1
|
Rocha ME, Mangiavacchi N, Marques M, Teixeira L. Succession from acetoclastic to hydrogenotrophic microbial community during sewage sludge anaerobic digestion for bioenergy production. Biotechnol Lett 2024; 46:997-1011. [PMID: 39261355 DOI: 10.1007/s10529-024-03528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
To assess microbial dynamics during anaerobic digestion (AD) of sewage sludge (SWS) from a municipal Wastewater Treatment Plant (WWTP), a Biochemical Methane Potential (BMP) assay at 37 °C under mono-digestion conditions was conducted. Utilizing the Illumina MiSeq platform, 16S ribosomal RNA (rRNA) gene sequencing unveiled a core bacterial community in the solid material, showcasing notable variations in profiles. The research investigates changes in microbial communities and metabolic pathways to understand their impact on the efficiency of the digestion process. Prior to AD, the relative abundance in SWS was as follows: Proteobacteria > Bacteroidota > Actinobacteriota. Post-AD, the relative abundance shifted to Firmicutes > Synergistota > Proteobacteria, with Sporanaerobacter and Clostridium emerging as dominant genera. Notably, the methanogenic community underwent a metabolic pathway shift from acetoclastic to hydrogenotrophic in the lab-scale reactors. At the genus level, Methanosaeta, Methanolinea, and Methanofastidiosum predominated initially, while post-AD, Methanobacterium, Methanosaeta, and Methanospirillum took precedence. This metabolic transition may be linked to the increased abundance of Firmicutes, particularly Clostridia, which harbor acetate-oxidizing bacteria facilitating the conversion of acetate to hydrogen.
Collapse
Affiliation(s)
- Mariana Erthal Rocha
- Department of Mechanical Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil.
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Norberto Mangiavacchi
- Department of Mechanical Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Lia Teixeira
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Oliveira HR, Anacleto TM, Abreu F, Enrich-Prast A. New insights into the factors influencing methanogenic pathways in anaerobic digesters. Anaerobe 2024; 91:102925. [PMID: 39617252 DOI: 10.1016/j.anaerobe.2024.102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Anaerobic digestion integrates waste treatment, energy generation, and nutrient recycling, producing methane mainly through acetoclastic (AM) and hydrogenotrophic methanogenesis (HM). Methanogenic pathway management can improve biogas productivity and quality. The balance between pathways is influenced by environmental and physicochemical conditions, with conflicting results on the effect of different factors often reported. This systematic review aims to clarify the influence of various parameters on methanogenic pathways in anaerobic digesters. METHODS Literature search was conducted in the Web of Science and Scopus databases. The effects of different parameters on the predominant methanogenic pathway were evaluated using Kruskal-Wallis tests and Spearman's rank correlation. RESULTS Thermophilic temperatures and high free ammonia nitrogen concentrations (>300 mg L-1) increase HM, with a strong combined effect of these variables. Conversely, under moderate temperature and ammonia concentrations, the primary feedstock influences the methanogenic pathway, with algae biomass, pig manure, and food industry wastewater showing the lowest contribution of hydrogenotrophic methanogens. pH effect varied with temperature, with acidic and alkaline pH favoring HM in mesophilic and thermophilic digesters, respectively. Furthermore, higher levels of volatile fatty acids (>2000 mg L-1), carbohydrates (>10 g/L) and lipids (>10 g/L) also appeared to favor HM over AM, while most metals - especially Cr, Se and W - promoted AM. CONCLUSION This study emphasizes the role of various factors in methanogenic pathway selection, highlighting the impact of previously overlooked parameters, such as inorganic elements and organic matter composition. These insights are essential for understanding the methanogenic pathway balance and optimizing biogas processes.
Collapse
Affiliation(s)
- Helena Rodrigues Oliveira
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, Brazil; Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Unidade Multiusuário de Análises Ambientais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thuane Mendes Anacleto
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Unidade Multiusuário de Análises Ambientais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Abreu
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Unidade Multiusuário de Análises Ambientais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Enrich-Prast
- Unidade Multiusuário de Análises Ambientais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Department of Thematic Studies - Environmental Change and Biogas Solutions Research Center (BSRC), Linköping University, Linköping, Sweden; Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Santos, Brazil.
| |
Collapse
|
3
|
Ghaedi M, Nasab H, Ehrampoush MH, Ebrahimi AA. Evaluation of the efficiency of dry anaerobic digester in the production of biogas and fertilizer using activated sludge and plant waste. Sci Rep 2024; 14:24727. [PMID: 39433846 PMCID: PMC11494102 DOI: 10.1038/s41598-024-75504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
The process of dry anaerobic digestion (DAD) is an effective economic and environmentally friendly method due to its features such as reducing the volume of waste, destroying pathogens, consuming less energy, and producing biogas rich in energy and fertilizer. This study was conducted on a pilot scale with a reactor volume of 24 L in 30 days for three ratios of C/N: 30, 25, and 20 separately using a mixture of activated sludge and plant waste. During the process, the temperature, pH, and ratio of C/N were measured at certain times, and the percentage of gases produced by the Gas chromatography (GC) device was also measured. The results were compared with the National standard of Iran (Compost, Physical, and Chemical Specifications) at the end of the process. The results showed that the average volume of biogas produced in ratios of C/N: 30, 25, 20 is 1.7, 2.5, and 1.5 L. d-1, respectively. The results showed that in the C/N ratio of 20, and 25, the amount of, C/N ratio and NO3 are in the range the standard of class 1, and the amount of Phosphorus pentoxide (P2O5) is in the range the standard of class 2. The results showed that the average microbial parameters in ratios of C/N: 30, 25, and 20 are lower than the national standard of Iran. The dry digester is an efficient method in waste treatment, methane gas production, and quality fertilizer close to the national standard of Iran.
Collapse
Affiliation(s)
- Mehrdad Ghaedi
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Habibeh Nasab
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Asghar Ebrahimi
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
4
|
Habchi S, Pecha J, Šánek L, Karouach F, El Bari H. Sustainable valorization of slaughterhouse waste through anaerobic digestion: A circular economy perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121920. [PMID: 39029174 DOI: 10.1016/j.jenvman.2024.121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Slaughterhouse waste (SHW) poses significant environmental challenges due to its complex composition. In response, a novel review exploration of anaerobic digestion (AD) as a means of valorising SHW within the context of the circular economy (CE) is presented. The physicochemical properties of individual SHW, representing key parameters for the correct management of the AD process, are scrutinized. These parameters are further connected with identifying suitable pretreatment methods to enhance biogas production. Subsequently, the review examines the diverse technologies employed in the AD of SHW, considering the complexities of mono- or co-digestion. Various AD systems are evaluated for their effectiveness in harnessing the substantial biogas production potential from SHW, encompassing key parameters, reactor configurations, and operational conditions that influence the AD process. Moreover, the review interestingly extends its scope to the recovery and management of digestate, the by-product of AD. Along with the digestate composition, strategies for various utilization of this by-product are discussed. This investigation thus underscores, within the principles of the CE, the dual sustainable benefits of SHW processing via AD in biogas production and utilization of the resultant nutrient-rich digestate in various sectors.
Collapse
Affiliation(s)
- Sanae Habchi
- Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.
| | - Jiří Pecha
- Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511, 760 05, Zlin, Czech Republic
| | - Lubomír Šánek
- Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511, 760 05, Zlin, Czech Republic
| | - Fadoua Karouach
- African Sustainable Agriculture Research (ASARI), University Mohammed VI Polytechnic (UM6P), Laâyoune, Morocco
| | - Hassan El Bari
- Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
5
|
Liu H, Ye W, Xu H, Qian X. Enhanced methane production from source-separated human feces (brown water) by single phase anaerobic co-digestion: Effects of different co-substrates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120828. [PMID: 38579473 DOI: 10.1016/j.jenvman.2024.120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Based on the concept of source separation of brown water (BW, human feces with flushing water) and yellow water (urine) in rural area, anaerobic co-digestion of BW with agricultural waste is a promising and effective method for rural waste treatment and resource recovery. The purpose of this study was to investigate the performance of different agricultural wastes (peanut straw (PST), peanut shell (PSH), swine wastewater acting as co-substrate for anaerobic co-digestion with BW, and the relative mechanisms were explored. When the mixed ratio was uniformly set as 1:1 (mass ratio, measured by volatile solid (VS)) and initial VS load as 20 g/L, the maximum cumulative methane production obtained by co-digestion (21 days) of BW and PST was 688 mL/g-VS, which performed better than the individual substrates (341 mL/g-VS), as well as the average of the sole BW and sole PST groups (531.2 mL/g-VS). The most impactful advantage was ascribed to the promotion of hydrolytic and acidogenic enzyme activities. The addition of PST also reduced the production of endogenous humus, which is difficult for biodegradation. Microbial community analysis showed that different co-substrates would affect the microbial community composition in the reactor. The relative abundance of hydrolytic acidogens in the PST and PSH co-digestion groups were higher than that in the SW co-digestion and sole BW groups, and the methanogenic archaea were dominated by the acetate-trophic Methanotrichaceae. The overall results suggest that anaerobic co-digestion is a feasible method, and co-digestion of BW and PST can improve methane production potential.
Collapse
Affiliation(s)
- Hui Liu
- Shanghai Academy of Environmental Sciences, 200233, Shanghai, China
| | - Wenfeng Ye
- Shanghai Academy of Environmental Sciences, 200233, Shanghai, China
| | - Huiting Xu
- Shanghai Academy of Environmental Sciences, 200233, Shanghai, China
| | - Xiaoyong Qian
- Shanghai Academy of Environmental Sciences, 200233, Shanghai, China.
| |
Collapse
|
6
|
Zhang X, Huang T, Wu D. Enhanced anaerobic digestion of human feces by ferrous hydroxyl complex (FHC): Stress factors alleviation and microbial resistance improvement. CHEMOSPHERE 2024; 350:141041. [PMID: 38151064 DOI: 10.1016/j.chemosphere.2023.141041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Anaerobic digestion (AD) offers a reliable strategy for resource recovery from source-separated human feces (HF), but is limited by a disproportionate carbon/nitrogen (C/N) ratio. Ferrous hydroxyl complex (FHC) was first introduced into the HF-AD system to mediate methanogenesis. Mono-digestion of undiluted HF was inhibited by high levels of volatile fatty acids (VFAs), ammonia, and hydrogen sulfide (H2S). FHC addition at optimum dosage (500-1000 mg/L) increased the cumulative methane (CH4) yield by 22.7%, enhanced the peak value of daily CH4 production by 60.5%, and shortened the lag phase by 24.7%. H2S concentration in biogas was also greatly decreased by FHC via precipitation. FHC mainly facilitated the hydrolysis, acidification, and methanogenesis processes. The production and transformation of VFAs were optimized in the presence of FHC, thus relieving acid stress. FHC elevated the activities of alkaline protease, cellulase, and acetate kinase by 32.3%, 18.2%, and 30.3%, respectively. Microbial analysis revealed that hydrogenotrophic methanogens prevailed in mono-digestion at high HF loading but were weakened after FHC addition. FHC also enriched Methanosarcina, thereby expanding the methanogenesis pathway and improving the resistance to ammonia stress. This work would contribute to improving the methanogenic performance and resource utilization for HF anaerobic digestion.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai, 200092, PR China
| | - Tao Huang
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai, 200092, PR China
| | - Deli Wu
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
7
|
Wang B, Zhang L, Shi J, Su Y, Wu D, Xie B. Genome-centric metagenomics revealed functional traits in high-solids anaerobic co-digestion of restaurant food waste, household food waste and rice straw. BIORESOURCE TECHNOLOGY 2023; 376:128926. [PMID: 36940870 DOI: 10.1016/j.biortech.2023.128926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
High-solids anaerobic co-digestion (HS-AcoD) of food waste (FW) and other organic wastes is an effective option to improve the biogas production and system stability compared to mono-digestion. However, the clean and sustainable HS-AcoD strategy for FW and associated microbial functional traits have not been well explored. Here, HS-AcoD of restaurant food waste (RFW), household food waste (HFW) and rice straw (RS) were performed. Results showed that the maximum synergy index (SI) of 1.28 were achieved when the volatile solids ratio of RFW, HFW and RS was 0.45:0.45:0.1. HS-AcoD alleviated the acidification process by regulating metabolism associated with hydrolysis and volatile fatty acids formation. The synergistic relationship between syntrophic bacteria and Methanothrix sp., and the enhanced metabolic capacity associated with the acetotrophic and hydrogenotrophic pathways dominated by Methanothrix sp., provided a further explanation of the synergistic mechanism. These findings advance the knowledge about microbial mechanisms underlying the synergistic effect of HS-AcoD.
Collapse
Affiliation(s)
- Binghan Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China
| | - Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China
| | - Jianhong Shi
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
8
|
Zhang Y, Feng Y, Ren Z, Zuo R, Zhang T, Li Y, Wang Y, Liu Z, Sun Z, Han Y, Feng L, Aghbashlo M, Tabatabaei M, Pan J. Tree-based machine learning model for visualizing complex relationships between biochar properties and anaerobic digestion. BIORESOURCE TECHNOLOGY 2023; 374:128746. [PMID: 36813050 DOI: 10.1016/j.biortech.2023.128746] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
The ideal conditions for anaerobic digestion experiments with biochar addition are challenging to thoroughly study due to different experimental purposes. Therefore, three tree-based machine learning models were developed to depict the intricate connection between biochar properties and anaerobic digestion. For the methane yield and maximum methane production rate, the gradient boosting decision tree produced R2 values of 0.84 and 0.69, respectively. According to feature analysis, digestion time and particle size had a substantial impact on the methane yield and production rate, respectively. When particle sizes were in the range of 0.3-0.5 mm and the specific surface area was approximately 290 m2/g, corresponding to a range of O content (>31%) and biochar addition (>20 g/L), the maximum promotion of methane yield and maximum methane production rate were attained. Therefore, this study presents new insights into the effects of biochar on anaerobic digestion through tree-based machine learning.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Yijing Feng
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Zhonghao Ren
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Runguo Zuo
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Tianhui Zhang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China.
| | - Yajing Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zhiyang Liu
- College of Science, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Ziyan Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Yongming Han
- College of Information Science & Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lu Feng
- NIBIO, Norwegian Institute of Bioeconomy Research, PO Box 115, N-1431 Ås, Norway
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
9
|
Wang S, Li D, Zhang K, Ma Y, Liu F, Li Z, Gao X, Gao W, Du L. Effects of initial volatile fatty acid concentrations on process characteristics, microbial communities, and metabolic pathways on solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY 2023; 369:128461. [PMID: 36503086 DOI: 10.1016/j.biortech.2022.128461] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Solid-state anaerobic digestion (SSAD) is vulnerable to excess volatile fatty acids (VFA), mainly acetate and propionate. The co-effects of VFAs and microbial dynamics under VFA accumulation were investigated in SSAD of pig manure and corn straw. Adding 2 and 4 mg/g acetate or propionate caused initial increases in total VFAs, followed by decreases after day 6, resulting in 'mild' VFA accumulation, while adding 6 mg/g caused similarly increased VFAs, but with no subsequent decrease, causing 'severe' VFA accumulation and poor methanation performance. Mild propionate accumulation promoted acetate consumption, whereas acetate accumulation inhibited propionate degradation by affecting crucial redox reactions. Under severe VFA accumulation, hydrolysis and acidification mainly conducted by acid-tolerant Clostridium sp. exacerbated VFA inhibition, causing a competition between Methanosarcina and Methanosaeta, and impairments of acetoclastic and hydrogenotrophic methanogenesis and interspecies formate transfer. This study provides new insights into mechanisms of VFA accumulation in SSAD, and its effects on methanogenesis.
Collapse
Affiliation(s)
- Siqi Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R, Beijing 100193, China
| | - Danni Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; East China University of Science and Technology, Shanghai 200237, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R, Beijing 100193, China
| | - Yingjun Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Fuyuan Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi 2553960, China
| | - Zhuowu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xingliang Gao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi 2553960, China
| | - Wenxuan Gao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R, Beijing 100193, China
| | - Lianzhu Du
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R, Beijing 100193, China.
| |
Collapse
|
10
|
Centeno Mora E, Souza CLD, Neves TDA, Chernicharo CDL. Characterisation and perspectives of energetic use of dissolved gas recovered from anaerobic effluent with membrane contactor. BIORESOURCE TECHNOLOGY 2023; 367:128223. [PMID: 36368489 DOI: 10.1016/j.biortech.2022.128223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Biogas is a source of renewable energy, and its production and use has been validated in anaerobic-based sewage treatment plants (STPs). However, in these systems, a large amount of methane is lost as dissolved methane (D-CH4) in the liquid effluent. In this study, the characteristics and potential energetic uses of the gas recovered during the desorption of D-CH4 from anaerobic effluents with hollow fibre membrane contactors were investigated. A pilot-scale experiment was performed using sewage and two types of membrane contactors. The recovered gas contained considerable amounts of CH4, CO2, H2S, N2, and O2; therefore, a gas upgrade is required prior to its use as a biofuel. The recovery process should be energetically self-sustainable, and induce a considerable decrease in the STP carbon footprint. Recovering D-CH4 with membrane contactors could increase the energetic potential of anaerobic-based STPs up to 50 % and allow for more sustainable systems.
Collapse
Affiliation(s)
- Erick Centeno Mora
- Civil Engineering School, University of Costa Rica, San José, Costa Rica; Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Brazil.
| | - Cláudio Leite de Souza
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Brazil
| | - Thiago de Alencar Neves
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Brazil
| | | |
Collapse
|
11
|
Godvin Sharmila V, Kumar G, Sivashanmugham P, Piechota G, Park JH, Adish Kumar S, Rajesh Banu J. Phase separated pretreatment strategies for enhanced waste activated sludge disintegration in anaerobic digestion: An outlook and recent trends. BIORESOURCE TECHNOLOGY 2022; 363:127985. [PMID: 36126843 DOI: 10.1016/j.biortech.2022.127985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 05/16/2023]
Abstract
A significant ecological problem was developed on disposing the enormous amounts of waste activated sludge (WAS) produced by traditional wastewater treatment. There have been various attempts recently originated to develop innovative methods for substantial sludge treatment. The most frequently used approach for treating sludge to produces methane and reduces sludge is anaerobic treatment. The hydrolysis phase in WAS limits the breakdown of complex macrobiotic compounds. The presence of extracellular polymeric substances (EPS) in biomass prevents the substrate from being hydrolyzed. Enhancing substrate hydrolysis involves removal of EPS preceded by phase separated pretreatment. Hence, a critical assessment of various phase separated pretreatment that has a remarkable effect on the anaerobic digestion process was documented in detail. Moreover, the economic viability and energy requirement of this treatment process was also discussed. Perspectives and recommendations for methane production were also provided to attain effectual sludge management.
Collapse
Affiliation(s)
- V Godvin Sharmila
- Department of Civil Engineering, Rohini College of Engineering and Technology, Kanyakumari, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - P Sivashanmugham
- Department of Chemical Engineering, National Institute of Technology, Tiruchirapalli, Tamil Nadu, India
| | - Grzegorz Piechota
- GPCHEM, Laboratory of Biogas Research and Analysis, 40a/3 Legionów Str., 87-100 Toruń, Poland
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| | - S Adish Kumar
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamilnadu, India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamilnadu 610005, India.
| |
Collapse
|
12
|
Mlinar S, Weig AR, Freitag R. Influence of NH 3 and NH 4+ on anaerobic digestion and microbial population structure at increasing total ammonia nitrogen concentrations. BIORESOURCE TECHNOLOGY 2022; 361:127638. [PMID: 35853595 DOI: 10.1016/j.biortech.2022.127638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Despite the extensive research dedicated to ammonia inhibition, the effect of NH3 and NH4+ on each anaerobic digestion stage and the associated microorganisms is still not completely understood. In the past, the focus was mainly on methanogenesis and either on NH3 or total ammonia nitrogen (TAN). Here, anaerobic digestion of two defined substrates, namely starch/NH4Cl and casein, was investigated particularly regarding the effects of different NH3/NH4+ ratios on the involved microorganisms. TAN affected bacteria, primarily gram-positive ones, whereas archaea responded largely to the NH3 concentration. These sensitivity differences are attributed to differences in the corresponding cell-membrane structures. A TAN decrease via stripping performed in two full-scale agricultural biogas plants resulted in increased bacterial diversity, with a pronounced increase in the propionate acetogens' abundance. Based on these data, it is suggested that inhibition can be avoided and processes stabilized in biogas plants by adjusting the NH3/NH4+ ratio, when feeding nitrogen-rich substrates.
Collapse
Affiliation(s)
- Stanislava Mlinar
- Process Biotechnology and Center for Energy Technology (ZET), University of Bayreuth, 95447 Bayreuth, Germany
| | - Alfons R Weig
- Genomics & Bioinformatics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Ruth Freitag
- Process Biotechnology and Center for Energy Technology (ZET), University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
13
|
Wang S, Kong D, Zhang K, Chang X, Lu Z, Du L. Effectiveness of layered inoculation in solid-state anaerobic co-digestion of pig manure and corn straw: Focus on macro-, micro-, and genetic-levels. BIORESOURCE TECHNOLOGY 2022; 355:127262. [PMID: 35526720 DOI: 10.1016/j.biortech.2022.127262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Layered inoculation can achieve rapid start-up and promote methanation performance of anaerobic digesters. Daily specific methane yield (SMY) rapidly increased to 2.93 mL/g VS/d during 0-13 days, and cumulative SMY reached 212 mL/g VS in the solid-state anaerobic co-digestion (SS-AcoD) of pig manure and corn straw. Data were collected at macro-, micro-, and genetic-levels of each substrate layer. The results showed that layered inoculation could improve volatile fatty acids utilization and prevent adverse effects of high total ammonium nitrogen concentrations. Layered inoculation accelerated hydrolysis, acidification, and methanogenesis of substrates, as evidenced by the efficient inoculation of Bacteroidetes, Anaerolineales, Methanosphaerula, and Methanothrix, which were primarily from inocula. The various stages of SS-AcoD were synergistically initiated during the first 13 days, and acetoclastic pathway was boosted. These results further explain why layered inoculation is an efficient method for improving methanation performance of SS-AcoD and achieving efficient utilization of organic solid waste.
Collapse
Affiliation(s)
- Siqi Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Dewang Kong
- Hangzhou Energy Environmental Engineering Ltd, Hangzhou 310020, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xingping Chang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zhenwei Lu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lianzhu Du
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|