1
|
Han X, Liu J, Zhu Z, Lin Y, Peng Y. Strengthening the enrichment of anaerobic ammonia oxidizing bacteria in biofilms through sludge concentration control. ENVIRONMENTAL RESEARCH 2024; 262:119784. [PMID: 39142456 DOI: 10.1016/j.envres.2024.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Controlling sludge concentration is an effective means to achieve PN. In this article, the reactor used domestic sewage as raw water and promoted the high enrichment of anammox bacteria by controlling the MLVSS of flocs to 1000-1500 mg/L and increasing the concentration of filler sludge. The measures to reduce the concentration of flocculent sludge increased the proliferation rate of the biofilm and provided sufficient substrate for AnAOB. After 102 days of operation, the abundance of Candidatus Brocadia increased from 0.43% during inoculation to 23.56% in phase VI. The ability of the microbial community to utilize energy metabolism and produce ATP was significantly improved, and the appropriate distribution of anammox bacteria and nitrifying, denitrifying bacteria in the ecological niche led to its high enrichment. In summary, this study proposes a strategy to promote the high enrichment of anammox bacteria in mainstream domestic sewage without adding any chemicals.
Collapse
Affiliation(s)
- Xueke Han
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhuo Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yangang Lin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
2
|
Zhang C, Chen H, Xue G. Coordination of elemental sulfur and organic carbon source stimulates simultaneous nitrification and denitrification toward low C/N ratio wastewater. BIORESOURCE TECHNOLOGY 2024; 406:131069. [PMID: 38971388 DOI: 10.1016/j.biortech.2024.131069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The feasibility of inducing simultaneous nitrification and denitrification (SND) by S0 for low carbon to nitrogen (C/N) ratio wastewater remediation was investigated. Compared with S0 and/or organics absent systems (-3.4 %∼5.0 %), the higher nitrogen removal performance (18.2 %∼59.8 %) was achieved with C/N ratios and S0 dosages increasing when S0 and organics added simultaneously. The synergistic effect of S0 and organics stimulated extracellular polymeric substances secretion and weakened intermolecular binding force of S0, facilitating S0 bio-utilization and reducing the external organics requirement. It also promoted microbial metabolism (0.16 ∼ 0.24 μg O2/(g VSS·h)) and ammonia assimilation (5.9 %∼20.5 %), thereby enhancing the capture of organics and providing more electron donors for SND. Furthermore, aerobic denitrifiers (15.91 %∼27.45 %) and aerobic denitrifying (napA and nirS) and ammonia assimilating genes were accumulated by this synergistic effect. This study revealed the mechanism of SND induced by coordination of S0 and organics and provided an innovative strategy for triggering efficient and stable SND.
Collapse
Affiliation(s)
- Chengji Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
3
|
Wang S, Tian Y, Bi Y, Meng F, Qiu C, Yu J, Liu L, Zhao Y. Recovery strategies and mechanisms of anammox reaction following inhibition by environmental factors: A review. ENVIRONMENTAL RESEARCH 2024; 252:118824. [PMID: 38588911 DOI: 10.1016/j.envres.2024.118824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is a promising biological method for treating nitrogen-rich, low-carbon wastewater. However, the application of anammox technology in actual engineering is easily limited by environmental factors. Considerable progress has been investigated in recent years in anammox restoration strategies, significantly addressing the challenge of poor reaction performance following inhibition. This review systematically outlines the strategies employed to recover anammox performance following inhibition by conventional environmental factors and emerging pollutants. Additionally, comprehensive summaries of strategies aimed at promoting anammox activity and enhancing nitrogen removal performance provide valuable insights into the current research landscape in this field. The review contributes to a comprehensive understanding of restoration strategies of anammox-based technologies.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yu Tian
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China.
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
4
|
Su X, Li J, Peng Y, Yuan Y, Wu L, Peng Y. An overlooked effect of hydroxylamine on anammox granular sludge: Promoting granulation and boosting activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171176. [PMID: 38395175 DOI: 10.1016/j.scitotenv.2024.171176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The exogenous hydroxylamine dosing has been proven to enhance nitrite supply for anammox bacteria. In this study, exogenous hydroxylamine was fed into a sequencing batch reactor to investigate its long-term effect on anammox granular sludge. The results showed that hydroxylamine enhanced the reactor's performance with an increase in total nitrogen removal rate from 0.23 to 0.52 kg N/m3/d and an increase in bacterial activity from 11.65 to 78.24 mg N/g VSS/h. Meanwhile, hydroxylamine promoted granulation by eluting flocs. And higher anammox activity and granulation were supported by extracellular polymeric substances (EPS) characteristics. Moreover, Candidatus Brocadia's abundance increased from 1.10 % to 3.03 %, and its symbiosis with heterotrophic bacteria was intensified. Additionally, molecular docking detailed the mechanism of the hydroxylamine effect. Overall, this study would provide new insights into the hydroxylamine dosing strategy application.
Collapse
Affiliation(s)
- Xinwei Su
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yi Peng
- SDIC Xinkai Water Environmental Investment Co., Ltd., Beijing 101101, China
| | - Yue Yuan
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Ma X, Feng ZT, Zhou JM, Sun YJ, Zhang QQ. Regulation mechanism of hydrazine and hydroxylamine in nitrogen removal processes: A Comprehensive review. CHEMOSPHERE 2024; 347:140670. [PMID: 37951396 DOI: 10.1016/j.chemosphere.2023.140670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
As the new fashioned nitrogen removal process, short-cut nitrification and denitrification (SHARON) process, anaerobic ammonium oxidation (anammox) process, completely autotrophic nitrogen removal over nitrite (CANON) process, partial nitrification and anammox (PN/A) process and partial denitrification and anammox (PD/A) process entered into the public eye due to its advantages of high nitrogen removal efficiency (NRE) and low energy consumption. However, the above process also be limited by long-term start-up time, unstable operation, complicated process regulation and so on. As intermediates or by-metabolites of functional microorganisms in above processes, hydroxylamine (NH2OH) and hydrazine (N2H4) improved NRE of the above processes by promoting functional enzyme activity, accelerating electron transport efficiency and regulating distribution of microbial communities. Therefore, this review discussed effects of NH2OH and N2H4 on stability and NRE of above processes, analyzed regulatory mechanism from functional enzyme activity, electron transport efficiency and microbial community distribution. Finally, the challenges and limitations for nitric oxide (NO) and nitrous oxide (N2O) produced from regulation of NH2OH and N2H4 are discussed. In additional, perspectives on future trends in technology development are proposed.
Collapse
Affiliation(s)
- Xin Ma
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ze-Tong Feng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Jia-Min Zhou
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Ying-Jun Sun
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China
| | - Qian-Qian Zhang
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China.
| |
Collapse
|
6
|
Han X, Zhang L, Yuan Y, Zhang Q, Peng Y. Anaerobic starvation realizes partial nitrification and starts anammox bacteria self-enrichment in mainstream municipal sewage treatment in a low filling ratio sequencing batch reactor. BIORESOURCE TECHNOLOGY 2023; 387:129505. [PMID: 37468012 DOI: 10.1016/j.biortech.2023.129505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The initiating and stable preservation of partial nitrification (PN) and achievement of anammox bacteria self-enrichment in domestic sewage is a purposeful subject. In this article, an originality tactics of anaerobic starvation for 100 days was adopted for rapidly achieving PN in actual wastewater, the nitrite accumulation rate (NAR) improved from 4.95% to 81.73% in 18 days. After anaerobic starvation was stopped, the stable PN effect furnished enough stroma for the growth of anammox bacteria. The abundance of Candidatus Brocadia grew from 0% to 0.42% in floc sludge and 0.43% in blank biofilm, which promoted nitrogen removal effect. Anaerobic starvation continuing 74 days generated further decrease in the abundance of Nitrobacter and Nitrospira of nitrite-oxidizing bacteria (NOB), indicating that anaerobic starvation can restore the destroyed partial nitrification. In conclusion, this article furnished a low-cost method for achieving anammox bacteria self-enrichment in mainstream municipal wastewater in 10% filling ratio without chemicals addition.
Collapse
Affiliation(s)
- Xueke Han
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yue Yuan
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
7
|
Su X, Zhu XR, Li J, Wu L, Li X, Zhang Q, Peng Y. Determination of partial denitrification kinetic model parameters based on batch tests and metagenomic sequencing. BIORESOURCE TECHNOLOGY 2023; 379:128977. [PMID: 36990333 DOI: 10.1016/j.biortech.2023.128977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 05/03/2023]
Abstract
In this study, a model was developed to investigate the partial denitrification(PD) process. The heterotrophic biomass (XH) proportion in the sludge was determined to be 66.4% based on metagenomic sequencing. The kinetic parameters were first calibrated, then validated using the batch tests results. The results showed rapid decreases in the chemical oxygen demand (COD) and nitrate concentrations and gradual increases in the nitrite concentrations in the first four hours, then remained constant from 4 to 8 h. Anoxic reduction factor (ηNO3 and ηNO2) and half saturation constant (KS1 and KS2) were calibrated at 0.097, 0.13, 89.28 mg COD/L, and 102.29 mg COD/L, respectively. Whereas the simulation results demonstrated that the increase in carbon-to-nitrogen (C/N) ratios and the reduction in XH contributed to the increase in the nitrite transformation rate. This model provides potential strategies for optimizing the PD/A process.
Collapse
Affiliation(s)
- Xinwei Su
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiao-Rong Zhu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University Beijing 100730, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Lei Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
8
|
Zhao J, Dong X, Su H, Huang J, Liu Z, He P, Zhang D. Rapid start-up of PN/A process and efficient enrichment of functional bacteria: A novel aerobic-biofilm/anaerobic-granular nitrogen removal system (OANRS). BIORESOURCE TECHNOLOGY 2023; 380:128944. [PMID: 36963701 DOI: 10.1016/j.biortech.2023.128944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Reactor configuration, control strategy and inoculation method were key factors affecting the rapid start-up of partial nitrification/anammox (PN/A) process and the efficient enrichment of functional bacteria (anammox and ammonia oxidizing bacteria). At present, PN/A process was generally operated through single factor rather than forming a system. In this study, a novel aerobic-biofilm/anaerobic-granular nitrogen removal system (OANRS) was constructed, which consisted of a multi-stage aerobic-biofilm/anaerobic-granular baffle reactor (MOABR) and a control strategy on pH/aeration time. PN process was started within 10d, and PN/A process was started on the basis of stable PN process within 41d. The simultaneous enrichment of functional bacteria was achieved by combining the advantages of single-stage and two-stage PN/A process. The results of high-throughput sequencing showed that Candidatus Kuenenia (20.42 ± 15.88%) was highly enriched in each compartment at day 98, and the relative abundance of Candidatus Kuenenia in the anaerobic compartment R4 was as high as 43.13%.
Collapse
Affiliation(s)
- Jiejun Zhao
- CCCC(Tianjin)Eco-Environmental Protection Design & Research Institute Co, Tianjin 300000, PR China; Jiangxi University of Science and Technology, School of Resources and Environmental Engineering, Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi Province, Ganzhou City 341000, PR China
| | - Xianfeng Dong
- CCCC(Tianjin)Eco-Environmental Protection Design & Research Institute Co, Tianjin 300000, PR China
| | - Hao Su
- Jiangxi University of Science and Technology, School of Resources and Environmental Engineering, Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi Province, Ganzhou City 341000, PR China
| | - Jiayin Huang
- CCCC(Tianjin)Eco-Environmental Protection Design & Research Institute Co, Tianjin 300000, PR China
| | - Zuwen Liu
- Jiangxi University of Science and Technology, School of Resources and Environmental Engineering, Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi Province, Ganzhou City 341000, PR China
| | - Pan He
- CCCC(Tianjin)Eco-Environmental Protection Design & Research Institute Co, Tianjin 300000, PR China
| | - Dachao Zhang
- Jiangxi University of Science and Technology, School of Resources and Environmental Engineering, Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi Province, Ganzhou City 341000, PR China.
| |
Collapse
|
9
|
Zhu Z, Zhang L, Li X, Zhang Q, Wang S, Peng Y. Robust nitrogen removal from municipal wastewater by partial nitrification anammox at ultra-low dissolved oxygen in a pure biofilm system. BIORESOURCE TECHNOLOGY 2023; 369:128453. [PMID: 36503089 DOI: 10.1016/j.biortech.2022.128453] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Efficient nitrogen removal from municipal wastewater applying a pure biofilm system has promise. In this study, a partial nitrification anammox (PNA) pure biofilm system was established in a sequencing batch reactor with anaerobic/oxic/anoxic operation; using this reactor, robust nitrogen removal from municipal wastewater at ambient temperature was achieved with a nitrogen removal efficiency (NRE) of 93.3 %. Partial nitrification with anammox could be coupled at dominant nitrite-oxidizing bacteria (NOB) abundance by controlling ultra-low dissolved oxygen (<0.1 mg/L) in the aerobic section where the contribution to nitrogen removal was 79.4 %. Microorganisms with different oxygen affinity spatially distributed on the carrier. Ammonia-oxidizing bacteria (AOB) dominated on the surface of the carrier, while anammox bacteria dominated on the interior of the carrier, with their relative abundance increasing from 0.26 % to 1.78 %. The intercalary NOB were inhibited by the restricted oxygen transfer. Overall, this study provides a new approach to realize PNA in biofilm system.
Collapse
Affiliation(s)
- Zhuo Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
10
|
Huang R, Meng T, Liu G, Gao S, Tian J. Simultaneous nitrification and denitrification in membrane bioreactor: Effect of dissolved oxygen. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116183. [PMID: 36088763 DOI: 10.1016/j.jenvman.2022.116183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Membrane bioreactor with the floc activated sludge (mixed liquor suspended solids (MLSS) = 7500 mg/L) was constructed in this work for simultaneously nitrification and denitrification (SND). The effect of dissolved oxygen (DO) on SND process and the nitrogen pathways were investigated. The average TN removal efficiencies were 63.05%, 91.17%, 87.04% and 70.02% for DO 0.5, 1, 2 and 3 mg/L systems, respectively. The effluent ammonia concentration was continuously lower than 5.0 mg/L when the DO was higher than 1 mg/L. Nitrogen in DO 1 and DO 2 mg/L systems was mainly removed via the SND process. The rise of DO concentration increased the abundance of nitrite oxidizing bacteria (NOB) and Nitrospira was the predominant NOB in all the four MBRs. Dechloromonas and Azoarcus were the dominant denitrifying bacteria (DNB) in DO 1 systems responsible for nitrite denitrification. The dominant aerobic DNB Pseudomonas also contributed SND via nitrate denitrification and was little affected by DO changes. Nitrate reductase was the main enzyme for the reduction of NO3--N to NO2--N, and narG was the main responsible gene. Nitrite oxidoreductase was the main enzyme for the oxidation of NO2--N to NO3--N, and nxrA was the main responsible gene in all the four MBR systems.
Collapse
Affiliation(s)
- Rui Huang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China; Guangdong GDH Water Co. Ltd, Shenzhen, 518021, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tongyang Meng
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Gaige Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
11
|
Ren ZQ, Wang H, Zhang LG, Du XN, Huang BC, Jin RC. A review of anammox-based nitrogen removal technology: From microbial diversity to engineering applications. BIORESOURCE TECHNOLOGY 2022; 363:127896. [PMID: 36070811 DOI: 10.1016/j.biortech.2022.127896] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has the advantages of high efficiency and low energy consumption, so it has broad application prospects in biological denitrification of wastewater. However, the application of anammox technology to existing wastewater treatment is still challenging. The main problems are the insufficient supply of nitrite and the susceptibility of anammox bacteria to environmental factors. In this paper, from the perspective of the diversity of anammox bacteria, the habitats and characteristics of anammox bacteria of different genera were compared. At the same time, laboratory research and engineering applications of anammox technology in treating wastewater from different sources were reviewed, and the progress of and obstacles to the practical application of anammox technology were clarified. Finally, a focus for future research was proposed to intensively study the water quality barrier factors of anammox and its regulation strategies. Meanwhile, a combined process was developed and optimized on this basis.
Collapse
Affiliation(s)
- Zhi-Qi Ren
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Wang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Ge Zhang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xue-Ning Du
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China.
| |
Collapse
|
12
|
Wang W, Zhou F, Zhou W, Fan C, Ling L. The impact of household wastewater on the frailty state of the elderly in China: based on a long-term cohort study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76091-76100. [PMID: 35665878 DOI: 10.1007/s11356-022-20271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
China's household wastewater discharge has gradually increased, and its composition has become more complex, but the discharge treatment system is not perfect. At present, there is a lack of research on the impact of domestic wastewater on human health, especially on the frailty of the elderly. This study aimed to quantitatively assess the relationship between living wastewater and its main components and the frailty status of the elderly. The research data comes from the Chinese Longitudinal Healthy Longevity Survey (CLHLS), which consists of participants over 60 years old who participated in the three-wave survey in 2008, 2011, and 2014 and combined with domestic wastewater data in the statistical yearbook. A generalized estimating equation (GEE) model was used to assess the link between living wastewater and frailty status in the elderly. The single-pollutant model showed that there was a positive correlation between the discharge of household wastewater and the frailty of the elderly, OR (4.443), 95%CI (3.591, 5.498); ammonia nitrogen had a positive correlation with the frail state of the elderly, OR (4.527), 95%CI (3.587, 5.714); chemical oxygen demand (COD) had a negative association with whether the elderly are frail, OR (0.776), 95%CI (0.609, 0.988). After adjusting for covariates, there was still a positive correlation between household wastewater and the frailty of the elderly, OR (2.792), 95%CI (2.233, 3.492); a positive correlation between ammonia nitrogen and the frail state of the elderly, OR (2.894), 95%CI (2.284, 3.666). The association between COD and the frail state of the elderly, OR (0.823), 95%CI (0.640, 1.058), showed no correlation between the two. The results show that household wastewater may affect the health of the elderly, promote the occurrence of a frail state of the elderly, and increase the medical burden.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Public Health, Sun Yat-Sen University, #74, Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Fenfen Zhou
- School of Public Health, Sun Yat-Sen University, #74, Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Wensu Zhou
- School of Public Health, Sun Yat-Sen University, #74, Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chaonan Fan
- School of Public Health, Sun Yat-Sen University, #74, Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Li Ling
- School of Public Health, Sun Yat-Sen University, #74, Zhongshan Road II, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
13
|
Zhang L, Lin Y, Zhu Z, Li X, Wang S, Peng Y. Rapidly recovering and maintaining simultaneous partial nitrification, denitrification and anammox process through hydroxylamine addition to advance nitrogen removal from domestic sewage. BIORESOURCE TECHNOLOGY 2022; 360:127645. [PMID: 35868463 DOI: 10.1016/j.biortech.2022.127645] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The collapse of simultaneous partial nitrification, denitrification and anammox (SPNDA) system, caused by the destruction of partial nitrification (PN), is the most likely phenomenon to occur. Therefore, recovering the process quickly and maintaining efficient nitrogen removal is a valuable topic for research. In the anaerobic/aerobic/anoxic operation mode, SPNDA process was used to treat domestic sewage in a sequencing batch biofilm reactor. After the deterioration of PN effect, with the addition of hydroxylamine, the activity of ammonia-oxidizing bacteria in the nitrobacteria increased (61.0-91.3 %), whereas the accumulation of nitrite quickly recovered to 90.4 % within 5 days. Meanwhile, the nitrogen removal efficiency improved (61.8-95.6 %) and the effluent TN was 2.1 mg/L. Furthermore, Candidatus Brocadia was enriched (0.50-1.82 %) in the system. The results indicated that the addition of hydroxylamine was an effective strategy to recover and economically maintain the SPNDA process for advanced nitrogen removal from domestic sewage.
Collapse
Affiliation(s)
- Liyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yangang Lin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhuo Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
14
|
Zhang Q, Lin JG, Kong Z, Zhang Y. A critical review of exogenous additives for improving the anammox process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155074. [PMID: 35398420 DOI: 10.1016/j.scitotenv.2022.155074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Anammox achieves chemoautotrophic nitrogen removal under anaerobic and anoxic conditions and is a low-carbon wastewater biological nitrogen removal process with broad application potential. However, the physiological limitations of AnAOB often cause problems in engineering applications, such as a long start-up time, unstable operation, easily inhibited reactions, and difficulty in long-term strain preservation. Exogenous additives have been considered an alternative strategy to address these issues by retaining microbes, shortening the doubling time of AnAOB and improving functional enzyme activity. This paper reviews the role of carriers, biochar, intermediates, metal ions, reaction substrates, redox buffers, cryoprotectants and organics in optimizing anammox. The pathways and mechanisms of exogenous additives, which are explored to solve problems, are systematically summarized and analyzed in this article according to operational performance, functional enzyme activity, and microbial abundance to provide helpful information for the engineering application of anammox.
Collapse
Affiliation(s)
- Qi Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China
| | - Jih-Gaw Lin
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China; Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China.
| |
Collapse
|