1
|
Dewan A, Sridhar K, Yadav M, Bishnoi S, Ambawat S, Nagaraja SK, Sharma M. Recent trends in edible algae functional proteins: Production, bio-functional properties, and sustainable food packaging applications. Food Chem 2024; 463:141483. [PMID: 39369604 DOI: 10.1016/j.foodchem.2024.141483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
In recent years, there has been a notable surge in the development and adoption of edible algae protein-based sustainable food packaging, which presents a promising alternative to traditional materials due to its biodegradability, renewability, and minimal environmental impact. Hence, this review aims to emphasize the sources, cultivation, and downstream potential of algal protein and protein complexes. Moreover, it comprehensively examines the advancements in utilizing protein complexes for smart and active packaging applications, while also addressing the challenges that must be overcome for the widespread commercial adoption of algal proteins to meet industry 4.0. The review revealed that the diversity of algae species and their sustainable cultivation methods offers a promising alternative to traditional protein sources. Being vegan source with higher photosynthetic conversion efficiency and reduced growth cycle has permitted the proposition of algae as proteins of the future. The unique combination of techno-functional combined with bio-functional properties such as antioxidant, anti-inflammatory and antimicrobial response have captured the sustainable groups to invest considerable research and promote the innovations in algal proteins. Food packaging research has increasingly benefited by the excellent gas barrier property and superior mechanical strength of algal proteins either stand alone or in synergy with other biodegradable polymers. Advanced packaging functionality such as freshness monitoring and active preservation techniques has been explored and needs considerable characterization for commercial advancement. Overall, while algal proteins show promising downstream potential in various industries aligned with Industry 4.0 principles, their broader adoption hinges on overcoming these barriers through continued innovation and strategic development.
Collapse
Affiliation(s)
- Aastha Dewan
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Monika Yadav
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sonam Bishnoi
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Shobhit Ambawat
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | | | - Minaxi Sharma
- Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation (CBI), University of Nottingham Ningbo China, Ningbo 315000, China.
| |
Collapse
|
2
|
Martins VFR, Coelho M, Machado M, Costa E, Gomes AM, Poças F, Sperotto RA, Rosa-Martinez E, Vasconcelos M, Pintado ME, Morais RMSC, Morais AMMB. Integrated Valorization of Fucus spiralis Alga: Polysaccharides and Bioactives for Edible Films and Residues as Biostimulants. Foods 2024; 13:2938. [PMID: 39335867 PMCID: PMC11431149 DOI: 10.3390/foods13182938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Fucus spp. seaweeds thrive in the cold temperate waters of the northern hemisphere, specifically in the littoral and sublittoral regions along rocky shorelines. Moreover, they are known to be a rich source of bioactive compounds. This study explored the valorization of Fucus spiralis through the extraction of bioactives and polysaccharides (PSs) for food applications and biostimulant use. The bioactives were extracted using microwave hydrodiffusion and gravity (MHG), where the condition of 300 W for 20 min resulted in the highest total phenolic content and antioxidant activity of the extract. Cellular assays confirmed that the extract, at 0.5 mg/mL, was non-cytotoxic to HaCat cells. Polysaccharides (PSs) were extracted from the remaining biomass. The residue from this second extraction contained 1.5% protein and 13.35% carbohydrates. Additionally, the free amino acids and minerals profiles of both solid residues were determined. An edible film was formulated using alginate (2%), PS-rich Fucus spiralis extract (0.5%), and F. spiralis bioactive-rich extract (0.25%). The film demonstrated significant antioxidant properties, with ABTS and DPPH values of 221.460 ± 10.389 and 186.889 ± 36.062 µM TE/mg film, respectively. It also exhibited notable physical characteristics, including high water vapor permeability (11.15 ± 1.55 g.mm.m-2.day-1.kPa-1) and 100% water solubility. The residues from both extractions of Fucus spiralis exhibited biostimulant (BS) effects on seed germination and seedling growth. BSs with PSs enhanced pea germination by 48%, while BSs without PSs increased the root dry weight of rice and tomato by 53% and up to 176%, respectively, as well as the shoot dry weight by up to 38% and up to 74%, respectively. These findings underscore the potential of Fucus spiralis within the framework of a circular economy, wherein both extracted bioactives and post-extraction by-products can be used for sustainable agriculture and food applications.
Collapse
Affiliation(s)
- Valter F. R. Martins
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Marta Coelho
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Manuela Machado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Eduardo Costa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Ana M. Gomes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Fátima Poças
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Raul A. Sperotto
- Graduate Program in Plant Physiology, Botany Department, Biology Institute, Federal University of Pelotas, Pelotas 96160-000, Brazil;
| | - Elena Rosa-Martinez
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Marta Vasconcelos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Manuela E. Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Rui M. S. C. Morais
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| | - Alcina M. M. B. Morais
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (V.F.R.M.); (M.C.); (M.M.); (E.C.); (A.M.G.); (F.P.); (E.R.-M.); (M.V.); (M.E.P.); (R.M.S.C.M.)
| |
Collapse
|
3
|
Maciel F, Madureira L, Geada P, Teixeira JA, Silva J, Vicente AA. The potential of Pavlovophyceae species as a source of valuable carotenoids and polyunsaturated fatty acids for human consumption. Biotechnol Adv 2024; 74:108381. [PMID: 38777244 DOI: 10.1016/j.biotechadv.2024.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Microalgae are a group of microorganisms, mostly photoautotrophs with high CO2 fixation capacity, that have gained increased attention in the last decades due to their ability to produce a wide range of valuable metabolites, such as carotenoids and polyunsaturated fatty acids, for application in food/feed, pharmaceutical, and cosmeceutical industries. Their increasing relevance has highlighted the importance of identifying and culturing new bioactive-rich microalgae species, as well as of a thorough understanding of the growth conditions to optimize the biomass production and master the biochemical composition according to the desired application. Thus, this review intends to describe the main cell processes behind the production of carotenoids and polyunsaturated fatty acids, in order to understand the possible main triggers responsible for the accumulation of those biocompounds. Their economic value and the biological relevance for human consumption are also summarized. In addition, an extensive review of the impact of culture conditions on microalgae growth performance and their biochemical composition is presented, focusing mainly on the studies involving Pavlovophyceae species. A complementary description of the biochemical composition of these microalgae is also presented, highlighting their potential applications as a promising bioresource of compounds for large-scale production and human and animal consumption.
Collapse
Affiliation(s)
- Filipe Maciel
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Leandro Madureira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.
| | - Pedro Geada
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - José António Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana Silva
- ALLMICROALGAE, Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal.
| | - António Augusto Vicente
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Minic S, Velickovic L, Annighöfer B, Thureau A, Gligorijevic N, Jovanovic Z, Brûlet A, Combet S. Probing the structural stability of R-phycocyanin under pressure. Protein Sci 2024; 33:e5145. [PMID: 39150070 PMCID: PMC11328111 DOI: 10.1002/pro.5145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
The red macroalgae Porphyra, commonly known as Nori, is widely used as food around the world due to its high nutrient content, including the significant abundance of colored phycobiliproteins (PBPs). Among these, R-phycocyanin (R-PC) stands out for its vibrant purple color and numerous bioactive properties, making it a valuable protein for the food industry. However, R-PC's limited thermal stability necessitates alternative processing methods to preserve its color and bioactive properties. Our study aimed to investigate the in-situ stability of oligomeric R-PC under high pressure (HP) conditions (up to 4000 bar) using a combination of absorption, fluorescence, and small-angle X-ray scattering (SAXS) techniques. The unfolding of R-PC is a multiphase process. Initially, low pressure induces conformational changes in the R-PC oligomeric form (trimers). As pressure increases above 1600 bar, these trimers dissociate into monomers, and at pressures above 3000 bar, the subunits begin to unfold. When returned to atmospheric pressure, R-PC partially refolds, retaining 50% of its original color absorbance. In contrast, heat treatment causes irreversible and detrimental effects on R-PC color, highlighting the advantages of HP treatment in preserving both the color and bioactive properties of R-PC compared to heat treatment.
Collapse
Affiliation(s)
- Simeon Minic
- Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Luka Velickovic
- Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Burkhard Annighöfer
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, Gif-sur-Yvette, France
| | | | - Nikola Gligorijevic
- Department of Chemistry, University of Belgrade-Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Zorana Jovanovic
- Faculty of Chemistry, Center of Excellence for Molecular Food Sciences & Department of Biochemistry, University of Belgrade, Belgrade, Serbia
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, Gif-sur-Yvette, France
| | - Annie Brûlet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, Gif-sur-Yvette, France
| | - Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Mehariya S, Annamalai SN, Thaher MI, Quadir MA, Khan S, Rahmanpoor A, Abdurahman Kashem, Faisal M, Sayadi S, Al Hawari A, Al-Jabri H, Das P. A comprehensive review on versatile microalga Tetraselmis: Potentials applications in wastewater remediation and bulk chemical production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121520. [PMID: 38917540 DOI: 10.1016/j.jenvman.2024.121520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Microalgae are considered sustainable resources for the production of biofuel, feed, and bioactive compounds. Among various microalgal genera, the Tetraselmis genus, containing predominantly marine microalgal species with wide tolerance to salinity and temperature, has a high potential for large-scale commercialization. Until now, Tetraselmis sp. are exploited at smaller levels for aquaculture hatcheries and bivalve production. However, its prolific growth rate leads to promising areal productivity and energy-dense biomass, so it is considered a viable source of third-generation biofuel. Also, microbial pathogens and contaminants are not generally associated with Tetraselmis sp. in outdoor conditions due to faster growth as well as dominance in the culture. Numerous studies revealed that the metabolite compositions of Tetraselmis could be altered favorably by changing the growth conditions, taking advantage of its acclimatization or adaptation ability in different conditions. Furthermore, the biorefinery approach produces multiple fractions that can be successfully upgraded into various value-added products along with biofuel. Overall, Tetraselmis sp. could be considered a potential strain for further algal biorefinery development under the circular bioeconomy framework. In this aspect, this review discusses the recent advancements in the cultivation and harvesting of Tetraselmis sp. for wider application in different sectors. Furthermore, this review highlights the key challenges associated with large-scale cultivation, biomass harvesting, and commercial applications for Tetraselmis sp.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Senthil Nagappan Annamalai
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mahmoud Ibrahim Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohammed Abdul Quadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Ali Rahmanpoor
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Abdurahman Kashem
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohamed Faisal
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Sami Sayadi
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Alaa Al Hawari
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Hareb Al-Jabri
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
6
|
Azizi R, Baggio A, Capuano E, Pellegrini N. Protein transition: focus on protein quality in sustainable alternative sources. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38907600 DOI: 10.1080/10408398.2024.2365339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The current consumption trends, combined with the expected demographic growth in the coming years, call for a protein transition, i.e., the partial substitution of animal protein-rich foods with foods rich in proteins produced in a more sustainable way. Here, we have discussed some of the most common and promising protein sources alternative to animal proteins, namely: legumes, insects, and microorganisms (including microalgae and fungi). The primary objective was to assess their nutritional quality through the collection of digestible indispensable amino acid score (DIAAS) values available in the scientific literature. Protein digestibility corrected amino acid score (PDCAAS) values have been used where DIAAS values were not available. The ecological impact of each protein source, its nutritional quality and the potential applications in traditional foods or novel food concepts like meat analogues are also discussed. The data collected show that DIAAS values for animal proteins are higher than all the other protein sources. Soybean proteins, mycoproteins and proteins of some insects present relatively high DIAAS (or PDCAAS) values and must be considered proteins of good quality. This review also highlights the lack of DIAAS values for many potentially promising protein sources and the variability induced by the way the proteins are processed.
Collapse
Affiliation(s)
- Rezvan Azizi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Anna Baggio
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
| | - Edoardo Capuano
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
7
|
Abstract
Owing to environmental, ethical, health, and safety concerns, there has been considerable interest in replacing traditional animal-sourced foods like meat, seafood, egg, and dairy products with next-generation plant-based analogs that accurately mimic their properties. Numerous plant-based foods have already been successfully introduced to the market, but there are still several challenges that must be overcome before they are adopted by more consumers. In this article, we review the current status of the science behind the development of next-generation plant-based foods and highlight areas where further research is needed to improve their quality, increase their variety, and reduce their cost, including improving ingredient performance, developing innovative processing methods, establishing structure-function relationships, and improving nutritional profiles.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| |
Collapse
|
8
|
Bhatnagar P, Gururani P, Parveen A, Gautam P, Chandra Joshi N, Tomar MS, Nanda M, Vlaskin MS, Kumar V. Algae: A promising and sustainable protein-rich food ingredient for bakery and dairy products. Food Chem 2024; 441:138322. [PMID: 38190793 DOI: 10.1016/j.foodchem.2023.138322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
The consumer demand for protein rich foods urges the exploration for novel products of natural origin. Algae can be considered as a gold mine of different bioactive compounds, among which protein is distributed in significant amounts i.e., around 30% and can even reach to 55-60% in some cyanobacteria. Bakery and dairy products are extensively consumed worldwide due to product diversification and innovation. However, incorporation of algae biomass can lead to the development of green colour and fishy flavour that usually is not accepted in such products. Therefore, isolation and application of algae-derived proteins opens a new door for food industry. The present review provides a comprehensive understanding of incorporation of algae as a protein-rich ingredient in bakery and dairy products. The paper provides a deep insight for all the possible recent trends related to production and extraction of algae proteins accompanied by their incorporation in bakery and dairy foods.
Collapse
Affiliation(s)
- Pooja Bhatnagar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| | - Afreen Parveen
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Pankaj Gautam
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Naveen Chandra Joshi
- Division of Research & Innovation, Uttaranchal University Dehradun, Uttarakhand, 248007, India
| | - Mahipal Singh Tomar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Manisha Nanda
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russian Federation
| | - Vinod Kumar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India; Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russian Federation.
| |
Collapse
|
9
|
Karabulut G, Purkiewicz A, Goksen G. Recent developments and challenges in algal protein and peptide extraction strategies, functional and technological properties, bioaccessibility, and commercial applications. Compr Rev Food Sci Food Saf 2024; 23:e13372. [PMID: 38795380 DOI: 10.1111/1541-4337.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 05/27/2024]
Abstract
The burgeoning demand for protein, exacerbated by population growth and recent disruptions in the food supply chain, has prompted a rapid exploration of sustainable protein alternatives. Among these alternatives, algae stand out for their environmental benefits, rapid growth, and rich protein content. However, the widespread adoption of algae-derived proteins faces significant challenges. These include issues related to harvesting, safety, scalability, high cost, standardization, commercialization, and regulatory hurdles. Particularly daunting is the efficient extraction of algal proteins, as their resilient cell walls contain approximately 70% of the protein content, with conventional methods accessing only a fraction of this. Overcoming this challenge necessitates the development of cost-effective, scalable, and environmentally friendly cell disruption techniques capable of breaking down these rigid cell walls, often laden with viscous polysaccharides. Various approaches, including physical, chemical, and enzymatic methods, offer potential solutions, albeit with varying efficacy depending on the specific algal strain and energy transfer efficiency. Moreover, there remains a pressing need for further research to elucidate the functional, technological, and bioaccessible properties of algal proteins and peptides, along with exploring their diverse commercial applications. Despite these obstacles, algae hold considerable promise as a sustainable protein source, offering a pathway to meet the escalating nutritional demands of a growing global population. This review highlights the nutritional, technological, and functional aspects of algal proteins and peptides while underscoring the challenges hindering their widespread adoption. It emphasizes the critical importance of establishing a sustainable trajectory for food production, with algae playing a pivotal role in this endeavor.
Collapse
Affiliation(s)
- Gulsah Karabulut
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya, Türkiye
| | - Aleksandra Purkiewicz
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| |
Collapse
|
10
|
Silva M, Avni D, Varela J, Barreira L. The Ocean's Pharmacy: Health Discoveries in Marine Algae. Molecules 2024; 29:1900. [PMID: 38675719 PMCID: PMC11055030 DOI: 10.3390/molecules29081900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Non-communicable diseases (NCDs) represent a global health challenge, constituting a major cause of mortality and disease burden in the 21st century. Addressing the prevention and management of NCDs is crucial for improving global public health, emphasizing the need for comprehensive strategies, early interventions, and innovative therapeutic approaches to mitigate their far-reaching consequences. Marine organisms, mainly algae, produce diverse marine natural products with significant therapeutic potential. Harnessing the largely untapped potential of algae could revolutionize drug development and contribute to combating NCDs, marking a crucial step toward natural and targeted therapeutic approaches. This review examines bioactive extracts, compounds, and commercial products derived from macro- and microalgae, exploring their protective properties against oxidative stress, inflammation, cardiovascular, gastrointestinal, metabolic diseases, and cancer across in vitro, cell-based, in vivo, and clinical studies. Most research focuses on macroalgae, demonstrating antioxidant, anti-inflammatory, cardioprotective, gut health modulation, metabolic health promotion, and anti-cancer effects. Microalgae products also exhibit anti-inflammatory, cardioprotective, and anti-cancer properties. Although studies mainly investigated extracts and fractions, isolated compounds from algae have also been explored. Notably, polysaccharides, phlorotannins, carotenoids, and terpenes emerge as prominent compounds, collectively representing 42.4% of the investigated compounds.
Collapse
Affiliation(s)
- Mélanie Silva
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
| | - Dorit Avni
- MIGAL Galilee Institute, Kiryat Shmona 1106000, Israel;
| | - João Varela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Luísa Barreira
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
11
|
Cheng S, Yuan L, Li-Gao R, Chen S, Li H, Du M. Nutrition and Cardiovascular Disease: The Potential Role of Marine Bioactive Proteins and Peptides in Thrombosis Prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6815-6832. [PMID: 38523314 DOI: 10.1021/acs.jafc.3c08850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Thrombus and cardiovascular diseases pose a significant health threat, and dietary interventions have shown promising potential in reducing the incidence of these diseases. Marine bioactive proteins and peptides have been extensively studied for their antithrombotic properties. They can inhibit platelet activation and aggregation by binding to key receptors on the platelet surface. Additionally, they can competitively anchor to critical enzyme sites, leading to the inhibition of coagulation factors. Marine microorganisms also offer alternative sources for the development of novel fibrinolytic proteins, which can help dissolve blood clots. The advancements in technologies, such as targeted hydrolysis, specific purification, and encapsulation, have provided a solid foundation for the industrialization of bioactive peptides. These techniques enable precise control over the production and delivery of bioactive peptides, enhancing their efficacy and safety. However, it is important to note that further research and clinical studies are needed to fully understand the mechanisms of action and therapeutic potential of marine bioactive proteins and peptides in mitigating thrombotic events. The challenges and future application perspectives of these bioactive peptides also need to be explored.
Collapse
Affiliation(s)
- Shuzhen Cheng
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Lushun Yuan
- Department of Vascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, People's Republic of China
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Centre, 2333 ZA Leiden, Netherlands
| | - Siru Chen
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Han Li
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Ming Du
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| |
Collapse
|
12
|
Van De Walle S, Gifuni I, Coleman B, Baune MC, Rodrigues A, Cardoso H, Fanari F, Muylaert K, Van Royen G. Innovative vs classical methods for drying heterotrophic Chlorella vulgaris: Impact on protein quality and sensory properties. Food Res Int 2024; 182:114142. [PMID: 38519160 DOI: 10.1016/j.foodres.2024.114142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Drying is a necessary step in the microalgae production chain to reduce microbial load and oxidative degradation of the end product. Depending on the differences in applied temperature and treatment time, the process of drying can have a substantial impact on protein quality and aroma, important characteristics determining the incorporation potential in food products. In this study, we compared the drying of heterotrophic Chorella vulgaris with both innovative (agitated thin film drying (ATFD), pulse combustion drying (PCD) and solar drying (SolD)) and commonly used drying techniques (spray drying (SprD) and freeze drying (FD)). To evaluate the impact on protein quality, we evaluated techno-functional properties, in vitro digestibility (INFOGEST) as well as protein denaturation using differential scanning calorimetry (DSC). A sensory analysis was performed by a trained expert panel, combined with headspace solid-phase microextraction (HS-SPME) - gas chromatography-mass spectrometry (GC-MS) to determine volatile organic compounds (VOCs). ATFD was found to increase techno-functional properties such as gelling, water holding and solubility as well as in vitro protein digestibility. These observations could be related to induced cell disruption and protein denaturation by ATFD. Sensory analysis indicated an increased earthy off-flavor after ATFD. Interestingly, the high-temperature PCD led to an increase in cacao odor while low-temperature FD resulted in lower flavor, odors and VOCs. These results demonstrate that protein quality and sensorial properties of C. vulgaris can be steered through the type of drying, which could help in the selection of application-specific drying methods. Overall, this work could promote the incorporation of microalgal single cell proteins in different innovative food products.
Collapse
Affiliation(s)
- Simon Van De Walle
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium; Biology Department KULAK, KU Leuven Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.
| | - Imma Gifuni
- AlgoSource Technologies SAS, 7 Rue Eugène Cornet, 44600 Saint-Nazaire, France
| | - Bert Coleman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Marie-Christin Baune
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Str. 7, 49610 Quakenbrück, Germany
| | | | - Helena Cardoso
- Allmicroalgae Natural Products S.A., 2445-413 Pataias, Portugal
| | - Fabio Fanari
- Food Industries, Institute of Agriculture and Food Research and Technology (IRTA), Finca Camps i Armet s/n, 17121 Monells, Spain
| | - Koenraad Muylaert
- Biology Department KULAK, KU Leuven Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Geert Van Royen
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| |
Collapse
|
13
|
Liu Y, Aimutis WR, Drake M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024; 13:1010. [PMID: 38611316 PMCID: PMC11011482 DOI: 10.3390/foods13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Alternative proteins have gained popularity as consumers look for foods that are healthy, nutritious, and sustainable. Plant proteins, precision fermentation-derived proteins, cell-cultured proteins, algal proteins, and mycoproteins are the major types of alternative proteins that have emerged in recent years. This review addresses the major alternative-protein categories and reviews their definitions, current market statuses, production methods, and regulations in different countries, safety assessments, nutrition statuses, functionalities and applications, and, finally, sensory properties and consumer perception. Knowledge relative to traditional dairy proteins is also addressed. Opportunities and challenges associated with these proteins are also discussed. Future research directions are proposed to better understand these technologies and to develop consumer-acceptable final products.
Collapse
Affiliation(s)
- Yaozheng Liu
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| | - William R. Aimutis
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
- North Carolina Food Innovation Lab, North Carolina State University, Kannapolis, NC 28081, USA
| | - MaryAnne Drake
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA; (Y.L.); (W.R.A.)
| |
Collapse
|
14
|
Zhang X, Zhang T, Zhao Y, Jiang L, Sui X. Structural, extraction and safety aspects of novel alternative proteins from different sources. Food Chem 2024; 436:137712. [PMID: 37852073 DOI: 10.1016/j.foodchem.2023.137712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
With rapid population growth and continued environmental degradation, it is no longer sustainable to rely on conventional proteins to meet human requirements. This has prompted the search for novel alternative protein sources of greater sustainability. Currently, proteins of non-conventional origin have been developed, with such alternative protein sources including plants, insects, algae, and even bacteria and fungi. Most of these protein sources have a high protein content, along with a balanced amino acid composition, and are regarded as healthy and nutritious sources of protein. While these novel alternative proteins have excellent nutritional, research on their structure are still at a preliminary stage, particularly so for insects, algae, bacteria, and fungi. Therefore, this review provides a comprehensive overview of promising novel alternative proteins developed in recent years with a focus on their nutrition, sustainability, classification, and structure. In addition, methods of extraction and potential safety factors for these proteins are summarized.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
15
|
Uguz S, Sozcu A. Pollutant Gases to Algal Animal Feed: Impacts of Poultry House Exhaust Air on Amino Acid Profile of Algae. Animals (Basel) 2024; 14:754. [PMID: 38473139 DOI: 10.3390/ani14050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Algae provide a rich source of proteins, lipids, vitamins, and minerals, making them valuable feed ingredients in animal nutrition. Beyond their nutritional benefits, algae have been recognized for their potential to mitigate the negative environmental impacts of poultry production. Poultry production is crucial for the global food supply but contributes to environmental concerns, particularly in terms of ammonia and carbon dioxide gas emissions. This study emphasizes the importance of reducing greenhouse gas and ammonia production in poultry operations by utilizing algae species suitable for animal consumption, highlighting the need for sustainable feed sources. This study investigated the effects of poultry exhaust air and culture conditions on the amino acid profiles of three microalgae species, namely, Scenedesmus sp. (AQUAMEB-60), Ankistrodesmus sp. (AQUAMEB-33), and Synechococcaceae (AQUAMEB 32). The experiments were conducted in a commercial broiler farm in Bursa, Turkey, focusing on reducing pollutant gas emissions and utilizing poultry exhaust air in algae cultivation. The highest protein content of 50.4% was observed in the biomass of Synechococcaceae with BBM and DI water. Scenedesmus sp. had the highest carbohydrate content of 33.4% cultivated with DI water. The algae biomass produced from Synechococcaceae growth with DI water was found to have the highest content of essential and nonessential amino acids, except for glutamic acid and glycine. The arsenic, cadmium, and mercury content showed variations within the following respective ranges: 1.076-3.500 mg/kg, 0.0127-0.1210 mg/kg, and 0.1330-0.0124 mg/kg. The overall operating costs for producing 1.0 g L-1 d-1 of dry algal biomass with the existing PBR system were $0.12-0.35 L-1 d-1, $0.10-0.26 L-1 d-1, and $0.11-0.24 L-1 d-1 for Scenedesmus sp., Ankistrodesmus sp., and Synechococcaceae, respectively. The operating cost of producing 1.0 g L-1 d-1 of protein was in the range of $0.25-0.88 L-1 d-1 for the three algae species. The results provide insights into the potential of algae as a sustainable feed ingredient in animal diets, emphasizing both environmental and economic considerations. The results demonstrated a considerable reduction in the production costs of dry biomass and protein when utilizing poultry house exhaust air, highlighting the economic viability and nutritional benefits of this cultivation method.
Collapse
Affiliation(s)
- Seyit Uguz
- Department of Biosystems Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Turkey
- Department of Biosystems Engineering, Faculty of Engineering and Architecture, Yozgat Bozok University, Yozgat 66200, Turkey
| | - Arda Sozcu
- Department of Animal Science, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Turkey
| |
Collapse
|
16
|
Li P, Sheng L, Ye Y, Wang JS, Geng S, Ning D, Sun X. Allergenicity of alternative proteins: research hotspots, new findings, evaluation strategies, regulatory status, and future trends: a bibliometric analysis. Crit Rev Food Sci Nutr 2024:1-12. [PMID: 38189352 DOI: 10.1080/10408398.2023.2299748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
As the world population rises, the demand for protein increases, leading to a widening gap in protein supply. There is an unprecedented interest in the development of alternative proteins, but their allergenicity has raised consumer concerns. This review aims to highlight and correlate the current research status of allergenicity studies on alternative proteins based on previously published studies. Current research keywords, hotspots and trends in alternative protein sensitization were analyzed using a mixed-method approach that combined bibliometric analysis and literature review. According to the bibliometric analysis, current research is primarily focused on food science, agriculture, and immunology. There are significant variations in the type and amount of allergens found in alternative proteins. A significant amount of research has been focused on studying plant-based proteins and the cross-reactivity of insect proteins. The allergenicity of alternative proteins has not been studied extensively or in depth. The allergenicity of other alternative proteins and the underlying mechanisms warrant further study. In addition, the lack of a standardized allergy assessment strategy calls for additional efforts by international organizations and collaborations among different countries. This review provides new research and regulatory perspectives for the safe utilization of alternative proteins in human food systems.
Collapse
Affiliation(s)
- Peipei Li
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, P.R. China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, P.R. China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, P.R. China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
| | - Shuxiang Geng
- Yunnan Academy of Forestry and Grassland, Kunming, P.R. China
| | - Deli Ning
- Yunnan Academy of Forestry and Grassland, Kunming, P.R. China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, P.R. China
| |
Collapse
|
17
|
Pennanen K, Malila RM, Luomala HT. Is it me or others who matter? The interplay between consumer values vis-à-vis status and affiliation motives as shapers of meat alternative interest. Appetite 2024; 192:107114. [PMID: 37926395 DOI: 10.1016/j.appet.2023.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
This study is about the role of consumers' personal values (Self-enhancement, Openness to change, Self-transcendence, and Conservation) in consumers' interest towards meat alternatives. In addition, the underlying role of two social motives, status and group affiliation are analysed. A conceptual model with hypotheses was developed and validated, and the hypotheses were tested through PLS-SEM with data from four European countries (Finland, the UK, Germany, and Sweden, total N = 3600). The results show that self-focused personal values (Self-enhancement and Openness to change) are not associated with consumers' interest towards meat alternatives. The case is different with other-focused values. Self-transcendence had a positive connection to interest while Conservation had a negative relationship. Finally, the data suggest an underlying role of social motive status between Self-enhancement and interest and the same for group affiliation between Self-transcendence and Conservation and interest. Based on the results, strategies to support meat alternative adoption such as value activation through priming, cognition and emotion-driven marketing are proposed.
Collapse
Affiliation(s)
- Kyösti Pennanen
- University of Vaasa, School of Marketing and Communication, Finland; VTT Technical Research Centre of Finland Ltd, Finland.
| | - Roosa-Maaria Malila
- University of Vaasa, School of Marketing and Communication, Finland; VTT Technical Research Centre of Finland Ltd, Finland.
| | - Harri T Luomala
- University of Vaasa, School of Marketing and Communication, Finland.
| |
Collapse
|
18
|
Şensu E, Ayar EN, Okudan EŞ, Özçelik B, Yücetepe A. Characterization of Proteins Extracted from Ulva sp., Padina sp., and Laurencia sp. Macroalgae Using Green Technology: Effect of In Vitro Digestion on Antioxidant and ACE-I Inhibitory Activity. ACS OMEGA 2023; 8:48689-48703. [PMID: 38162757 PMCID: PMC10753567 DOI: 10.1021/acsomega.3c05041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/25/2023] [Indexed: 01/03/2024]
Abstract
Macroalgal proteins were extracted from Ulva rigida (URPE) (green), Padina pavonica (PPPE) (brown), and Laurencia obtusa (LOPE) (red) using ultrasound-assisted enzymatic extraction, which is one of the green extraction technologies. Techno-functional, characteristic, and digestibility properties, and biological activities including antioxidant (AOA) and angiotensin-I converting enzyme (ACE-I) inhibitory activities were also investigated. According to the results, the extraction yield (EY) (94.74%) was detected in the extraction of L. obtusa, followed by U. rigida and P. pavonica. PPPE showed the highest ACE-I inhibitory activity before in vitro digestion. In contrast to PPPE, LOPE (20.90 ± 0.00%) and URPE (20.20 ± 0.00%) showed higher ACE-I inhibitory activity after in vitro digestion. The highest total phenolic content (TPC) (77.86 ± 1.00 mg GAE/g) was determined in LOPE. On the other hand, the highest AOACUPRAC (74.69 ± 1.78 mg TE/g) and AOAABTS (251.29 ± 5.0 mg TE/g) were detected in PPPE. After in vitro digestion, LOPE had the highest TPC (22.11 ± 2.18 mg GAE/g), AOACUPRAC (8.41 ± 0.06 mg TE/g), and AOAABTS (88.32 ± 0.65 mg TE/g) (p < 0.05). In vitro protein digestibility of three macroalgal protein extracts ranged from 84.35 ± 2.01% to 94.09 ± 0.00% (p < 0.05). Three macroalgae showed high oil holding capacity (OHC), especially PPPE (410.13 ± 16.37%) (p < 0.05), but they showed minimum foaming and emulsifying properties. The quality of the extracted macroalgal proteins was assessed using FTIR, SDS-PAGE, and DSC analyses. According to our findings, the method applied for macroalgal protein extraction could have a potential the promise of ultrasonication application as an environmentally friendly technology for food industry. Moreover, URPE, PPPE, and LOPE from sustainable sources may be attractive in terms of nourishment for people because of their digestibility, antioxidant properties, and ACE-I inhibitory activities.
Collapse
Affiliation(s)
- Eda Şensu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkey
- Department
of Food Technology, Istanbul Gelisim Higher Vocational School, Istanbul Gelisim
University, Avcılar, Istanbul 34310, Turkey
| | - Eda Nur Ayar
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkey
| | | | - Beraat Özçelik
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkey
- BIOACTIVE
Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer 34467, Istanbul, Turkey
| | - Aysun Yücetepe
- Department
of Food Engineering, Faculty of Engineering, Aksaray University, TR-68100 Aksaray, Turkey
| |
Collapse
|
19
|
Benković M, Jurinjak Tušek A, Sokač Cvetnić T, Jurina T, Valinger D, Gajdoš Kljusurić J. An Overview of Ingredients Used for Plant-Based Meat Analogue Production and Their Influence on Structural and Textural Properties of the Final Product. Gels 2023; 9:921. [PMID: 38131907 PMCID: PMC10743084 DOI: 10.3390/gels9120921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Plant-based meat analogues are food products made from vegetarian or vegan ingredients that are intended to mimic taste, texture and appearance of meat. They are becoming increasingly popular as people look for more sustainable and healthy protein sources. Furthermore, plant-based foods are marketed as foods with a low carbon footprint and represent a contribution of the consumers and the food industry to a cleaner and a climate-change-free Earth. Production processes of plant-based meat analogues often include technologies such as 3D printing, extrusion or shear cell where the ingredients have to be carefully picked because of their influence on structural and textural properties of the final product, and, in consequence, consumer perception and acceptance of the plant-based product. This review paper gives an extensive overview of meat analogue components, which affect the texture and the structure of the final product, discusses the complex interaction of those ingredients and reflects on numerous studies that have been performed in that area, but also emphasizes the need for future research and optimization of the mixture used in plant-based meat analogue production, as well as for optimization of the production process.
Collapse
Affiliation(s)
- Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.J.T.); (T.S.C.); (T.J.); (D.V.); (J.G.K.)
| | | | | | | | | | | |
Collapse
|
20
|
Teng CS, Ng IS. Optimization of 4-aminobutyric acid feeding strategy and clustered regularly interspaced short palindromic repeats activation for enhanced value-added chemicals in halophilic Chlorella sorokiniana. BIORESOURCE TECHNOLOGY 2023; 387:129599. [PMID: 37532061 DOI: 10.1016/j.biortech.2023.129599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Chlorella sorokiniana (CS) is a prominent microalga with vast potential as a biocarrier for carbon mitigation toward a green process. However, challenges remain in achieving high biomass levels and production rates. Therefore, a systematic feeding strategy using 4-aminobutyric acid (GABA) and CRISPR technology was applied to improve microalgal productivity. At first, GABA increased protein content by 1.4-fold, while intermittent supplementation during cultivation resulted in a 1.58-fold and 2.13-fold increase in biomass and pigment content, respectively. Under halophilic conditions, the optimal approach involved repeated feeding of 5 mM GABA at the initial and mid-log phases of growth, resulting in biomass, protein, and pigment levels of 6.74 g/L, 3.24 g/L, and 49.87 mg/L. CRISPRa mediated glutamate synthase and using monosodium glutamate (MSG) as a cheap precursor for GABA has effectively enhanced the biomass, protein, and lutein content, thus offers a cost-effective approach to commercialize high-valued chemical using algae towards a low-carbon paradigm.
Collapse
Affiliation(s)
- Chiau-Sin Teng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
21
|
Wu JY, Tso R, Teo HS, Haldar S. The utility of algae as sources of high value nutritional ingredients, particularly for alternative/complementary proteins to improve human health. Front Nutr 2023; 10:1277343. [PMID: 37904788 PMCID: PMC10613476 DOI: 10.3389/fnut.2023.1277343] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
As the global population continues to grow, the demand for dietary protein is rapidly increasing, necessitating the exploration of sustainable and nutritious protein sources. Algae has emerged as a promising food source due to their high value ingredients such as proteins, as well as for their environmental sustainability and abundance. However, knowledge gaps surrounding dietary recommendations and food applications restrict algae's utilization as a viable protein source. This review aims to address these gaps by assessing the suitability of both microalgae and macroalgae as alternative/complementary protein sources and exploring their potential applications in food products. The first section examines the potential suitability of algae as a major food source by analyzing the composition and bioavailability of key components in algal biomass, including proteins, lipids, dietary fiber, and micronutrients. Secondly, the biological effects of algae, particularly their impact on metabolic health are investigated with an emphasis on available clinical evidence. While evidence reveals protective effects of algae on glucose and lipid homeostasis as well as anti-inflammatory properties, further research is required to understand the longer-term impact of consuming algal protein, protein isolates, and concentrates on metabolic health, including protein metabolism. The review then explores the potential of algal proteins in food applications, including ways to overcome their sensory limitations, such as their dark pigmentation, taste, and odor, in order to improve consumer acceptance. To maximize algae's potential as a valuable protein source in the food sector, future research should prioritize the production of more acceptable algal biomass and explore new advances in food sciences and technology for improved consumer acceptance. Overall, this paper supports the potential utility of algae as a sustainable and healthy ingredient source for widespread use in future food production.
Collapse
Affiliation(s)
- Jia Yee Wu
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rachel Tso
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hwee Sze Teo
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sumanto Haldar
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, United Kingdom
| |
Collapse
|
22
|
Espinosa-Ramírez J, Mondragón-Portocarrero AC, Rodríguez JA, Lorenzo JM, Santos EM. Algae as a potential source of protein meat alternatives. Front Nutr 2023; 10:1254300. [PMID: 37743912 PMCID: PMC10513374 DOI: 10.3389/fnut.2023.1254300] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
With the rise of plant-based meat alternatives, there is a growing need for sustainable and nutritious sources of protein. Alga is a rich protein source, and initial studies show that it can be a good component in developing protein meat alternatives. However, there are certain limitations in their use as the need for efficient and optimal technical process in large-scale protein extraction and purification, as well as overcoming certain negative effects such as potentially harmful compounds, allergenicity issues, or sensorial affections, especially in color but also in textural and flavor characteristics. This review offers a vision of the fledgling research about using alga protein in the development of meat alternatives or supplementing meat products.
Collapse
Affiliation(s)
| | - Alicia C. Mondragón-Portocarrero
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Quimica Analitica Nutricion y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Jose A. Rodríguez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | | | - Eva M. Santos
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| |
Collapse
|
23
|
Bakhsh A, Park J, Baritugo KA, Kim B, Sil Moon S, Rahman A, Park S. A holistic approach toward development of plant-based meat alternatives through incorporation of novel microalgae-based ingredients. Front Nutr 2023; 10:1110613. [PMID: 37229478 PMCID: PMC10203216 DOI: 10.3389/fnut.2023.1110613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
This study explored the changes in the physiochemical, textural, sensory, and functional characteristics of plant-based meat (PBM) after incorporating novel plant-based ingredients including spirulina (SPI), duck Weed (DW), and yellow Chlorella (YC). In the chromaticity evaluation, the YC group (YCI YC2, and YC3%) displayed significant differences (p < 0.05) in lightness (L*) indices as compared to the control. Whereas, based on concertation gradient of SPI microalgae (SP0.5, SP0.7, and SP1%) incorporated into PBM patties demonstrated that SPI 1 had the lowest values (p < 0.05) in redness (a*) and yellowness (b*) followed by SPI 0.7 and SPI 0.5% concentration, respectively. The concentration gradient of the YC group indicated that YC3 was intended to be the highest crude fat value followed by YC2 and YCI. The ash content in PBM patties increased considerably (p < 0.05) as the concentration level of microalgae advanced in all treated groups. Based on the concentration level of YC incorporated microalgae into PBM patties indicated that YC 3 had the highest (p < 0.05) gumminess and chewiness while YC 1 had the lowest reported values in terms of gumminess and chewiness. Moreover, springiness and cohesiveness showed considerable differences between SPI and YC groups. In the sensory evaluation, SPI 1 showed the lowest value only in color and appearance (p < 0.05), conversely, the other sensory parameters were non-significant among all treatment groups (p > 0.05). The micronutrient in PBM presented an irregular pattern after incorporating various ingredients. However, levels were higher (p < 0.05) in the DW group (DW 0.5 DW 0.7, and DW% 1) than those in the other groups. Moreover, the SPI and YC groups showed detectable levels of diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity with, SP 1 showing the highest level of antioxidant activity. Acknowledging the limited research on PBM production, extraction technologies, and selecting various novel suitable ingredients in meat substitutes. Hence, to fill this knowledge gap an attempt has been made to incorporate various concentrations of microalgae including SPI, YC, and DW to enhance the quality and functionality of meat alternatives. To the best of our knowledge, this is the first report that describes the physiochemical, textural, sensory, and nutritional attributes of PBM incorporated with novel microalgae. Collectively these results indicate that the incorporation of SPI, DW, and YC may improve the quality of PBM without showing deleterious outcomes on the quality and functionality of the ultimate PBM products.
Collapse
Affiliation(s)
- Allah Bakhsh
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Juhee Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Kei Anne Baritugo
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Bosung Kim
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Sung Sil Moon
- Healthy Food Technology, Sunjin Co., Ltd., Icheon, Republic of Korea
| | - Attaur Rahman
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Llano T, Arce C, Gallart LE, Perales A, Coz A. Techno-Economic Analysis of Macroalgae Biorefineries: A Comparison between Ethanol and Butanol Facilities. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Ulva rigida seaweed is constituted by ulvan, which is a sulfated polysaccharide with uses in a wide variety of applications. After the ulvan-oriented extraction process, a crystalline and recalcitrant residue, the so-called pulp, appears. In this work, this residue was valorized through a multiple-stage process. The total processing of the algae consists of hot water extraction, acid hydrolysis, ABE fermentation, and distillation in order to obtain not only ulvan but also butanol and bioethanol to be used as biofuels by simulating two third-generation algae-based biorefineries in Aspen Plus v10 software. Third-generation plants do not compete with food and algae biomass, and they do not require delignification nor pretreatment steps, which are usually the bottleneck of second-generation plants. A plant producing butanol as biofuel together with diluted ulvan, acetone, and ethanol as byproducts was modelled in Aspen Plus software. Regarding the profitability of the investment, the plants producing bioethanol and butanol were economically feasible. The economic parameters for the bioethanol and butanol plants were as follows: NPV equal to 27.66 M$ and 16.67 M$, and IRR equal to 46% and 37%, respectively. The discounted return period was acceptable for these types of plants, which were 4.11 and 3.16 years for the ABE biorefinery and the bioethanol biorefinery, respectively.
Collapse
|
25
|
Ermis E, Tekiner IH, Lee CC, Ucak S, Yetim H. An overview of protein powders and their use in food formulations. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ertan Ermis
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Ismail Hakki Tekiner
- Department of Nutrition and Dietetics Istanbul Sabahattin Zaim University Istanbul Turkey
- Department of Industrial Biotechnology Ansbach University of Applied Sciences Ansbach Germany
| | - Chi Ching Lee
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Sumeyye Ucak
- Department of Nutrition and Dietetics Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Hasan Yetim
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
- Halal Food R&D Center of Excellence Istanbul Sabahattin Zaim University Istanbul Turkey
| |
Collapse
|
26
|
Neo YT, Chia WY, Lim SS, Ngan CL, Kurniawan TA, Chew KW. Smart systems in producing algae-based protein to improve functional food ingredients industries. Food Res Int 2023; 165:112480. [PMID: 36869493 DOI: 10.1016/j.foodres.2023.112480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Production and extraction systems of algal protein and handling process of functional food ingredients need to control several parameters such as temperature, pH, intensity, and turbidity. Many researchers have investigated the Internet of Things (IoT) approach for enhancing the yield of microalgae biomass and machine learning for identifying and classifying microalgae. However, there have been few specific studies on using IoT and artificial intelligence (AI) for production and extraction of algal protein as well as functional food ingredients processing. In order to improve the production of algal protein and functional food ingredients, the implementation of smart system is a must to have real-time monitoring, remote control system, quick response to sudden events, prediction and characterisation. Techniques of IoT and AI are expected to help functional food industries to have a big breakthrough in the future. Manufacturing and implementation of beneficial smart systems are important to provide convenience and to increase the efficiency of work by using the interconnectivity of IoT devices to have good capturing, processing, archiving, analyzing, and automation. This review investigates the possibilities of implementation of IoT and AI in production and extraction of algal protein and processing of functional food ingredients.
Collapse
Affiliation(s)
- Yi Ting Neo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Siew Shee Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Cheng Loong Ngan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | | | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62, Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
27
|
Quintas-Nunes F, Brandão PR, Barreto Crespo MT, Glick BR, Nascimento FX. Plant Growth Promotion, Phytohormone Production and Genomics of the Rhizosphere-Associated Microalga, Micractinium rhizosphaerae sp. nov. PLANTS (BASEL, SWITZERLAND) 2023; 12:651. [PMID: 36771735 PMCID: PMC9922002 DOI: 10.3390/plants12030651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Microalgae are important members of the soil and plant microbiomes, playing key roles in the maintenance of soil and plant health as well as in the promotion of plant growth. However, not much is understood regarding the potential of different microalgae strains in augmenting plant growth, or the mechanisms involved in such activities. In this work, the functional and genomic characterization of strain NFX-FRZ, a eukaryotic microalga belonging to the Micractinium genus that was isolated from the rhizosphere of a plant growing in a natural environment in Portugal, is presented and analyzed. The results obtained demonstrate that strain NFX-FRZ (i) belongs to a novel species, termed Micractinium rhizosphaerae sp. nov.; (ii) can effectively bind to tomato plant tissues and promote its growth; (iii) can synthesize a wide range of plant growth-promoting compounds, including phytohormones such as indole-3-acetic acid, salicylic acid, jasmonic acid and abscisic acid; and (iv) contains multiple genes involved in phytohormone biosynthesis and signaling. This study provides new insights regarding the relevance of eukaryotic microalgae as plant growth-promoting agents and helps to build a foundation for future studies regarding the origin and evolution of phytohormone biosynthesis and signaling, as well as other plant colonization and plant growth-promoting mechanisms in soil/plant-associated Micractinium.
Collapse
Affiliation(s)
- Francisco Quintas-Nunes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Pedro R. Brandão
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Maria T. Barreto Crespo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Francisco X. Nascimento
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
28
|
Yang R, Wang H, Zhu L, Zhu L, Liu T, Zhang D. Identification and Functional Analysis of Acyl-Acyl Carrier Protein Δ 9 Desaturase from Nannochloropsis oceanica. J Microbiol 2023; 61:95-107. [PMID: 36719619 DOI: 10.1007/s12275-022-00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 02/01/2023]
Abstract
The oleaginous marine microalga Nannochloropsis oceanica strain IMET1 has attracted increasing attention as a promising photosynthetic cell factory due to its unique excellent capacity to accumulate large amounts of triacylglycerols and eicosapentaenoic acid. To complete the genomic annotation for genes in the fatty acid biosynthesis pathway of N. oceanica, we conducted the present study to identify a novel candidate gene encoding the archetypical chloroplast stromal acyl-acyl carrier protein Δ9 desaturase. The full-length cDNA was generated using rapid-amplification of cDNA ends, and the structure of the coding region interrupted by four introns was determined. The RT-qPCR results demonstrated the upregulated transcriptional abundance of this gene under nitrogen starvation condition. Fluorescence localization studies using EGFP-fused protein revealed that the translated protein was localized in chloroplast stroma. The catalytic activity of the translated protein was characterized by inducible expression in Escherichia coli and a mutant yeast strain BY4389, indicating its potential desaturated capacity for palmitoyl-ACP (C16:0-ACP) and stearoyl-ACP (C18:0-ACP). Further functional complementation assay using BY4839 on plate demonstrated that the expressed enzyme restored the biosynthesis of oleic acid. These results support the desaturated activity of the expressed protein in chloroplast stroma to fulfill the biosynthesis and accumulation of monounsaturated fatty acids in N. oceanica strain IMET1.
Collapse
Affiliation(s)
- Ruigang Yang
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, 410073, People's Republic of China
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Hui Wang
- Functional Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, People's Republic of China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Lvyun Zhu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Tianzhong Liu
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.
| | - Dongyi Zhang
- Hunan Key Laboratory of Economic Crops, Genetic Improvement, and Integrated Utilization, School of Life Sciences, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China.
| |
Collapse
|
29
|
Muñoz-Miranda LA, Iñiguez-Moreno M. An extensive review of marine pigments: sources, biotechnological applications, and sustainability. AQUATIC SCIENCES 2023; 85:68. [PMID: 37096011 PMCID: PMC10112328 DOI: 10.1007/s00027-023-00966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The global demand for food and healthcare products based on natural compounds means that the industrial and scientific sectors are on a continuous search for natural colored compounds that can contribute to the replacement of synthetic colors. Natural pigments are a heterogeneous group of chemical molecules, widely distributed in nature. Recently, the interest in marine organisms has increased as they represent the most varied environment in the world and provide a wide range of colored compounds with bioactive properties and biotechnological applications in areas such as the food, pharmaceutical, cosmetic, and textile industries. The use of marine-derived pigments has increased during the last two decades because they are environmentally safe and healthy compounds. This article provides a comprehensive review of the current knowledge of sources, applications, and sustainability of the most important marine pigments. In addition, alternatives to protect these compounds from environmental conditions and their applications in the industrial sector are reviewed.
Collapse
Affiliation(s)
- Luis Alfonso Muñoz-Miranda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340 Jalisco Mexico
| | - Maricarmen Iñiguez-Moreno
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey, 64849 Mexico
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849 Mexico
- Universidad Politécnica del Estado de Nayarit, Tepic, 63506 Nayarit Mexico
| |
Collapse
|
30
|
Ferreira de Oliveira AP, Bragotto APA. Microalgae-based products: Food and public health. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Lisha VS, Kothale RS, Sidharth S, Kandasubramanian B. A critical review on employing algae as a feed for polycarbohydrate synthesis. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Tabakaev AV, Tabakaeva OV. Amino-Acid Profile of Proteins from Various Anatomical Parts of Seagrass Zostera marina. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Cai Y, Zhai L, Wu K, Li Z, Gu Z, Wang Y, Cui X, Zhou T, Ruan R, Liu T, Liu Y, Zhang Q. Mechanisms of promotion in the heterotrophic growth of Chlorella vulgaris by the combination of sodium acetate and hydrolysate of broken rice. BIORESOURCE TECHNOLOGY 2022; 364:127965. [PMID: 36113821 DOI: 10.1016/j.biortech.2022.127965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
In order to reduce the culture cost and increase the growth rate of heterotrophic Chlorella vulgaris, the effects of hydrolysate of broken rice (HBR) combined with sodium acetate on its growth were evaluated. Results showed that the addition of 0.4 g/L of sodium acetate could stabilize the pH of the medium via the co-metabolism of acetate, ammonia and nitrate by Chlorella vulgaris. Meanwhile, isocitrate lyase activity increased threefold, which further promoted the glyoxylate cycle and the citric acid cycle, which finally provided more energy and metabolic precursors for cell growth. The biomass production (5.04 g/L), biomass productivity (1.65 g/L/day) and protein content (64.14 %) were 1.56, 1.81 and 1.77 times higher than the glucose group. This study demonstrated that HBR combined with sodium acetate could effectively promote the heterotrophic metabolism of microalgae, which provided scientific basis and guidance for industrial production of high-value products using Chlorella vulgaris as a fermentation platform.
Collapse
Affiliation(s)
- Yihui Cai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Engineering, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Ligong Zhai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; College of Food Engineering, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Kangping Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zihan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhiqiang Gu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Tongying Liu
- Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
34
|
Moreira C, Ferreira-Santos P, Teixeira JA, Rocha CMR. Active aroma compounds assessment of processed and non-processed micro- and macroalgae by solid-phase microextraction and gas chromatography/mass spectrometry targeting seafood analogs. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1011020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The odor of four algae was investigated and compared to evaluate the potential of these algae to mimic shrimp aroma. Solid-phase microextraction followed by gas chromatography analysis coupled with sensory analysis was used for performance assessment. The volatile organic compounds were determined in non-processed, raw samples (r), and processed cooked (c) and cooking water (w) samples for two microalgae [Nannochoropsis oceanica (NO) and Tetraselmis chuii (TC)], two macroalgae [Ulva rígida (UR) and Saccharina latíssima (SL)], and shrimp Vannamei cong (SH). The results showed significant differences in the composition of volatile compounds between macroalgae and microalgae. The key odorants in macroalgae were octanal, 2-octenal, nonanal, and β-ionone, and in microalgae were 1,5-octadien-3-ol, hexanal, 2,4-decadienal, 2-octenal, octanal, nonanal, 3,5-octadien-2-one, and terpenes. The PCA analysis of GC-MS data showed odor similarities between the studied samples, which were divided into five main groups: (1) TC(c) and TC(w); (2) TC(r) and NO(c); (3) NO(r), NO(w), and SL(w); (4) SL(c), UR(r), UR(c), and UR(w); and (5) SL(r). The data from the sensory analysis show bigger similarities between the macroalgae and the shrimp odor. Overall, the data provided indicate that the cooking water and cooked samples are very similar in key components of odorants. These features allow the possibility to use algae and their processed resulting products as a shrimp flavor replacement in non-animal-based food formulations, thus decreasing the pressure on seafood crops and aquaculture-associated issues leading to more sustainable livestock. Furthermore, circularity and waste reduction may be further enabled by the use of otherwise wasted cooking water as an odorant agent.
Collapse
|
35
|
Cai Y, Zhai L, Fang X, Wu K, Liu Y, Cui X, Wang Y, Yu Z, Ruan R, Liu T, Zhang Q. Effects of C/N ratio on the growth and protein accumulation of heterotrophic Chlorella in broken rice hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:102. [PMID: 36209252 PMCID: PMC9547431 DOI: 10.1186/s13068-022-02204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Microalgae protein is considered as a sustainable alternative to animal protein in the future. Using waste for microalgal culture can upgrade low-value raw materials into high-value products, helping to offset the cost of microalgal protein production. In this study we explored the feasibility of using microalgae heterotrophic fermentation to convert broken rice hydrolysate (BRH) into protein. RESULTS The results showed that the increase of BRH supplemental ratio was beneficial to the increase of biomass production but not beneficial to the increase of intracellular protein content. To further improve protein production, the effect of C/N ratio on intracellular protein accumulation was studied. It was found that low C/N ratio was beneficial to the synthesis of glutamate in microalgae cells, which in turn promoted the anabolism of other amino acids and further the protein. When the C/N ratio was 12:1, the biomass productivity and protein content could reach a higher level, which were 0.90 g/L/day and 61.56%, respectively. The obtained Chlorella vulgaris biomass was rich in essential amino acids (41.80%), the essential amino acid index was as high as 89.07, and the lysine content could reach up to 4.05 g/100 g. CONCLUSIONS This study provides a theoretical basis and guidance for using Chlorella vulgaris as an industrial fermentation platform to convert broken rice into products with high nutritional value.
Collapse
Affiliation(s)
- Yihui Cai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
- College of Food Engineering, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Ligong Zhai
- College of Food Engineering, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Xiaoman Fang
- China Coal Zhejiang Testing Technology Co, Ltd., Hangzhou, 310000, China
| | - Kangping Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China.
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (Formerly AWMC), The University of Queensland, St. Lucia, Brisbane, QLD4072, Australia
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul MN, 55108, USA
| | - Tongying Liu
- Jiangxi Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China.
| |
Collapse
|
36
|
Caetano PA, do Nascimento TC, Fernandes AS, Nass PP, Vieira KR, Maróstica Junior MR, Jacob-Lopes E, Zepka LQ. Microalgae-based polysaccharides: Insights on production, applications, analysis, and future challenges. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Wang SK, Yang KX, Zhu YR, Zhu XY, Nie DF, Jiao N, Angelidaki I. One-step co-cultivation and flocculation of microalgae with filamentous fungi to valorize starch wastewater into high-value biomass. BIORESOURCE TECHNOLOGY 2022; 361:127625. [PMID: 35850393 DOI: 10.1016/j.biortech.2022.127625] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
A novel method of one-step co-cultivation and harvesting of microalgae and fungi, for efficient starch wastewater treatment and high-value biomass production was developed. By combination of Aspergillus oryzae and Chlorella pyrenoidosa, nutrients in wastewater could be converted to useful microbial biomass, while the wastewater was purified. Moreover, the microalgae C. pyrenoidosa could gradually be encapsulated in fungal pellets which promoted the biomass harvesting. The free algal cells could be completely harvested by fungal pellets within 72 h. The synergistic effects between them greatly improved the removal efficiencies of main pollutants as the removal efficiency of COD, TN, and TP reached 92.08, 83.56, and 96.58 %, respectively. In addition, the final biomass concentration was higher than that of individual cultures. The protein and lipid concentration was also significantly improved and reached 1.92 and 0.99 g/L, respectively. This study provides a simple and efficient strategy for simultaneous wastewater treatment and high-value biomass production.
Collapse
Affiliation(s)
- Shi-Kai Wang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Kun-Xiao Yang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Yu-Rong Zhu
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Xin-Yu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Da-Fang Nie
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Ning Jiao
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, PR China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
38
|
Ashokkumar V, Jayashree S, Kumar G, Aruna Sharmili S, Gopal M, Dharmaraj S, Chen WH, Kothari R, Manasa I, Hoon Park J, Shruthi S, Ngamcharussrivichai C. Recent developments in biorefining of macroalgae metabolites and their industrial applications - A circular economy approach. BIORESOURCE TECHNOLOGY 2022; 359:127235. [PMID: 35487449 DOI: 10.1016/j.biortech.2022.127235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
The macroalgal industry is expanding, and the quest for novel ingredients to improve and develop innovative products is crucial. Consumers are increasingly looking for natural-derived ingredients in cosmetic products that have been proven to be effective and safe. Macroalgae-derived compounds have growing popularity in skincare products as they are natural, abundant, biocompatible, and renewable. Due to their high biomass yields, rapid growth rates, and cultivation process, they are gaining widespread recognition as potentially sustainable resources better suited for biorefinery processes. This review demonstrates macroalgae metabolites and their industrial applications in moisturizers, anti-aging, skin whitening, hair, and oral care products. These chemicals can be obtained in combination with energy products to increase the value of macroalgae from an industrial perspective with a zero-waste approach by linking multiple refineries. The key challenges, bottlenecks, and future perspectives in the operation and outlook of macroalgal biorefineries were also discussed.
Collapse
Affiliation(s)
- Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum wan, Bangkok 10330, Thailand.
| | - Shanmugam Jayashree
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai 600086, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - S Aruna Sharmili
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai 600086, India
| | - Mayakkannan Gopal
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya Suchani, (Bagla) Samba, J&K 181143, India
| | - Isukapatla Manasa
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai 600086, India
| | - Jeong Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, South Korea
| | | | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum wan, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
39
|
A Narrative Review of Alternative Protein Sources: Highlights on Meat, Fish, Egg and Dairy Analogues. Foods 2022; 11:foods11142053. [PMID: 35885293 PMCID: PMC9316106 DOI: 10.3390/foods11142053] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
The research and development of alternatives to meat (including fish) and dairy products for human consumption have been increasing in recent years. In the context of these alternatives, there is a diversity of products such as tofu, tempeh, seitan, pulses, algae, seeds, nuts and insects. Apart from these, some products require new technical processes such as needed by milk drink alternatives, mycoprotein and meat, cheese and fish analogues. The aim of these analogues is to mimic the physical and organoleptic properties of animal origin products through fibrous composition and mix of ingredients from vegetable sources using adequate technology, which allow providing similar texture and flavor. Using a narrative approach to review literature, the objectives of this paper are to systematize the arguments supporting the adoption of meat, eggs and dairy alternatives, to identify the diversity of alternatives to these products on the market, including the related technological processes, and to project the challenges that the food industry may face soon. From a total of 302 scientific papers identified in databases, 186 papers were considered. More research papers on products associated with alternatives to milk were found. Nevertheless, there are products that need more research as analogues to meat and dairy products. A general scheme that brings together the main reasons, resources and challenges that the food industry faces in this promising area of alternatives to meat and dairy products is presented.
Collapse
|
40
|
Chen C, Tang T, Shi Q, Zhou Z, Fan J. The potential and challenge of microalgae as promising future food sources. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Sousa V, Loureiro L, Carvalho G, Pereira R. Extraction of biomolecules from Coelastrella sp. LRF1 biomass using Ohmic Heating technology. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
O’Connor J, Garcia-Vaquero M, Meaney S, Tiwari BK. Bioactive Peptides from Algae: Traditional and Novel Generation Strategies, Structure-Function Relationships, and Bioinformatics as Predictive Tools for Bioactivity. Mar Drugs 2022; 20:md20050317. [PMID: 35621968 PMCID: PMC9145204 DOI: 10.3390/md20050317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
Over the last decade, algae have been explored as alternative and sustainable protein sources for a balanced diet and more recently, as a potential source of algal-derived bioactive peptides with potential health benefits. This review will focus on the emerging processes for the generation and isolation of bioactive peptides or cryptides from algae, including: (1) pre-treatments of algae for the extraction of protein by physical and biochemical methods; and (2) methods for the generation of bioactive including enzymatic hydrolysis and other emerging methods. To date, the main biological properties of the peptides identified from algae, including anti-hypertensive, antioxidant and anti-proliferative/cytotoxic effects (for this review, anti-proliferative/cytotoxic will be referred to by the term anti-cancer), assayed in vitro and/or in vivo, will also be summarized emphasizing the structure–function relationship and mechanism of action of these peptides. Moreover, the use of in silico methods, such as quantitative structural activity relationships (QSAR) and molecular docking for the identification of specific peptides of bioactive interest from hydrolysates will be described in detail together with the main challenges and opportunities to exploit algae as a source of bioactive peptides.
Collapse
Affiliation(s)
- Jack O’Connor
- School of Biological & Health Sciences, Technological University Dublin, Dublin 2, Ireland; (J.O.); (S.M.)
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland;
| | - Marco Garcia-Vaquero
- Section of Food and Nutrition, School Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence: ; Tel.: +353-(01)-716-2513
| | - Steve Meaney
- School of Biological & Health Sciences, Technological University Dublin, Dublin 2, Ireland; (J.O.); (S.M.)
| | - Brijesh Kumar Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland;
| |
Collapse
|
43
|
Recent Advances in the Valorization of Algae Polysaccharides for Food and Nutraceutical Applications: a Review on the Role of Green Processing Technologies. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02812-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Nasonova V, Baburina M, Ivankin A. Additives based on hydrolysates from animal raw materials for food psycho-emotional products. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224601012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The process of enzymatic hydrolysis of meat and bone raw materials of animal origin to obtain a protein product with a high content of individual essential amino acids that affect the psycho-emotional state is described. The amino acid and fractional composition of the product is presented, which is obtained due to the high dispersion of the feedstock. The developed methodology will contribute to the involvement of littleused waste of food raw materials in the target turnover.
Collapse
|
45
|
Babich O, Sukhikh S, Larina V, Kalashnikova O, Kashirskikh E, Prosekov A, Noskova S, Ivanova S, Fendri I, Smaoui S, Abdelkafi S, Michaud P, Dolganyuk V. Algae: Study of Edible and Biologically Active Fractions, Their Properties and Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060780. [PMID: 35336662 PMCID: PMC8949465 DOI: 10.3390/plants11060780] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 06/01/2023]
Abstract
The beneficial properties of algae make them perfect functional ingredients for food products. Algae have a high energy value and are a source of biologically active substances, proteins, fats, carbohydrates, vitamins, and macro- and microelements. They are also rich in polyunsaturated fatty acids, proteins, mycosporine-like amino acids, polysaccharides, polyphenols, carotenoids, sterols, steroids, lectins, halogenated compounds, polyketides, alkaloids, and carrageenans. Different extraction parameters are used depending on the purpose and the substances to be isolated. In this study, the following parameters were used: hydromodule 1:10 and an extraction duration of 1-2 h at the extraction temperature of 25-40 °C. A 30-50% solution of ethanol in water was used as an extractant. Algae extracts can be considered as potential natural sources of biologically active compounds with antimicrobial activity and antiviral properties. The content of crude protein, crude fat, and carbohydrates in U. Prolifera, C. racemosa var. peltata (Chlorophyta), S. oligocystum and S. fusiforme (SF-1) was studied. It was found that C. muelleri (Bacillariophyta), I. galbana (Haptophyta), and T. weissflogii (Bacillariophyta) contain about 1.9 times more omega-3 than omega-6 fatty acids. N. gaditana (Ochrophyta), D. salina (Chlorophyta), P. tricornutum (Bacillaryophyta) and I. galbana (Haptophyta) extracts showed inhibitory activity of varying intensities against E. coli or P. aeruginosa. In addition, algae and algae-derived compounds have been proposed to offer attractive possibilities in the food industry, especially in the meat sector, to evolve functional foods with myriad functionalities. Algae can increase the biological activity of food products, while the further study of the structure of compounds found in algae can broaden their future application possibilities.
Collapse
Affiliation(s)
- Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Viktoria Larina
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Olga Kalashnikova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Egor Kashirskikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Svetlana Noskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Imen Fendri
- Laboratoire de Biotechnologie Végétale Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6 B.P. 117, Sfax 3018, Tunisia;
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France
| | - Vyacheslav Dolganyuk
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.); (O.K.); (E.K.); (S.N.); (V.D.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| |
Collapse
|
46
|
Uma VS, Usmani Z, Sharma M, Diwan D, Sharma M, Guo M, Tuohy MG, Makatsoris C, Zhao X, Thakur VK, Gupta VK. Valorisation of algal biomass to value-added metabolites: emerging trends and opportunities. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:1-26. [PMID: 35250414 PMCID: PMC8889523 DOI: 10.1007/s11101-022-09805-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Algal biomass is a promising feedstock for sustainable production of a range of value-added compounds and products including food, feed, fuel. To further augment the commercial value of algal metabolites, efficient valorization methods and biorefining channels are essential. Algal extracts are ideal sources of biotechnologically viable compounds loaded with anti-microbial, anti-oxidative, anti-inflammatory, anti-cancerous and several therapeutic and restorative properties. Emerging technologies in biomass valorisation tend to reduce the significant cost burden in large scale operations precisely associated with the pre-treatment, downstream processing and waste management processes. In order to enhance the economic feasibility of algal products in the global market, comprehensive extraction of multi-algal product biorefinery is envisaged as an assuring strategy. Algal biorefinery has inspired the technologists with novel prospectives especially in waste recovery, carbon concentration/sequestration and complete utilisation of the value-added products in a sustainable closed-loop methodology. This review critically examines the latest trends in the algal biomass valorisation and the expansive feedstock potentials in a biorefinery perspective. The recent scope dynamics of algal biomass utilisation such as bio-surfactants, oleochemicals, bio-stimulants and carbon mitigation have also been discussed. The existing challenges in algal biomass valorisation, current knowledge gaps and bottlenecks towards commercialisation of algal technologies are discussed. This review is a comprehensive presentation of the road map of algal biomass valorisation techniques towards biorefinery technology. The global market view of the algal products, future research directions and emerging opportunities are reviewed.
Collapse
Affiliation(s)
- V. S. Uma
- Radiological and Environmental Safety Group, Department of Atomic Energy, Indira Gandhi Centre for Atomic Research (IGCAR), Govt of India, Kalpakkam, Tamil Nadu India
| | - Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya, 793101 India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya, 793101 India
| | - Deepti Diwan
- School of Medicine, Washington University, Saint Louis, MO USA
| | - Monika Sharma
- Department of Botany, Sri Avadh Raj Singh Smarak Degree College, Gonda, UP India
| | - Miao Guo
- Department of Engineering, Faculty of Natural and Mathematical Sciences, King’s College, Strand Campus, The Strand London, London, WC2R 2LS UK
| | - Maria G. Tuohy
- Molecular Glycobiotechnology Group, Biochemistry, School of Natural Sciences, Ryan Institute and MaREI, National University of Ireland, H91 TK33 Galway, Ireland
| | - Charalampos Makatsoris
- Department of Engineering, Faculty of Natural and Mathematical Sciences, King’s College, Strand Campus, The Strand London, London, WC2R 2LS UK
| | - Xiaobin Zhao
- Future Business Cambridge, Cambond Limited, Centre Kings Hedges Road, Cambridge, CB4 2HY UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, EH9 3JG Edinburgh, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), 248007 Dehradun, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, EH9 3JG Edinburgh, UK
- Center for Safe and Improved Food, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG UK
| |
Collapse
|
47
|
Seoane R, Santaeufemia S, Abalde J, Torres E. Efficient Removal of Methylene Blue Using Living Biomass of the Microalga Chlamydomonas moewusii: Kinetics and Equilibrium Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052653. [PMID: 35270343 PMCID: PMC8909845 DOI: 10.3390/ijerph19052653] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022]
Abstract
The efficiency of the living biomass of the microalga Chlamydomonas moewusii in removing methylene blue dye is determined. The kinetics, equilibrium isotherms, and the effects on this process of the pH, contact time, and initial concentration of the dye are studied. Fourier transform infrared spectrometry and point of zero charge are used to characterize the biomass and explore the process. The maximum removal capacity derived from the Langmuir isotherm is 212.41 ± 4.55 mg/g after 7 h of contact time at pH 7. The removal process is rapid because kinetic studies revealed that the best fit of the data is with pseudo-third-order kinetics. The removal efficiency is dependent on the pH; as the pH increased, the efficiency is higher. These results show that the living biomass of this microalga is a very efficient biosorbent and therefore very suitable for the removal of methylene blue from aqueous solutions.
Collapse
|
48
|
Park WK, Min K, Yun JH, Kim M, Kim MS, Park GW, Lee SY, Lee S, Lee J, Lee JP, Moon M, Lee JS. Paradigm shift in algal biomass refinery and its challenges. BIORESOURCE TECHNOLOGY 2022; 346:126358. [PMID: 34800638 DOI: 10.1016/j.biortech.2021.126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Microalgae have been studied and tested for over 70 years. However, biodiesel, the prime target of the algal industry, has suffered from low competitiveness and current steps toward banning the internal combustion engine all over the world. Meanwhile, interest in reducing CO2 emissions has grown as the world has witnessed disasters caused by global warming. In this situation, in order to maximize the benefits of the microalgal industry and surmount current limitations, new breakthroughs are being sought. First, drop-in fuel, mandatory for the aviation and maritime industries, has been discussed as a new product. Second, methods to secure stable and feasible outdoor cultivation focusing on CO2 sequestration were investigated. Lastly, the need for an integrated refinery process to simultaneously produce multiple products has been discussed. While the merits of microalgae industry remain valid, further investigations into these new frontiers would put algal industry at the core of future bio-based economy.
Collapse
Affiliation(s)
- Won-Kun Park
- Department of Chemistry & Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Minsik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Min-Sik Kim
- Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Gwon Woo Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Sangmin Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Joon-Pyo Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea.
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| |
Collapse
|
49
|
Aswathi Mohan A, Robert Antony A, Greeshma K, Yun JH, Ramanan R, Kim HS. Algal biopolymers as sustainable resources for a net-zero carbon bioeconomy. BIORESOURCE TECHNOLOGY 2022; 344:126397. [PMID: 34822992 DOI: 10.1016/j.biortech.2021.126397] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
The era for eco-friendly polymers was ushered by the marine plastic menace and with the discovery of emerging pollutants such as micro-, nano-plastics, and plastic leachates from fossil fuel-based polymers. This review investigates algae-derived natural, carbon neutral polysaccharides and polyesters, their structure, biosynthetic mechanisms, biopolymers and biocomposites production process, followed by biodegradability of the polymers. The review proposes acceleration of research in this promising area to address the need for eco-friendly polymers and to increase the cost-effectiveness of algal biorefineries by coupling biofuel, high-value products, and biopolymer production using waste and wastewater-grown algal biomass. Such a strategy improves overall sustainability by lowering costs and carbon emissions in algal biorefineries, eventually contributing towards the much touted circular, net-zero carbon future economies. Finally, this review analyses the evolution of citation networks, which in turn highlight the emergence of a new frontier of sustainable polymers from algae.
Collapse
Affiliation(s)
- A Aswathi Mohan
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Aiswarya Robert Antony
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Kozhumal Greeshma
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Rishiram Ramanan
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India; Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
| |
Collapse
|
50
|
Effects of Heat Treatment Processes: Health Benefits and Risks to the Consumer. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Macroalgae are a biological group that has mainly been used in Asian countries; however, the interest shown by Western society is recent, its application in the industrial sector having increased in the last few decades. Seaweeds are filled with properties which are beneficial to our health. To use them as food and enhance these properties, heat has been used on them. This process alters the bioactive compounds. If we study the levels of moisture, they can vary according to the drying methods used. High values of moisture can lead to a short shelf life due to oxidation, microbial or enzyme activity, so controlling these values is highly recommended. Heat causes enzymatic activity as well as oxidation, which leads to degradation of phenolic compounds in comparison with freeze-drying, which causes fewer losses of these components. Due to the same occurrences, lipid content can also vary, modifying the bioactive compounds and their benefits. Pigments are some of the components most affected by heat, since, through this process, seaweeds or seaweed products can suffer a change in color. Iodine in macroalgae can decrease drastically; on the other hand, protein yield can be greatly enhanced. Some studies showed that the amount of arsenic in raw seaweeds was higher than when they were heat processed, and that arsenic values varied when different heat treatments were applied. Additionally, another study showed that heat can alter protein yield in specific species and have a different effect on other species.
Collapse
|