis for developing an environmentally friendly in-situ efficient biological deodorization (IEBD) technology.
Collapse
Affiliation(s)
- Shu-Ping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ru-Sheng Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Luo
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chun-Tao Bo
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su-Qin Tang
- Hangzhou Environmental Group Company Limited, Hangzhou 310022, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
17
|
Zhang Z, Duan C, Liu Y, Li A, Hu X, Chen J, Zhang S, Li X, Che R, Li S, Ekelund F, Cui X. Green waste and sewage sludge feeding ratio alters co-composting performance: Emphasis on the role of bacterial community during humification. BIORESOURCE TECHNOLOGY 2023; 380:129014. [PMID: 37028527 DOI: 10.1016/j.biortech.2023.129014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/14/2023]
Abstract
Composting with five levels of green waste and sewage sludge was compared to examine how feeding ratios affected composting performance with special focus on humification, and the underlying mechanisms. The results showed that the raw material ratio persistently affected compost nutrients and stability. Humification and mineralization were promoted by higher proportion of sewage sludge. Bacterial community composition and within-community relationships were also significantly affected by the raw material feeding ratio. Network analysis indicated that clusters 1 and 4 which dominated by Bacteroidetes, Proteobacteria, and Acidobacteria shown significantly positive correlation with humic acid concentration. Notably, the structural equational model and variance partitioning analysis demonstrated that bacterial community structure (explained 47.82% of the variation) mediated the effect of raw material feeding ratio on humification, and exceeded the effect of environmental factors (explained 19.30% of the variation) on humic acid formation. Accordingly, optimizing the composting raw material improves the composting performance.
Collapse
Affiliation(s)
- Zejin Zhang
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biology, University of Copenhagen, Copenhagen Ø DK-2100, Denmark
| | - Changqun Duan
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
| | - Yuxian Liu
- Yuxi Experimental Senior High School, Yuxi 653100, China
| | - Anning Li
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
| | - Xi Hu
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
| | - Jingkun Chen
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Song Zhang
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Xin Li
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Rongxiao Che
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Shiyu Li
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China.
| | - Flemming Ekelund
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; Department of Biology, University of Copenhagen, Copenhagen Ø DK-2100, Denmark
| | - Xiaoyong Cui
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Li H, Tan L, Liu W, Li X, Zhang D, Xu Y. Unraveling the effect of added microbial inoculants on ammonia emissions during co-composting of kitchen waste and sawdust: Core microorganisms and functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162522. [PMID: 36868270 DOI: 10.1016/j.scitotenv.2023.162522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Despite the role of microorganisms in nitrogen biotransformation has been extensively explored, how microorganisms mitigate NH3 emissions in the transformation of nitrogen throughout the composting system is rarely addressed. The present study explored the effect of microbial inoculants (MIs) and the contribution of different composted phases (solid, leachate, and gas) on NH3 emissions by constructing a co-composting system of kitchen waste and sawdust with and without the addition of MI. The results showed that NH3 emissions increased markedly after adding MIs, in which the contribution of leachate ammonia volatilization to NH3 emissions was most prominent. The core microorganisms of NH3 emission had a clear proliferation owing to the MIs reshaping community stochastic process. Also, MIs can strengthen the co-occurrence between microorganisms and functional genes of nitrogen to promote nitrogen metabolism. In particular, the abundances of nrfA, nrfH, and nirB genes, which could augment the dissimilatory nitrate reduction process, were increased, thus enhancing NH3 emissions. This study bolsters the fundamental, community-level understanding of nitrogen reduction treatments for agricultural.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wei Liu
- Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Switzerland.
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Switzerland.
| |
Collapse
|
19
|
Martins GL, de Souza AJ, Mendes LW, Gontijo JB, Rodrigues MM, Coscione AR, Oliveira FC, Regitano JB. Physicochemical and bacterial changes during composting of vegetable and animal-derived agro-industrial wastes. BIORESOURCE TECHNOLOGY 2023; 376:128842. [PMID: 36898559 DOI: 10.1016/j.biortech.2023.128842] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
This study investigates the impact of different agro-industrial organic wastes (i.e., sugarcane filter cake, poultry litter, and chicken manure) on the bacterial community and their relationship with physicochemical attributes during composting. Integrative analysis was performed by combining high-throughput sequencing and environmental data to decipher changes in the waste microbiome. The results revealed that animal-derived compost stabilized more carbon and mineralized a more organic nitrogen than vegetable-derived compost. Composting enhanced bacterial diversity and turned the bacterial community structure similar among all wastes, reducing Firmicutes abundance in animal-derived wastes. Potential biomarkers indicating compost maturation were Proteobacteria and Bacteroidota phyla, Chryseolinea genus and Rhizobiales order. The waste source influenced the final physicochemical attributes, whereas composting enhanced the complexity of the microbial community in the order of poultry litter > filter cake > chicken manure. Therefore, composted wastes, mainly the animal-derived ones, seem to present more sustainable attributes for agricultural use, despite their losses of C, N, and S.
Collapse
Affiliation(s)
- Guilherme Lucio Martins
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Adijailton José de Souza
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Júlia Brandão Gontijo
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Mayra Maniero Rodrigues
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Aline Renée Coscione
- Center of Soil and Agroenviromental Resources, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | | | - Jussara Borges Regitano
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil.
| |
Collapse
|
20
|
Liu J, Shen Y, Ding J, Luo W, Zhou H, Cheng H, Wang H, Zhang X, Wang J, Xu P, Cheng Q, Ma S, Chen K. High oil content inhibits humification in food waste composting by affecting microbial community succession and organic matter degradation. BIORESOURCE TECHNOLOGY 2023; 376:128832. [PMID: 36889602 DOI: 10.1016/j.biortech.2023.128832] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Composting is an effective technology to realize resource utilization of food waste in rural China. However, high oil content in food waste limits composting humification. This study investigated the effects of blended plant oil addition at different proportions (0, 10, 20, and 30%) on the humification of food waste composting. Oil addition at 10%-20% enhanced lignocellulose degradation by 16.6%-20.8% and promoted humus formation. In contrast, the high proportion of oil (30%) decreased the pH, increased the electrical conductivity, and reduced the seed germination index to 64.9%. High-throughput sequencing showed that high oil inhibited the growth and reproduction of bacteria (Bacillus, Fodinicurvataceae, and Methylococcaceae) and fungi (Aspergillus), attenuated their interaction, thus, reducing the conversion of organic matter, such as lignocellulose, fat, and total sugar, to humus, consequently leading to negative impacts on composting humification. The results can guide composting parameter optimization and improve effective management of rural food waste.
Collapse
Affiliation(s)
- Juan Liu
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Yujun Shen
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jingtao Ding
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Wenhai Luo
- College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Haibin Zhou
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| | - Hongsheng Cheng
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Huihui Wang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xi Zhang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jian Wang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Pengxiang Xu
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qiongyi Cheng
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Shuangshuang Ma
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Kun Chen
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| |
Collapse
|
21
|
Ren L, Huang X, Min H, Wang H, Xie Y, Zou H, Qiao C, Wu W. Different ratios of raw material triggered composting maturity associated with bacterial community co-occurrence patterns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62532-62543. [PMID: 36943561 DOI: 10.1007/s11356-023-26468-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Exploring the ecological function of potential core bacteria for high-efficiency composting can provide a fundamental understanding of the role of composting bacterial communities. Mushroom residue and kitchen garbage at different ratios (N1: 1/1, N2: 1/2) of dry weight were tested to investigate the key ecological role of the core bacteria responsible for producing mature compost. N1 had a peak temperature of 75.0 °C which was higher than N2 (68.3 °C). Other key composting parameters (carbon to nitrogen ratio (C/N) and germination index (GI)) also indicated that N1 achieved higher compost maturity. Rice seedlings experiments also further validated this conclusion. Putative key bacterial taxa (Thermobifida, Luteimonasd, Bacillus, etc.) were positively associated with the GI, indicating a substantial contribution to composting maturity. Co-occurrence network analysis revealed the ecological function of potentially beneficial core bacteria promoted cooperation among the bacterial community. The putative core bacteria in N1 may affect composting efficiency. Our findings reveal the mechanism of potential core bacteria throughout the compost maturity phases.
Collapse
Affiliation(s)
- Lantian Ren
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Xingchen Huang
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Hongzhi Min
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Hong Wang
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Yiqing Xie
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Haiming Zou
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Cece Qiao
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China.
| | - Wenge Wu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, 230031, Hefei, Anhui Province, People's Republic of China
| |
Collapse
|
22
|
Cui D, Xi B, Tan W. Composting industry under the Chinese municipal solid waste sorting policy: challenges, opportunities, and directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19513-19519. [PMID: 36656479 DOI: 10.1007/s11356-023-25367-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Dongyu Cui
- School of Environment, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
23
|
Zhang L, Xing X, Liu Y, Shi W, Wang M. Directional methanolysis of kitchen waste for the co-production of methyl levulinate and fatty acid methyl esters: Catalytic strategy and machine learning modeling. BIORESOURCE TECHNOLOGY 2023; 367:128274. [PMID: 36351533 DOI: 10.1016/j.biortech.2022.128274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
To add value to ordinary kitchen waste, heterogeneous acid-base catalytic methanolysis was conducted to produce high-value liquid biofuels, methyl levulinate (ML) and fatty acid methyl esters (FAMEs). Yields of 53.3 % ML and 98.5 % FAME were achieved by methanolysis of kitchen waste under the co-catalysis of carbon-silica composite (C/Si-SO3H) and zirconium modified ultrastable Y zeolite (Zr/USY). These target products can be easily recovered from the methanolic phase and can be purified at the end of the reaction. The collaborative combination of C/Si-SO3H and Zr/USY exhibited higher activity than their commercial counterpart. This strategy can be applied to differently composed kitchen waste and kitchen waste with different water content. Product yields were predicted using an artificial neural network method, and the relative importance of the influencing factors was investigated by the random forest method. The systematic insight gained from this work supports the value-added utilization of kitchen waste.
Collapse
Affiliation(s)
- Luxin Zhang
- College of Environmental and Municipal Engineering, Shaanxi Key Laboratory of Environmental Engineering, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Xu Xing
- College of Environmental and Municipal Engineering, Shaanxi Key Laboratory of Environmental Engineering, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yuting Liu
- College of Environmental and Municipal Engineering, Shaanxi Key Laboratory of Environmental Engineering, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Weiwei Shi
- School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Mingzhe Wang
- School of Electrical and Data Engineering, University of Technology Sydney, 15 Broadway Ultimo, NSW 2007, Australia
| |
Collapse
|
24
|
Xie T, Zhang Z, Zhang D, Wei C, Lin Y, Feng R, Nan J, Feng Y. Effect of hydrothermal pretreatment and compound microbial agents on compost maturity and gaseous emissions during aerobic composting of kitchen waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158712. [PMID: 36099942 DOI: 10.1016/j.scitotenv.2022.158712] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Though aerobic composting is commonly used in kitchen waste (KW) disposal, the high-oil and high-salt characteristics of KW could affect composting efficiency and lead to the land using risk of produced fertilizer. The impact of hydrothermal pretreatment (HTP) and addition of compound microbial agent (CMA) on compost maturity, greenhouse gas (GHGs) emissions and bacterial community during the kitchen waste composting were evaluated in the present work. Results indicated that N2O, CH4 and CO2 emissions from treatment by HTP and CMA addition were reduced by 82.72%, 13.77% and 20.78 %, respectively, comparing with the control (without HTP and without CMA addition). The seed germination index (GI) value of the HTP and CMA addition treatment was 1.03 and had the highest maturity in all treatments. Furthermore, the bacterial community analysis indicated that CMA inoculation could increase the relative abundance of genus Bacillus at the thermophilic stage of composting to accelerate organic biodegradation. This work provided important insight into mitigating GHGs emissions and improving compost quality in kitchen waste composting.
Collapse
Affiliation(s)
- Ting Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem, Harbin Institute of Technology, China
| | - Dawei Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Chunzhong Wei
- Guangxi Beitou Environmental Protection & Water Group CO. LTO, Nanning, China
| | - Yong Lin
- Guangxi Beitou Environmental Protection & Water Group CO. LTO, Nanning, China
| | - Rongwei Feng
- Guangxi Beitou Environmental Protection & Water Group CO. LTO, Nanning, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
25
|
Jia P, Huang Y, Chen M, Qi X, Hou H. Comprehensive evaluation of spent mushroom substrate-chicken manure co-composting by garden waste improvement: physicochemical properties, humification process, and the spectral characteristics of dissolved organic matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8987-8997. [PMID: 35606581 DOI: 10.1007/s11356-022-20879-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The performance of garden waste on spent mushroom substrate (SMS) and chicken manure (CM) co-composting efficiency and humification is unclear. Therefore, this study investigated the impact of garden waste addition on SMS-CM co-composting physicochemical properties, humification process, and the spectral characteristics of dissolved organic matter (DOM). The results showed that garden waste improved the physicochemical properties of SMS-CM co-compost, the thermophilic period was advanced 2 days, the seed germination index increased by 30.2%, and the total organic carbon and total nitrogen content increased by 8.80% and 15.0%, respectively. In addition, garden waste increased humic substances (HS) and humic acid (HA) contents by 10.62% and 34.52%, respectively; the HI, PHA and DP increased by 31.53%, 43.19% and 55.53%, respectively; and the SUVA254 and SUVA280 of DOM also increased by 6.39% and 4.39%, respectively. In particular, HA content and DOM humification increase rapidly in the first 10 days. The increase of HA accounted for 52% of the total increase during composting. Fourier-transform infrared and two-dimensional correlation analysis further confirmed that garden waste could facilitate the degradation of organic molecules, including amino acids, polysaccharides, carboxyl groups, phenols, and alcohol, and contributed to the preferential utilization of carboxyl groups and polysaccharides and thus enhanced humification.
Collapse
Affiliation(s)
- Penghui Jia
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, No.3, Rd.Tai Cheng, Shaanxi, 712100, Yangling, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, No.3, Rd.Tai Cheng, Shaanxi, 712100, Yangling, China.
| | - Mengli Chen
- School of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing, 400045, China
| | - Xiping Qi
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, No.3, Rd.Tai Cheng, Shaanxi, 712100, Yangling, China
| | - Hongyang Hou
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, No.3, Rd.Tai Cheng, Shaanxi, 712100, Yangling, China
| |
Collapse
|
26
|
Jiao M, Ren X, He Y, Wang J, Hu C, Zhang Z. Humification improvement by optimizing particle size of bulking agent and relevant mechanisms during swine manure composting. BIORESOURCE TECHNOLOGY 2023; 367:128191. [PMID: 36374714 DOI: 10.1016/j.biortech.2022.128191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
For purpose of clarifying the impact on particle size of bulking agents on humification and relevant mechanisms, different length (<2 cm, 2 cm, 5 cm, 10 cm) of branch and straw were blended with swine manure individually for 100 days aerobic composting. Results demonstrated that, 2 cm and 5 cm of branch and straw promoted the highest degradation of DOC by 41.49 % and 58.42 %, and increased the humic substances by 23.81 % and 55.82 % in maturity stage, respectively, compared with other treatments. As shown in microbial consequence, the maximum relative abundance of humus funguses increased by 99.55 % and 99.92 % at phylum, and 98.95 % and 99.24 % at genus in 2 cm and 5 cm of branch and straw treatment, thus verifying the result in variation of humus content. In a word, particle size could result in obvious impact on humification, and the optimized size were about 2 cm and 5 cm of branch and straw.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Yifeng He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Cuihuan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
27
|
Qi C, Yin R, Cheng J, Xu Z, Chen J, Gao X, Li G, Nghiem L, Luo W. Bacterial dynamics for gaseous emission and humification during bio-augmented composting of kitchen waste with lime addition for acidity regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157653. [PMID: 35926596 DOI: 10.1016/j.scitotenv.2022.157653] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the impacts of lime addition and further microbial inoculum on gaseous emission and humification during kitchen waste composting. High-throughput sequencing was integrated with Linear Discriminant Analysis Effect Size (LEfSe) and Functional Annotation of Prokaryotic Taxa (FAPROTAX) to decipher bacterial dynamics in response to different additives. Results showed that lime addition enriched bacteria, such as Taibaiella and Sphingobacterium as biomarkers, to strengthen organic biodegradation toward humification. Furthermore, lime addition facilitated the proliferation of thermophilic bacteria (e.g. Bacillus and Symbiobacterium) for aerobic chemoheterotrophy, leading to enhanced organic decomposition to trigger notable gaseous emission. Such emission profile was further exacerbated by microbial inoculum to lime-regulated condition given the rapid enrichment of bacteria (e.g. Caldicoprobacter and Pusillimonas as biomarkers) for fermentation and denitrification. In addition, microbial inoculum slightly hindered humus formation by narrowing the relative abundance of bacteria for humification. Results from this study show that microbial inoculum to feedstock should be carefully regulated to accelerate composting and avoid excessive gaseous emission.
Collapse
Affiliation(s)
- Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Rongrong Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jingwen Cheng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Long Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Qian X, Bi X, Xu Y, Yang Z, Wei T, Xi M, Li J, Chen L, Li H, Sun S. Variation in community structure and network characteristics of spent mushroom substrate (SMS) compost microbiota driven by time and environmental conditions. BIORESOURCE TECHNOLOGY 2022; 364:127915. [PMID: 36089128 DOI: 10.1016/j.biortech.2022.127915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Global mushroom production is growing rapidly, raising concerns about polluting effects of spent mushroom substrate (SMS) and interest in uses in composts. In this study, SMS composting trials and high-throughput sequencing were carried out to investigate to better understand how the structure, co-occurrence patterns, and functioning of bacterial and fungal communities vary through compost time and across environmental conditions. The results suggested that both bacterial and fungal microbiota displayed significant variation in community composition across different composting stages. Enzyme activity levels showed both directional and fluctuating changes during composting, and the activity dynamics of carboxymethyl cellulase, polyphenol oxidase, laccase, and catalase correlated significantly with the succession of microbial community composition. The co-occurrence networks are "small-world" and modularized and the topological properties of each subnetwork were significantly influenced by the environmental factors. Finally, seed germination and seedling experiments were performed to verify the biosafety and effectiveness of the final composting products.
Collapse
Affiliation(s)
- Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaohui Bi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfei Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziwei Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Taotao Wei
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijuan Xi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liding Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanzhou Li
- Wuhan Benagen Technology Company, Wuhan 430000, China
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
29
|
Bao J, Lv Y, Qv M, Li Z, Li T, Li S, Zhu L. Evaluation of key microbial community succession and enzyme activities of nitrogen transformation in pig manure composting process through multi angle analysis. BIORESOURCE TECHNOLOGY 2022; 362:127797. [PMID: 35987437 DOI: 10.1016/j.biortech.2022.127797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
This experiment aimed to investigate changes in enzyme activity, microbial succession, and nitrogen conversion caused by different initial carbon-to-nitrogen ratios of 25:1, 35:1 and 20:1 (namely CK, T1 and T2) during pig manure composting. The results showed that the lower carbon-to-nitrogen ratio (T2) after composting retained 19.64 g/kg of TN which was more than 16.74 and 17.32 g/kg in treatments of CK and T1, respectively, but excessive conversion of ammonium nitrogen to ammonia gas resulted in nitrogen loss. Additional straw in T1 could play the role as a bulking agent. After composting, TN in T1 retained the most, and TN contents were 63.51 %, 67.34 % and 56.24 % in CK, T1 and T2, respectively. Network analysis indicated that many types of microorganisms functioned as a whole community at various stages of nitrogen cycle. This study suggests that microbial community structure modification might be a good strategy to reduce ammonium nitrogen loss.
Collapse
Affiliation(s)
- Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Yuanfei Lv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Mingxiang Qv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Zhuo Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Tianrui Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
30
|
Kumar Awasthi S, Verma S, Zhou Y, Liu T, Kumar Awasthi M, Zhang Z. Effect of scleral protein shell amendment on bacterial community succession during the pig manure composting. BIORESOURCE TECHNOLOGY 2022; 360:127644. [PMID: 35868462 DOI: 10.1016/j.biortech.2022.127644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The impact of scleral protein shell (SPS) amendment on bacterial community succession during pig manure (PM) composting were evaluated in the present work. Five treatments representing different dry weight dosage of SPS [0 % (T1), 2.5 % (T2), 5 % (T3), 7.5 % (T4), 10 % (T5) and 12 % (T6)] were applied with initial mixture of raw materials (Wheat straw along with the PM) and composted for 42 days. Results indicated that the dominant of phyla were Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes. The relative abundance (RA) of genus un-identified, Ruminofilibacter, Thermovum, Longispora and Pseudomonas were greater among the all treatments but interestingly genus Ruminofilibacter was also higher in control treatment. The network analysis was confirmed that T6 treatment with higher dosage of SPS amendment could enhance the bacterial population and rate of organic matter mineralization. Compared with T1, the T5 has greater potential impact to enhance the bacterial population and significant correlation among the pH and temperature.
Collapse
Affiliation(s)
- Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Shivpal Verma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
31
|
Chen Y, Tang P, Li Y, Chen L, Jiang H, Liu Y, Luo X. Effect of attapulgite on heavy metals passivation and microbial community during co-composting of river sediment with agricultural wastes. CHEMOSPHERE 2022; 299:134347. [PMID: 35306052 DOI: 10.1016/j.chemosphere.2022.134347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
This paper investigated the effects of attapulgite addition on the physicochemical processes, heavy metal transformation, and microbial community during the composting of agricultural wastes and sediment. In addition, the correlation between environmental factors, heavy metals (HMs), and microbial community was also assessed by redundancy analysis (RDA). The results showed that pile B with attapulgite addition entered the thermophilic phase earlier and lasted longer than pile A as the control group. The reduction in the bioavailability of HMs (Cr, Cd, and Zn) was also greater in pile B, and the passivation of HMs was ranked as Cd > Zn > Cr. The relative abundance of phylum Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria was the highest throughout the composting process. Furthermore, the RDA showed that the bacterial community composition was significantly correlated with temperature and C/N ratio in pile A, while significantly correlated with organic matter and pH in pile B. And the addition of attapulgite facilitated the conversion of HMs into more stable fractions by Pseudomonas. The study would provide a reference for the application of attapulgite to remediate the river sediment polluted by HMs.
Collapse
Affiliation(s)
- Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Ping Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan, 413000, China.
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xinli Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
32
|
Xu Z, Ma Y, Li Y, Li G, Nghiem LD, Luo W. Comparison between cold plasma, ultrasonication, and alkaline hydrogen peroxide pretreatments of garden waste to enhance humification in subsequent composting with kitchen waste: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2022; 354:127228. [PMID: 35477104 DOI: 10.1016/j.biortech.2022.127228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
This study compared the performance and mechanisms of cold plasma, ultrasonication, and alkali-assisted hydrogen peroxide for garden waste pretreatment to advance humification in composting with kitchen waste. High-throughput sequencing integrated with Functional Annotation of Prokaryotic Taxa was used to relate bacterial dynamics to humification. Results show that all pretreatment techniques accelerated humification by 37.5% - 45.7% during composting in comparison to the control treatment. Ultrasonication and alkalization preferred to decompose lignocellulose to produce humus precursors in garden waste, thereby facilitating humus formation at the beginning of composting. By contrast, cold plasma was much faster and simpler than other pretreatment techniques to effectively disrupt the surface structure and reduce the crystallinity of garden waste to enrich functional bacteria for aerobic chemoheterotrophy, xylanolysis, cellulolysis, and ligninolysis during composting. As such, a more robust bacterial community was developed after cold plasma pretreatment to advance humification at the mature stage of composting.
Collapse
Affiliation(s)
- Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Gao X, Yang F, Yan Z, Zhao J, Li S, Nghiem L, Li G, Luo W. Humification and maturation of kitchen waste during indoor composting by individual households. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152509. [PMID: 34968605 DOI: 10.1016/j.scitotenv.2021.152509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
This study evaluated the humification and maturation of kitchen waste during indoor composting by individual households. In total, 50 households were randomly selected to participate in this study using kitchen waste of their own for indoor composting using a standard 20 L sealed composter. Garden waste was also collected from their local communities and used as the bulking agent. Both effective microorganisms and lime were inoculated at 1% (wet weight) of raw composting materials to facilitate the composting initiation. Results from this study demonstrate for the first time that ordinary residents could correctly follow the instruction to operate indoor composting at household level to manage urban kitchen waste at source. Overall, 30 households provided valid and complete data to show an increase (to ~50 °C) and then decrease in temperature in response to the decline of biodegradable organic substances during indoor composting. The compost physiochemical characteristics varied significantly toward maturation with an increase in seed germination index to above 50% for most households. Furthermore, organic humification occurred continuously during indoor composting as indicated by the enhanced content of humic substances, degree of polymerization, and spectroscopic characteristics.
Collapse
Affiliation(s)
- Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Feiyu Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaowei Yan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jun Zhao
- China Soong Ching Ling Science and Culture Centre for Young People, Beijing 100089, China
| | - Shiyu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Long Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
34
|
Qi C, Zhang Y, Jia S, Wang R, Han Y, Luo W, Li G, Li Y. Effects of digestion duration on energy efficiency, compost quality, and carbon flow during solid state anaerobic digestion and composting hybrid process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151363. [PMID: 34740669 DOI: 10.1016/j.scitotenv.2021.151363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the effects of anaerobic digestion duration on methane yield, net energy production, and humification of compost during solid state anaerobic digestion (SSAD) and composting hybrid process for food waste treatment. Carbon flow and balance were used to evaluate organic methanation and humification inclination of carbon in the whole SSAD and aerobic composting system. Results showed that SSAD for 15 (AD-15) and 21 days (AD-21) could increase net energy production and degraded organic matter contained in the mixtures to achieve high biological stability. The cumulative net energy production between the AD-15 and AD-21 treatments was not significantly different, which was 8.3% higher than that in SSAD for 30 days (AD-30). Furthermore, digestate (AD-15 and AD-21) composting for 3 days reached maturity and absence of phytotoxic substances. Carbon fixed into humus of the AD-21 treatment (11.6%) was not significantly different from that of AD-15 (12.0%). However, the total amount of carbon fixed into compost in AD-15 was 6.6% higher than that in AD-21. Moreover, the CO2 -C loss of the AD-15 treatment (22.9%) was slightly higher than that of AD-21 (20.6%). Thus, AD-21 treatment achieved the most effective use of carbon during SSAD and composting hybrid process for food waste treatment. These results could provide valuable insights for the effective management of food waste in practice.
Collapse
Affiliation(s)
- Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yiran Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Sumeng Jia
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Rui Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yiyu Han
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University and Suzhou ViHong Biotechnology, Wuzhong District, 215128, Jiangsu Province, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Yangyang Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
35
|
Yu D, Yu Y, Tang J, Li X, Ke C, Yao Z. Application fields of kitchen waste biochar and its prospects as catalytic material: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152171. [PMID: 34875332 DOI: 10.1016/j.scitotenv.2021.152171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
In China, a large amount of kitchen waste (KW) is generated each year, and the resource utilisation of the KW has become a problem. KW has a high carbon content and can be used as a raw material for biochar. Kitchen waste biochar (KWB) can be used to prepare adsorption materials, soil amendments, energy materials, carbon quantum dots, and electrode materials. However, few studies have used KWB as a raw material for catalytic materials. The application of sulfur (S) and nitrogen (N) doped biochar in the field of catalysis has proved effective and feasible. KWB contained a certain mass percentage of N and S elements, which has good application potential for use in the field of catalysis by KWB. In the process of preparing KWB by KW, keeping S and N as much as possible and converting them into pyridine N and thiophene S benefit the application of catalysis. This review provides a reference for the future application of KWB in China.
Collapse
Affiliation(s)
- Dayang Yu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yan Yu
- School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Jiawei Tang
- State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 100011, China
| | - Xiuqing Li
- Shandong Provincial Research Institute of Coal Geology Planning and Exploration, Jinan 250104, China
| | - Chao Ke
- Baohang Environment Company Limited, Beijing 100012, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
36
|
Yu Q, Duan X, Gu Y, Li J, Zhang X, Chen C, Zhao D. Increasing chemical oxygen demand and nitrogen removal efficiencies of surface-flow constructed wetlands in macrophyte-dominant seasons by adding artificial macrophytes. BIORESOURCE TECHNOLOGY 2022; 348:126755. [PMID: 35081429 DOI: 10.1016/j.biortech.2022.126755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The objective was to test the effectiveness of a new strategy, i.e., adding artificial macrophytes (AMs) to surface-flow constructed wetlands (SFCWs) planted with emergent macrophytes (EMs), to improve COD and N removal efficiencies (REs) at the pilot scale. During EM-dominant periods, the SFCWs with only EMs had REs of 78.2%, 59.8%, 50.8% and -54.2% for NH4+-N, NO3--N, TN, and COD, respectively, while the SFCWs with both AMs and EMs increased the REs to 85.1%, 72.2%, 73.8%, and 2.0%. The addition of AMs to SFCWs had no significant effect on EM growth (biomass or root activity). Mutual benefit was found between EMs and AMs, i.e., AMs reduced the secondary pollution caused by withered EMs, while EMs improved AM-attached biofilm functions of chemoheterotrophy, nitrate_reduction, and nitrification. Therefore, AM addition is a useful strategy to improve COD and N REs during EM-dominant periods when pollutant removal is a challenge for SFCWs.
Collapse
Affiliation(s)
- Qi Yu
- Nanjing University, Nanjing 210093, PR China
| | | | - Yumei Gu
- Nanjing University, Nanjing 210093, PR China
| | - Jianwen Li
- Sinohydro Bureau 11 Co., Ltd, Zhengzhou 450001, PR China
| | | | - Chen Chen
- Nanjing University, Nanjing 210093, PR China
| | - Dehua Zhao
- Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
37
|
Li M, Li F, Zhou J, Yuan Q, Hu N. Fallen leaves are superior to tree pruning as bulking agents in aerobic composting disposing kitchen waste. BIORESOURCE TECHNOLOGY 2022; 346:126374. [PMID: 34801724 DOI: 10.1016/j.biortech.2021.126374] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Though aerobic composting has been frequently applied to kitchen waste disposal, appropriate bulking agents are essential to acquire a promising performance. Fallen leaves and tree pruning in urbans face huge disposal demands and have great potentials as bulking agents of aerobic composting while have been seldom examined yet. This study comparably explored the performance of fallen leaves bulked and tree pruning bulked aerobic composting disposing kitchen waste. Results indicated that though both reactors were effective in degrading kitchen waste, leaf bulked composting was superior to tree pruning bulked composting in terms of longer thermophilic period and higher maximum temperature, higher organics degradation efficiency, higher humification and less odorous gas emission. Bacterial community was a driving mechanism for above results. This study shows that fallen leaves bulked aerobic composting has great potentials for kitchen waste disposal.
Collapse
Affiliation(s)
- Meng Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Fei Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Qingbin Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China; College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Nan Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| |
Collapse
|
38
|
Zhou SP, Ke X, Zhou HY, Zou SP, Xue YP, Zheng YG. Community scale in-situ rapid biological reduction and resource recovery of food waste. BIORESOURCE TECHNOLOGY 2022; 346:126603. [PMID: 34953987 DOI: 10.1016/j.biortech.2021.126603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
In this study, a community-scale in-situ rapid biological reduction (IRBR) system was applied to achieve the rapid disposal and resource recovery of food waste (FW). A total of 5263 kg FW was processed in the 35 days of stably operation, during which 84.37% total mass reduction and 43.30% volatile solid removal were achieved, and the odor had been effectively controlled. Microbial sequencing results showed that aerobic and facultative thermophilic bacteria were major bacterial community, and vigorous metabolism of both carbohydrate and amino acid were maintained during the IRBR process. The final products have the potential to be recycled as organic fertilizers or bio-solid fuel to realize resource recovery. The results of economic analysis showed that the IRBR system had lower FW disposal costs due to the high automation. These results suggested that the IRBR system was an environmentally friendly, economical and practical method for the FW rapid treatment.
Collapse
Affiliation(s)
- Shi-Peng Zhou
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xia Ke
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hai-Yan Zhou
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shu-Ping Zou
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
39
|
Xin L, Yan X, Xu X, Qin Y, Nan Q, Wang H, Wu W. Carbohydrate degradation contributes to the main bioheat generation during kitchen waste biodrying process: A pilot study. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 137:20-30. [PMID: 34717116 DOI: 10.1016/j.wasman.2021.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/18/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Biodrying is a promising method for processing kitchen waste (KW) with high moisture content into reusable solid recovered fuels (SRFs). During biodrying, a large amount of bioheat generated from biodegradation of biochemical components results in KW dehydration. However, the degradation rules of these components and their contribution to the bioheat in KW biodrying have not been systematically clarified. Here, a pilot experiment was performed to investigate the variations in biochemical components, hydrolase activities, and bioheat generation during three successive cycles of biodrying processes. Results showed that KW could be rapidly converted into SRFs with low calorific values of 6705-7062 kJ/kg and moisture content of 31.26%-35.21%. Analyses of hydrolase activities and mean fluorescence intensity suggested that the biodrying process pioneered the degradation of lipids and proteins in the warming stages, while carbohydrates (i.e. amylum, celluloses, etc.) underwent rapid decomposition in a large extent in the high-temperature and cooling stages. Carbohydrates with minimal difficulty in degradation, contributed 73.37%-89.92% to the total degradation mass and 59.23%-60.80% to the bioheat source during the three-cycle biodrying process. The generated bioheat was 4.32-4.56 times the amount of the theoretical heat used for water removal, indicating that internal bioheat could significantly enhance water evaporation and was sufficient for the expected water removal mass. Therefore, the evaluation of the main components to bioheat generation and its utilization efficiency makes a prominent contribution that can greatly clarify the conversion of KW biodrying into SRFs in order to efficiently promote renewable bioenergy and support the bioeconomy.
Collapse
Affiliation(s)
- Liqing Xin
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Xiangrui Yan
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Xingkun Xu
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Yong Qin
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Qiong Nan
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China
| | - Haoshu Wang
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China; Zhejiang Transper Environmental Protection Technology Co., Ltd, Hangzhou 310058, PR China
| | - Weixiang Wu
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, PR China.
| |
Collapse
|
40
|
Gao X, Xu Z, Li Y, Zhang L, Li G, Nghiem LD, Luo W. Bacterial dynamics for gaseous emission and humification in bio-augmented composting of kitchen waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149640. [PMID: 34416604 DOI: 10.1016/j.scitotenv.2021.149640] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Using high-throughput sequencing and Functional Annotation of Prokaryotic Taxa (FAPROTAX), this study aimed to elucidate the effect of bacterial dynamics on gaseous emission and humification of kitchen and garden wastes during composting augmented with microbial inoculants. Microbial inoculant addition at up to 0.9% resulted in a diverse bacterial community with more functional bacteria to amend gaseous emission and enhance humification. Microbial inoculation facilitated the enrichment of aerobic bacteria (e.g. the genus Bacillus and Thermobifida) to enhance cellulolysis and ligninolysis to advance organic humification. By contrast, several bacteria, such as the genus Weissella and Pusillimonas were inhibited by microbial inoculation to weaken fermentation and nitrate respiration. As such, bio-augmented composting with 0.9% microbial inoculant reduced the emission of methane by 11-20% and nitrogen oxide by 17-54%. On the other hand, ammonia and hydrogen sulphide emissions increased by 26-62% and 5-23%, respectively, in bio-augmented composting due to the considerable proliferation of the genus Bacillus and Desulfitibacter to enhance ammonification and sulphur-related respiration. Results from this study highlight the need to further develop efficient and multifunctional microbial inoculants that promote humification and deodorization for bio-augmented composting of kitchen waste as well as other carbon and nutrient rich organic wastes.
Collapse
Affiliation(s)
- Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
41
|
Xu Z, Qi C, Zhang L, Ma Y, Li G, Nghiem LD, Luo W. Regulating bacterial dynamics by lime addition to enhance kitchen waste composting. BIORESOURCE TECHNOLOGY 2021; 341:125749. [PMID: 34416657 DOI: 10.1016/j.biortech.2021.125749] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
This study examined bacterial dynamics in response to lime addition to enhance kitchen waste composting using modular network analysis. Bacterial communities could be separated into three meta-modules corresponding to the mesophilic, thermophilic, and mature stage of composting. Lime addition at 1% (wet weight) suppressed acidogens and denitrifiers (e.g. Lactobacillus and Acinetobacter) at the mesophilic stage to reduce greenhouse gas emissions. The matrix pH and temperature were also increased by lime addition via hydrogen reaction to favor bacterial growth and activity. Thus, thermophilic bacteria (e.g. Thermoactinomycetaceae and Planifilum) were enriched with lime addition to facilitate lignocellulose biodegradation for humus formation at the thermophilic stage. Further lime addition to 1.5% reduced ammonia emission at the thermophilic stage via chemical fixation. Moreover, lime inhibited denitrifiers but proliferated nitrifiers at the mature stage to decrease nitrous oxide emission and enhance nitrate content, respectively. As such, lime addition improved both biotic and abiotic composting performance.
Collapse
Affiliation(s)
- Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
42
|
Liu T, Kumar Awasthi M, Verma S, Qin S, Awasthi SK, Liu H, Zhou Y, Zhang Z. Evaluation of cornstalk as bulking agent on greenhouse gases emission and bacterial community during further composting. BIORESOURCE TECHNOLOGY 2021; 340:125713. [PMID: 34371335 DOI: 10.1016/j.biortech.2021.125713] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The aim of current work was to explore the impact of Cornstalk (CS) on greenhouse gaseous emission and maturation during further composting and analyzed its impact on bacterial diversity. Three kinds of immature fertilizers were collected from chicken, pig and dairy manure namely T1, T2 and T3 as control, T4, T5 and T6 were added CS into T1 to T3 and adjusted C/N to 25 namely treatment. The results illustrated that gases (N2O, CH4 and NH3) emission of CS added treatments decreased by 6.39%-24.68%, 10.60%-23.23% and 13.00%-19.58%, respectively. But the CS amendment increased CO2 emission by 15.53%-30.81%. The mineralization of carbon and nitrogen was mainly correlated to Firmicutes, Actinobacteria, Proteobacteria and Bacteroidota, CS amendment increased abundance by 22.28%, 17.79%, 1.48% and 35.90%, respectively. The strategy of employing CS would be the most feasible approach for recycling of immature manure, considering its compost quality and environmental from farm.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shivpal Verma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Huimin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
43
|
Wang SP, Wang L, Sun ZY, Wang ST, Shen CH, Tang YQ, Kida K. Biochar addition reduces nitrogen loss and accelerates composting process by affecting the core microbial community during distilled grain waste composting. BIORESOURCE TECHNOLOGY 2021; 337:125492. [PMID: 34320771 DOI: 10.1016/j.biortech.2021.125492] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the impact of biochar addition on nitrogen (N) loss and the process period during distilled grain waste (DGW) composting. Results from the five treatments (0, 5, 10, 15, and 20% biochar addition) indicated that 10% biochar addition (DB10) was optimal, resulting in the lowest N loss, 25.69% vs. 40.01% in the control treatment. Moreover, the DGW composting period was shortened by approximately 14 days by biochar addition. The composition of the microbial community was not significantly altered with biochar addition in each phase, however, it did accelerate the microbial succession during DGW composting. N metabolism pathway prediction revealed that biochar addition enhanced nitrification and inhibited denitrification, and the latter phenomenon was the main reason for reducing N loss during DGW composting. Based on the above results, a potential mechanism model for biochar addition to reduce N loss during the DGW composting process was established.
Collapse
Affiliation(s)
- Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Li Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Song-Tao Wang
- Luzhou Laojiao Co., Ltd, Luzhou 646000, Sichuan, China
| | - Cai-Hong Shen
- Luzhou Laojiao Co., Ltd, Luzhou 646000, Sichuan, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kenji Kida
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
44
|
Xu Z, Qi C, Zhang L, Ma Y, Li J, Li G, Luo W. Bacterial dynamics and functions for gaseous emissions and humification in response to aeration intensities during kitchen waste composting. BIORESOURCE TECHNOLOGY 2021; 337:125369. [PMID: 34139565 DOI: 10.1016/j.biortech.2021.125369] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
This study revealed bacteria dynamics and functions for gaseous emissions and humification during kitchen waste composting under different aeration intensities (i.e. 0.24, 0.36, and 0.48 L kg-1 DM min-1) using high-throughput sequencing with Functional Annotation of Prokaryotic Taxa. Results show that aeration increase restrained bacteria (e.g. Lactobacillus and Acinetobacter) for fermentation, nitrate reduction, and sulphur/sulphate respiration, but enriched thermophilic bacteria (e.g. Thermomonospora and Thermobifida) for aerobic chemohetertrophy, xylanolysis, cellulolysis, and methylotrophy. Thus, high aeration intensity (i.e. above 0.36 L kg-1 DM min-1) effectively alleviated the emission of greenhouse gases and hydrogen sulphide, and meanwhile facilitated the production of humus precursors and ammonia. Nevertheless, humification was limited by the conclusion of composting under high aeration conditions due to the consumption of humus precursors for bacterial activity. Thus, aeration intensity should be regulated at different stages indicated by temperature to balance gaseous emissions and humification during kitchen waste composting.
Collapse
Affiliation(s)
- Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jungang Li
- Beijing Solid Waste Treatment Company Limited, Beijing Environmental Sanitation Engineering Group Limited, Beijing 101100, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|