1
|
Wu H, Zhang H, Yan R, Li S, Guo X, Qiu L, Yao Y. Limosilactobacillus Regulating Microbial Communities to Overcome the Hydrolysis Bottleneck with Efficient One-Step Co-Production of H 2 and CH 4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406119. [PMID: 39264245 DOI: 10.1002/advs.202406119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/02/2024] [Indexed: 09/13/2024]
Abstract
The efficient co-production of H2 and CH4 via anaerobic digestion (AD) requires separate stages, as it cannot yet be achieved in one step. Lactic acid bacteria (LAB) (Limosilactobacillus) release H2 and acetate by enhancing hydrolysis, potentially increasing CH4 production with simultaneous H2 accumulation. This study investigated the enhanced effect of one-step co-production of H2 and CH4 in AD by LAB and elucidated its enhancement mechanisms. The results showed that 236.3 times increase in H2 production and 7.1 times increase in CH4 production are achieved, resulting in profits of 469.39 USD. Model substrates lignocellulosic straw, sodium acetate, and H2 confirmes LAB work on the hydrolysis stage and subsequent sustainable volatile fatty acid production during the first 6 days of AD. In this stage, the enrichment of Limosilactobacillus carrying bglB and xynB, the glycolysis pathway, and the high activity of protease, acetate kinase, and [FeFe] hydrogenase, jointly achieved rapid acetate and H2 accumulation, driving hydrogenotrophic methanogenesis dominated. From day 7 to 24, with enriched Methanosarcina, and increased methenyltetrahydromethanopterin hydrogenase activity, continuously produced acetate led to the mainly acetoclastic methanogenesis shift from hydrogenotrophic methanogenesis. The power generation capacity of LAB-enhanced AD is 333.33 times that of China's 24,000 m3 biogas plant.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Huaiwen Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Ruixiao Yan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Suqi Li
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaohui Guo
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Ling Qiu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yiqing Yao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
2
|
Niu D, Zhao N, Wang J, Mchunu NP, Permaul K, Singh S, Wang Z. Boosting Fructosyl Transferase's Thermostability and Catalytic Performance for Highly Efficient Fructooligosaccharides (FOS) Production. Foods 2024; 13:2997. [PMID: 39335925 PMCID: PMC11431173 DOI: 10.3390/foods13182997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Achieving enzymatic food processing at high substrate concentrations can significantly enhance production efficiency; however, related studies are notably insufficient. This study focused on the enzymatic synthesis of fructooligosaccharides (FOS) at high temperature and high substrate concentration. Results revealed that increased viscosity and limited substrate solubility in high-concentration systems could be alleviated by raising the reaction temperature, provided it aligned with the enzyme's thermostability. Further analysis of enzyme thermostability in real sucrose solutions demonstrates that the enzyme's thermostability was remarkedly improved at higher sucrose concentrations, evidenced by a 10.3 °C increase in melting temperature (Tm) in an 800 g/L sucrose solution. Building upon these findings, we developed a novel method for enzymatic FOS synthesis at elevated temperatures and high sucrose concentrations. Compared to existing commercial methods, the initial transglycosylation rate and volumetric productivity for FOS synthesis increased by 155.9% and 113.5%, respectively, at 65 °C in an 800 g/L sucrose solution. This study underscores the pivotal role of substrate concentration, incubation temperature, and the enzyme's actual status in advancing enzyme-catalyzed processes and demonstrates the potential of enzymatic applications in enhancing food processing technologies, providing innovative strategies for the food industry.
Collapse
Affiliation(s)
- Dandan Niu
- Department of Biological Chemical Engineering, College of Chemical Engineering and Material Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nan Zhao
- Department of Biological Chemical Engineering, College of Chemical Engineering and Material Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jun Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nokuthula Peace Mchunu
- National Research Foundation, P.O. Box 2600, Pretoria 0001, South Africa
- School of Life Science, University of KwaZulu Natal, Durban 4000, South Africa
| | - Kugen Permaul
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Suren Singh
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Zhengxiang Wang
- Department of Biological Chemical Engineering, College of Chemical Engineering and Material Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Wu H, Li A, Zhang H, Li S, Yang C, Lv H, Yao Y. Microbial mechanisms for higher hydrogen production in anaerobic digestion at constant temperature versus gradient heating. MICROBIOME 2024; 12:170. [PMID: 39252128 PMCID: PMC11386108 DOI: 10.1186/s40168-024-01908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Clean energy hydrogen (H2) produced from abundant lignocellulose is an alternative to fossil energy. As an essential influencing factor, there is a lack of comparison between constant temperatures (35, 55 and 65 °C) and gradient heating temperature (35 to 65 °C) on the H2 production regulation potential from lignocellulose-rich straw via high-solid anaerobic digestion (HS-AD). More importantly, the microbial mechanism of temperature regulating H2 accumulation needs to be investigated. RESULTS Constant 65 °C led to the lowest lignin residue (1.93%) and the maximum release of cellulose and hemicellulose, and the highest H2 production (26.01 mL/g VS). H2 production at 35 and 55 °C was only 14.56 and 24.13 mL/g VS, respectively. In order to further explore the potential of ultra-high temperature (65 °C), HS-AD was performed by gradient heating conditions (35 to 65 °C). However, compared to constant 65 °C, gradient heating conditions led to higher lignin residue (2.49%) and lower H2 production (13.53 mL/g VS) than gradient heating conditions (47.98%). In addition, metagenomic analysis showed the cellulose/hemicellulose hydrolyzing bacteria and genes (mainly Thermoclostridium, and xynA, xynB, abfA, bglB and xynD), H2-producing bacteria and related genes (mainly Thermoclostridium, and nifD, nifH and nifK), and microbial movement and metabolic functions were enriched at 65 °C. However, the enrichment of two-component systems under gradient heating conditions resulted in a lack of highly-enriched ultra-high-temperature cellulose/hemicellulose hydrolyzing genera and related genes but rather enriched H2 consumption genera and genes (mainly Acetivibrio, and hyaB and hyaA) resulting in a weaker H2 production. CONCLUSIONS The lignin degradation process does not directly determine H2 accumulation, which was actually regulated by bacteria/genes contributing to H2 production/consumption. In addition, it is temperature that enhances the hydrolysis process of lignin rather than lignin-degrading enzymes, bacteria and genes by promoting microbial material transfer and metabolism. In terms of temperature, one of the key parameters of HS-AD for H2 production, we developed an important regulatory strategy, enriched the theoretical basis of temperature regulation for H2 production to further expanded the research horizon in this field. Video Abstract.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Huaiwen Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Suqi Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Caiyun Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Hongyi Lv
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yiqing Yao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
4
|
Chen T, Zhang L, Guo W, Zhang W, Sajjad W, Ilahi N, Usman M, Faisal S, Bahadur A. Temperature drives microbial communities in anaerobic digestion during biogas production from food waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53823-53838. [PMID: 38436844 DOI: 10.1007/s11356-024-32698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Resource depletion and climate changes due to human activities and excessive burning of fossil fuels are the driving forces to explore alternatives clean energy resources. The objective of this study was to investigate the potential of potato peel waste (PPW) at various temperatures T15 (15 °C), T25 (25 °C), and T35 (35 °C) in anaerobic digestion (AD) for biogas generation. The highest biogas and CH4 production (117 mL VS-g and 74 mL VS-g) was observed by applying 35 °C (T35) as compared with T25 (65 mL VS-g and 22 mL VS-g) on day 6. Changes in microbial diversity associated with different temperatures were also explored. The Shannon index of bacterial community was not significantly affected, while there was a positive correlation of archaeal community with the applied temperatures. The bacterial phyla Firmicutes were strongly affected by T35 (39%), whereas Lactobacillus was the dominant genera at T15 (27%). Methanobacterium and Methanosarcina, as archaeal genera, dominated in T35 temperature reactors. In brief, at T35, Proteiniphilum and Methanosarcina were positively correlated with volatile fatty acids (VFAs) concentration. Spearman correlation revealed dynamic interspecies interactions among bacterial and archaeal genera; facilitating the AD system. This study revealed that temperature variations can enhance the microbial community of the AD system, leading to increased biogas production. It is recommended for optimizing the AD of food wastes.
Collapse
Affiliation(s)
- Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Lu Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Guo
- Lanzhou Xinrong Environmental Energy Engineering Technology Co., Ltd, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Usman
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, Gansu, China
| | - Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Zhao L, Fan Y, Chen H. Natural flocculant chitosan inhibits short-chain fatty acid production in anaerobic fermentation of waste activated sludge. BIORESOURCE TECHNOLOGY 2024; 403:130892. [PMID: 38795922 DOI: 10.1016/j.biortech.2024.130892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Chitosan (CTS) serves as an excellent natural flocculant in wastewater purification and sludge conditioning, but its potential impact on anaerobic fermentation of waste-activated sludge is unclear. The current study investigated the role of CTS in short-chain fatty acids (SCFAs) generation via sludge alkaline anaerobic fermentation. The results showed a drastic reduction in SCFA production with CTS, showing a maximum inhibition of 33 % at 6 mg/g of total suspended solids. CTS hindered sludge solubilization through flocculation, and acted as a humus precursor, promoting humus formation, and consequently reduced the amount of available substrates. Further, CTS promoted free ammonia production, posing a challenge to enzymes and cell viability. Additionally, CTS increased the population of Rikenellaceae sp. and weakened the dominance of hydrolyzing and acidifying bacteria. This study deepens the understanding of the potential impact of CTS on anaerobic fermentation and provides a theoretical basis for reducing the risk of polymeric flocculants.
Collapse
Affiliation(s)
- Lina Zhao
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yanchen Fan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
6
|
Wang Y, Xu P, Wang Y, Su J, Xu Z, Jiang Z, Wei Y, Hang S, Ding X, Zhang H, Zhang L, Liu Y, Li J. Effects of aeration modes and rates on nitrogen conversion and bacterial community in composting of dehydrated sludge and corn straw. Front Microbiol 2024; 15:1372568. [PMID: 38533333 PMCID: PMC10963435 DOI: 10.3389/fmicb.2024.1372568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Aeration is an important factor to regulate composting efficiency and nitrogen loss. This study is aimed to compare the effects of different aeration modes (continuous and intermittent) and aeration rate on nitrogen conversion and bacterial community in composting from dehydrated sludge and corn straw. Results showed that the intermittent aeration mode at same aeration volume was superior to the continuous aeration mode in terms of NH3 emission reduction, nitrogen conversion and germination index (GI) improvement. Intermittent aeration mode with 1200 L/h (aeration 5 min, stop 15 min) [K5T15 (V1200)] and 300 L/h of continuous aeration helped to the conservation of nitrogen fractions and accelerate the composting process. However, it was most advantageous to use 150 L/h of continuous aeration to reduce NH3 emission and ensure the effective composting process. The aeration mode K5T15 (V1200) showed the fastest temperature rise, the longer duration of thermophilic stage and the highest GI (95%) in composting. The cumulative NH3 emission of intermittent aeration mode was higher than continuous aeration mode. The cumulative NH3 emission of V300 was 23.1% lower than that of K5T15 (V1200). The dominant phyla in dehydrated sludge and corn straw composting were Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. The dominant phylum in the thermophilic stage was Firmicutes (49.39%~63.13%), and the dominant genus was Thermobifida (18.62%~30.16%). The relative abundance of Firmicutes was greater in the intermittent aeration mode (63.13%) than that in the continuous aeration mode (57.62%), and Pseudomonas was dominant in composting with lower aeration rate and the lowest NH3 emission. This study suggested that adjustment to the aeration mode and rate could affect core bacteria to reduce the nitrogen loss and accelerate composting process.
Collapse
Affiliation(s)
- Yuyun Wang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, China
| | - PengXiang Xu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yue Wang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Jing Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Zhi Xu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, China
| | - Zhengbo Jiang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Yuquan Wei
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Sheng Hang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Xiaoyan Ding
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Hao Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, China
| | | | - Yongdi Liu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Ji Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| |
Collapse
|
7
|
Li D, Wen Q, Chen Z. Effects of Fe/Fe-Mn oxides loaded biochar on anaerobic degradation of typical phenolic compounds in coal gasification wastewater: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 394:130308. [PMID: 38199441 DOI: 10.1016/j.biortech.2024.130308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
In this study, two kinds of magnetic biochar (BC) were synthesized by loading Fe (FeBC) and Fe-Mn oxides (FMBC) and their effects on anaerobic phenolics degradation were investigated. Compared with BC/FMBC, FeBC addition achieved the superior phenolics biodegradation even for 3,5-xylenol. Compared with control, FeBC addition enhanced CH4 production by 100.1 % with the lag time shortened from 9.5 days to 6.6 days while it increased to 11.2 days with FMBC addition. FeBC addition activated adsorption-biodegradation and Fe (III) reduction with the improved electron transfer activity, adenosine triphosphate and cytochrome C concentrations. Abundant phenol degrading bacteria, electroactive bacteria, syntrophic partners could be enriched by FeBC addition, contributing to the enhanced benzoyl-CoA and methanogenesis pathways. However, this enhancement was inhibited by FMBC addition owing to the accumulation of reactive oxygen species. This study provided novel insights into the application of magnetic BC to enhanced anaerobic treatment of phenolic wastewater.
Collapse
Affiliation(s)
- Da Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China.
| |
Collapse
|
8
|
Ma X, Ji J, Song P, Mao C, Li X. Treatment of nanofiltration membrane concentrates integrated magnetic biochar pretreatment with anaerobic digestion. ENVIRONMENTAL RESEARCH 2023; 221:115245. [PMID: 36640939 DOI: 10.1016/j.envres.2023.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
nanofiltration membrane concentrate (NMC) is an emerging type of wastewater with significant environmental concerns. which can be treated efficiently by an integrated method. In this study, magnetic biochar (MBC) pretreatment integrated with anaerobic digestion (AD) (MBC + AD) was used to treat NMC. Results showed that under the optimal MBC + AD conditions, 79%, 69.4%, 52.9%, and 86.5% of COD, total nitrogen (TN), chromaticity, and light absorbing substances were reduced. For heavy metals removal, 18.3%, 70.0%, 96.4%, 43.8% and 97.5% of Cr (VI), Cd, Pb, Cu and Zn were removed, respectively. LC-MS analysis indicated that p-nitrophenol (4-NP) diethyl and phthalate (DEP) were the main organic pollutants in NMC with a removal rate of 60% and 90%. Compared with single AD, in MBC + AD samples, bacterial activity was improved, and genus DMER64 (23.2%) was dominant. The predominant archaea were Methanocorpusculum (53.3%) and Methanosarcina (25.3%), with microbial restructuring and slight methane generation. Additionally, metabolic pathway prediction revealed that both bacterial and archaeal metabolism were significantly enhanced, contributing to the central functional pathways, namely microbial activity metabolism and biodegradation metabolism. In addition, the significantly increased genera Syner-01, Vulcanibacillus, Methanocorpusculum, and Norank_c_Bathyarchaeia were significantly positively related to metabolic function. This finding demonstrated that MBC + AD enhanced contaminant removal, mainly by regulating bacterial diversity and activity. Moreover, the toxicity of NMC decreased after MBC + AD treatment. This study provides a potential biological strategy for the treatment of membrane concentrates and water recovery.
Collapse
Affiliation(s)
- Xiaobiao Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, 730020, PR China
| | - Jing Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, PR China
| | - Peizhi Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, PR China
| | - Chunlan Mao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, 730020, PR China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, 730000, Gansu, PR China
| |
Collapse
|
9
|
Abdullah Thaidi NI, Mohamad R, Wasoh H, Kapri MR, Ghazali AB, Tan JS, Rios-Solis L, Halim M. Development of In Situ Product Recovery (ISPR) System Using Amberlite IRA67 for Enhanced Biosynthesis of Hyaluronic Acid by Streptococcus zooepidemicus. Life (Basel) 2023; 13:life13020558. [PMID: 36836914 PMCID: PMC9966800 DOI: 10.3390/life13020558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
High broth viscosity due to the accumulation of hyaluronic acid (HA) causes a limited yield of HA. It is a major problem of HA production using Streptococcus zooepidemicus. Extractive fermentation via in situ product recovery (ISPR) was utilized to enhance the HA production. Resins from Amberlite: IRA400 Cl; IRA900 Cl; IRA410 Cl; IRA402 Cl; and IRA67 were tested for the HA adsorption. IRA67 showed high adsorption capacity on HA. The study of the adsorption via a 2 L stirred tank bioreactor of S. zooepidemicus fermentation was investigated to elucidate the adsorption of HA onto IRA67 in dispersed and integrated internal column systems. The application of a dispersed IRA67 improved the HA production compared to the fermentation without resin addition by 1.37-fold. The HA production was further improved by 1.36-fold with an internal column (3.928 g/L) over that obtained with dispersed IRA67. The cultivation with an internal column shows the highest reduction of viscosity value after the addition of IRA67 resin: from 58.8 to 23.7 (mPa·s), suggesting the most effective ISPR of HA. The improved biosynthesis of HA indicated that an extractive fermentation by ISPR adsorption is effective and may streamline the HA purification.
Collapse
Affiliation(s)
- Nur Imanina Abdullah Thaidi
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Helmi Wasoh
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Mohammad Rizal Kapri
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Ahmad Badruddin Ghazali
- Department of Oral Maxillofacial Surgery and Oral Diagnosis, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200 Kuantan, Malaysia
| | - Joo Shun Tan
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Malaysia
| | - Leonardo Rios-Solis
- School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Group, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Murni Halim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Correspondence:
| |
Collapse
|
10
|
Yang Y, Wang M, Yan S, Yong X, Zhang X, Awasthi MK, Xi Y, Zhou J. Effects of hydrochar and biogas slurry reflux on methane production by mixed anaerobic digestion of cow manure and corn straw. CHEMOSPHERE 2023; 310:136876. [PMID: 36257399 DOI: 10.1016/j.chemosphere.2022.136876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to enhance methane production from mixed anaerobic digestion of cow manure and corn straw by adding hydrochar and biogas slurry reflux. The hydrochar characterization revealed that it can provide attachment for microbial growth, and abundant surface functional groups (such as C-O, CO, C-OH, and C-N) for adsorption. Direct interspecies electron transfer (DIET) mediated by surface oxygen-containing functional groups on hydrochar increased the methane yield. The experimental group added with hydrochar and biogas slurry reflux had the highest methane and biogas production (34.40% and 36.98% higher than the control group, respectively). Results demonstrate hydrochar and biogas slurry reflux can improve microorganism species richness in anaerobic digestion systems, in which hydrochar can also improve microorganism species uniformity. Distance-based redundancy analysis showed that the VFAs, and pH had the greatest effects on the composition of the microbial community. The dominant microorganism at the phylum level in AD system were Bacteroidetes, Firmicutes, and Proteobacteria. The addition of hydrochar and biogas slurry reflux can significantly increase the species abundance of Methanobacterium. These results indicate that the addition of hydrochar and biogas slurry reflux can improve the corresponding microbial abundance, in which hydrochar can enhance the redox characteristics and DIET between microorganism, biogas slurry reflux can also increase nutrient content of anaerobic digestion system, and collectively promote the methane yield.
Collapse
Affiliation(s)
- Ye Yang
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Mengyao Wang
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Su Yan
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China; College of Environment, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoyu Yong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Xueying Zhang
- College of Environment, Nanjing Tech University, Nanjing, 211816, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China
| | - Yonglan Xi
- Institute of Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Jun Zhou
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China.
| |
Collapse
|
11
|
Wang Q, Sha H, Cao S, Zhao B, Wang G, Zheng P. Tourmaline enhanced methane yield via regulating microbial metabolic balance during anaerobic co-digestion of corn stover and cow manure. BIORESOURCE TECHNOLOGY 2022; 359:127470. [PMID: 35714779 DOI: 10.1016/j.biortech.2022.127470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
This work performed a pilot-scale study on the effects of the substrate ratio, the concentration of tourmaline (Tur), and its high-temperature thermally modified (HTM) material on the anaerobic co-digestion of corn stover (CS) and cow manure (CM). The experimental results showed that the CH4 yield was higher at a corn stover -to- cow manure feeding ratio of 2:1. The cumulative CH4 yield increased by 22.76% and 8.31% at a concentration of tourmaline of 2.0 g/L and a tourmaline treatment temperature of 400 °C respectively. Microbial diversity analysis revealed that adding low doses of tourmaline regulated the distribution of microorganisms and that Methanobacteria became the dominant methanogenic archaea in the fermentation broth. This work clarified the effect of the concentration of tourmaline on gas production by anaerobic co-digestion from the perspective of the microbial metabolic balance and suggested the possibility of its application on a larger scale.
Collapse
Affiliation(s)
- Qing Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Hao Sha
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin 132012, China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Shengxian Cao
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Bo Zhao
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Gong Wang
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Pengfei Zheng
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
12
|
Zhang L, Ban Q, Li J, Wang T. Simultaneous production of hydrogen-methane and spatial community succession in an anaerobic baffled reactor treating corn starch processing wastewater. CHEMOSPHERE 2022; 300:134503. [PMID: 35395259 DOI: 10.1016/j.chemosphere.2022.134503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/11/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Corn starch processing wastewater (CSPW) is a high-strength organic wastewater and biological treatment is considered as the dominant process. The present work investigated the effects of pH on the bioenergy production and spatial succession of microbial community in an anaerobic baffled reactor (ABR) treating CSPW. The results showed that above 90.5% of COD removal and above 16.6 L d-1 of methane were achieved at the influent pHs of 8.0 and 7.0 under organic loading rate of 4.0 kg COD·m-3·L-1 condition. Further decreasing the influent pH to 6.0 resulted in the COD removal decreased to 89.7%. Besides, 9.2 L d-1 of hydrogen and 13.0 L d-1 of methane were obtained. There was significant difference in the volatile fatty acids profiles during the variation of pH. Illumina Miseq sequencing showed that Clostridium, Ethanoligenens, Megasphaera, Prevotella and Trichococcus with relative abundance of 2.1%∼28.1% were the dominant hydrogen-producing bacteria in C1. Methanogens (Methanothrix and Methanobacterium) dominated in the last three compartments. Function predicted analysis revealed that the abundance of metabolic-related gene families containing carbohydrate, amino acids and energy in the last three compartments were higher than that in C1. A deduced biodegradation model of CSPW in ABR revealed that the anaerobic sludge in C1 mainly produced hydrogen. Microbial population in C3 was responsible for COD removal and methane production. The redundancy analysis revealed that hydrogen production was highly correlated with some hydrogen-producing bacteria in C1, whereas methane production was positively correlated with microbial group in C2∼ C4.
Collapse
Affiliation(s)
- Liguo Zhang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China
| | - Qiaoying Ban
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China.
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tongtong Wang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
13
|
Wang P, Zheng Y, Zhao L, Lu J, Dong H, Yu H, Qi L, Ren L. New insights of anaerobic performance, antibiotic resistance gene removal, microbial community structure: applying graphite-based materials in wet anaerobic digestion. ENVIRONMENTAL TECHNOLOGY 2022:1-14. [PMID: 35188433 DOI: 10.1080/09593330.2022.2044917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The addition of carbonaceous materials into anaerobic digestion (AD) has gained widespread attention due to their significant effects on anaerobic performance and antibiotic resistance gene (ARG) removal. This study selected graphite, graphene, and graphene oxide (GO) as additives to investigate variations in AD performance, ARG removal, microbial community diversity and structure in wet AD systems. The results indicated that the addition of graphite-based materials in wet AD systems could increase degradation of solid organic matters by 0.91%-3.41% and utilization of soluble organic fractions by 10.43%-13.67%, but could not stimulate methane production. After the addition of graphite and graphene, ARG removal rates were effectively increased to 90.85% and 94.22%, respectively. However, the total ARG removal rate was reduced to 77.46% with the addition of GO. In addition, the microbial diversity in the wet AD process was enhanced with the addition of GO only, graphite and graphene led to a reduction in it. As for bacterial community, graphite and graphene increased the abundance of Thermotogae from 43.43% to 57.42% and 58.74%, while GO increased the abundance of Firmicute from 49.90% to 56.27%. For the archaeal community, the proportion of hydrogenotrophic methanogens was improved when adding each graphite-based material; however, only GO increased Methanosaeta that was acetoclastic methanogens. Finally, methanogens were found as the ARG host, and ARGs that belong to the same subtype might exist in the same host bacteria.
Collapse
Affiliation(s)
- Pan Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Yi Zheng
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Liya Zhao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Jiaxin Lu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Heng Dong
- College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Hongbing Yu
- College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Linsong Qi
- Department of Ophthalmology, Air Force Medical Center, Beijing, People's Republic of China
| | - Lianhai Ren
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, People's Republic of China
| |
Collapse
|
14
|
Yin M, Chen H. Unveiling the dual faces of chitosan in anaerobic digestion of waste activated sludge. BIORESOURCE TECHNOLOGY 2022; 344:126182. [PMID: 34710600 DOI: 10.1016/j.biortech.2021.126182] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, the roles of chitosan (CTS) in anaerobic digestion of Waste activated sludge (WAS) were investigated. The results show that the methane production potential of WAS is positively correlated with the CTS content. The presence of 30 g/kg total suspended solids CTS increased the cumulative methane production from 215 ± 1.52 to 272 ± 1.83 mL/g volatile suspended solids. The positively charged amino groups in CTS neutralize the hydroxyl and carboxyl groups of extracellular polymeric substances, which reduces the negative charge on the surface of sludge and promotes sludge agglomeration, thereby inhibiting the release of organic matter. CTS also inhibits hydrolysis and acidification by immobilizing hydrolases and acidulase enzymes. However, CTS flocculates humus to avoid its interference with electron transfer, thereby enhancing the activity of coenzyme F420 and methanogenesis. In addition, CTS increases the abundance of methanogens, which also contributes to methane production.
Collapse
Affiliation(s)
- Mengyu Yin
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
15
|
Ban Q, Zhang L, Li J. Correlating bacterial and archaeal community with efficiency of a coking wastewater treatment plant employing anaerobic-anoxic-oxic process in coal industry. CHEMOSPHERE 2022; 286:131724. [PMID: 34388873 DOI: 10.1016/j.chemosphere.2021.131724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Coking wastewater (CWW) contains various complex pollutants, and biological treatment processes are frequently applied in the coking wastewater treatment plants (CWWTPs). The present work is to evaluate the contaminants removal of a full-scale CWWTP with an anaerobic-anoxic-oxic process (A/A/O), to reveal function of bacterial and archaeal community involved in different bioreactors, and to clarify the relationship between the performance and microbial community. Illumina Miseq sequencing of bacteria showed that β-proteobacteria dominated in three bioreactors with relative abundance of 60.2%~81.7%. 75.2% of sequences were assigned to Petrobacter in the bioreactor A1, while Thiobacillus dominated in A2 and O with relative abundance of 31.8% and 38.7%, respectively. Illumina Miseq sequencing of archaea revealed a high diversity of methanogens existed in A1 and A2 activated sludge. Moreover, Halostagnicola was the dominant archaea in A1 and A2 activated sludge with relative abundance of 41.8% and 66.5%, respectively. Function predicted analysis explored that function of bacteria was similar to that of archaea but the relative abundance differed from each other. A putative biodegradation model of CWW treatment in A/A/O process indicated that A1 and A2 activated sludge mainly reduced carbohydrate, protein, TN, phenol and cyanide, as well as methane production. Bacteria in the bioreactor O were responsible for aerobic biotransformation of residual carbohydrates, refractory organics and nitrification. The redundancy analysis (RDA) further revealed that removal of COD, TN, and NO3--N, phenol and cyanides were highly correlated with some anaerobic bacteria and archaea, whereas the transformation of NH4+-N was positively correlated with some aerobic bacteria.
Collapse
Affiliation(s)
- Qiaoying Ban
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China
| | - Liguo Zhang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, PR China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
16
|
Xie Z, Cao Q, Chen Y, Luo Y, Liu X, Li D. The biological and abiotic effects of powdered activated carbon on the anaerobic digestion performance of cornstalk. BIORESOURCE TECHNOLOGY 2022; 343:126072. [PMID: 34626759 DOI: 10.1016/j.biortech.2021.126072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
To comprehensively evaluate the biological and abiotic influence of powdered activated carbon (PAC) on the anaerobic digestion of cornstalk, mesophilic and thermophilic digestion were conducted. Adding PAC (10 g/L) under thermophilic system obtained the maximum cellulose degradation rate and methane yield (MY), which were 57.47% and 128.19 L/kg VS. However, adding same dose of PAC at mesophilic system decreased the MY by 8.16% while increased the cellulose degradation rate and methane production rate by 6.48% and 17.92%. Under mesophilic conditions, the enhancement of PAC was owing to the enrichment of cellulolytic microorganisms, improvement of the syntrophic process and direct interspecies electron transfer. The lower methane yield was attributed to the adsorption of carbon source by PAC and CH4 consumption by Norank_c_Bathyarchaeia. The good performance of thermophilic system was owing to the lower adsorption capability of PAC, absence of Norank_c_Bathyarchaeia, and concentrated carbon flow to methane.
Collapse
Affiliation(s)
- Zhijie Xie
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qin Cao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yichao Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yiping Luo
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China
| | - Xiaofeng Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
17
|
Kumar Khanal S, Lü F, Wong JWC, Wu D, Oechsner H. Anaerobic digestion beyond biogas. BIORESOURCE TECHNOLOGY 2021; 337:125378. [PMID: 34166927 DOI: 10.1016/j.biortech.2021.125378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) is a matured technology for waste (water) remediation/stabilization and bioenergy generation in the form of biogas. AD technology has several inherent benefits ranging from generating renewable energy, remediating waste (water), and reducing greenhouse gas emission to improving health/hygiene and the overall socio-economic status of rural communities in developing nations. In recent years, there has been a paradigm shift in applications of AD technology beyond biogas. This special issue (SI) entitled, "Anaerobic Digestion Beyond Biogas (ADBB-2021)," was conceptualized to incorporate some of the recent advances in AD in which the emphasis is beyond biogas, such as anaerobic biorefinery, chain elongation, treatment of micropollutants, toxicity and system stability, digestate as biofertilizer, bio-electrochemical systems, innovative bioreactors, carbon sequestration, biogas upgrading, microbiomes, waste (water) remediation, residues/waste pre-treatment, promoter addition, and modeling, process control, and automation, among others. This VSI: ADBB-2021 contains 53 manuscripts (14 critical reviews and 39 research). The key findings of each manuscript are briefly summarized here, which can serve as a valuable resource for AD researchers to learn of major advances in AD technology and identify future research directions.
Collapse
Affiliation(s)
- Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | - Fan Lü
- College of Environmental Science and Technology, Tongji University, Shanghai, China
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Kowloon Tong, Hong Kong, China
| | - Hans Oechsner
- State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Garbenstraße 9, 70599 Stuttgart, Germany
| |
Collapse
|