1
|
Li Q, Zhang M, Wang C, Pan K, Liu H, Zhu W, Huang Y, Zhu Q, Hu J, Jiang M, Wang F, Hong Q. Identification of xenobiotic response element family transcription regulator SadR from sulfonamides-degrading strain Microbacterium sp. HA-8 and construction of biosensor to detect sulfonamides. BIORESOURCE TECHNOLOGY 2024; 415:131705. [PMID: 39490600 DOI: 10.1016/j.biortech.2024.131705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Deciphering the regulatory mechanisms of sulfonamides (SAs) metabolism will contribute to a deeper understanding of SAs degradation in the environment. In this study, a SAs-degrading strain Microbacterium sp. HA-8 harboring a highly conserved SAs-degrading genes sadABC was isolated. SadR was a newly discovered regulator, belonging to xenobiotic response element (XRE) family, which negatively regulated the transcription of sadAB genes. Specifically, SadR bound to the sadA promoter region to repress the expression of sadAB genes. While, SAs prevented SadR from binding to sadA promoter to induce the expression of sadAB genes. Then, a whole-cell biosensor, Escherichia coli DH5α/pSRmCherry was constructed to detect SAs. The dose-dependent fluorescence of the biosensor exhibited a good fit to Hill equation. In summary, this study revealed the regulatory mechanism of SAs degradation in strain HA-8 and developed an innovative biosensor technique for detecting SAs, holding promise for future applications in environmental monitoring.
Collapse
Affiliation(s)
- Qian Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mingliang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Changchang Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kaihua Pan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Hongfei Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Weihao Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Yanni Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qian Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Junqiang Hu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mingli Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Technical University of Munich, Department of Chemistry, 85748 Munich, Germany.
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| |
Collapse
|
2
|
Zhang XY, Yin LJ, Lang XP, He Z, Yang GP. Enhanced release of volatile halocarbons of microalgae in response to antibiotic-induced stress: Based on laboratory and ship-field experiments. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106754. [PMID: 39317087 DOI: 10.1016/j.marenvres.2024.106754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/14/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
This study investigated the impacts of sulfamethazine (SMZ) and oxytetracycline (OTC) antibiotics on the marine microalgae Nitzschia closterium and its release of volatile halocarbons (VHCs), which contribute to ozone depletion and climate change. High concentrations of SMZ and OTC suppressed cell density, reduced chlorophyll a content, and hindered Fv/Fm elevation in N. closterium, indicating its growth was inhibited. The exposure of N. closterium to antibiotics led to increased reactive oxygen species (ROS), reduced soluble protein content, and heightened catalase (CAT) activity, indicative of increased oxidative stress. This stress increased the release of three VHCs (CHBrCl2, CHBr2Cl, and CHBr3). Ship-borne experiments showed that high phytoplankton biomass was linked to high VHC release. Notably, the production and release of VHCs were significantly higher in the high-concentration antibiotic group (100 μg/L) than the low-concentration group (0.1 μg/L). These findings suggested that antibiotics induce excess ROS in algal cells, stimulating VHC production and release.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Li-Jing Yin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiao-Ping Lang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhen He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China.
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
3
|
Ma Y, Lin S, Guo T, Guo C, Li Y, Hou Y, Gao Y, Dong R, Liu S. Exploring the influence of sulfadiazine-induced stress on antibiotic removal and transformation pathway using microalgae Chlorella sp. ENVIRONMENTAL RESEARCH 2024; 256:119225. [PMID: 38797461 DOI: 10.1016/j.envres.2024.119225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Sulfadiazine (SDZ) is a kind of anti-degradable antibiotics that is commonly found in wastewater, but its removal mechanism and transformation pathway remain unclear in microalgal systems. This study investigated the effects of initial algae concentration and SDZ-induced stress on microalgal growth metabolism, SDZ removal efficiency, and transformation pathways during Chlorella sp. cultivation. Results showed that SDZ had an inhibitory effect on the growth of microalgae, and increasing the initial algal biomass could alleviate the inhibitory effect of SDZ. When the initial algal biomass of Chlorella sp. was increased to 0.25 g L-1, the SDZ removal rate could reach 53.27%-89.07%. The higher the initial algal biomass, the higher the SOD activity of microalgae, and the better the protective effect on microalgae, which was one of the reasons for the increase in SDZ removal efficiency. Meanwhile, SDZ stress causes changes in photosynthetic pigments, lipids, total sugars and protein content of Chlorella sp. in response to environmental changes. The main degradation mechanisms of SDZ by Chlorella sp. were biodegradation (37.82%) and photodegradation (23%). Most of the degradation products of SDZ were less toxic than the parent compound, and the green algae were highly susceptible to SDZ and its degradation products. The findings from this study offered valuable insights into the tradeoffs between accumulating microalgal biomass and antibiotic toxic risks during wastewater treatment, providing essential direction for the advancement in future research and full-scale application.
Collapse
Affiliation(s)
- Yanfang Ma
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Shupeng Lin
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Ting Guo
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, PR China
| | - Chunchun Guo
- College of Engineering, China Agricultural University, Beijing, 100083, PR China; Yantai Research Institute, China Agricultural University, Yantai, 264670, PR China
| | - Yitao Li
- Department of Civil and Environmental Engineering, Virginia Tech, Arlington, VA, 22202, USA
| | - Yahan Hou
- College of Engineering, China Agricultural University, Beijing, 100083, PR China; Yantai Research Institute, China Agricultural University, Yantai, 264670, PR China
| | - Yongchang Gao
- Shandong High Speed Renewable Energy Group Limited, Jinan, 250000, PR China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Shan Liu
- College of Engineering, China Agricultural University, Beijing, 100083, PR China; Yantai Research Institute, China Agricultural University, Yantai, 264670, PR China.
| |
Collapse
|
4
|
Zhuang LL, Qian W, Wang X, Wang T, Zhang J. General performance, kinetic modification, and key regulating factor recognition of microalgae-based sulfonamide removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134891. [PMID: 38878437 DOI: 10.1016/j.jhazmat.2024.134891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Sulfonamides have been widely detected in water treatment plants. Advanced wastewater treatment for sulfonamide removal based on microalgal cultivation can reduce the ecological risk after discharge, achieve carbon fixation, and simultaneously recover bioresource. However, the general removal performance, key factors and their impacts, degradation kinetics, and potential coupling technologies have not been systematically summarized. To guide the construction and enhance the efficient performance of the purification system, this study summarizes the quantified characteristics of sulfonamide removal based on more than 100 groups of data from the literature. The biodegradation potential of sulfonamides from different subclasses and their toxicity to microalgae were statistically analyzed; therefore, a preferred option for further application was proposed. The mechanisms by which the properties of both sulfonamides and microalgae affect sulfonamide removal were comprehensively summarized. Thereafter, multiple principles for choosing optimal microalgae were proposed from the perspective of engineering applications. Considering the microalgal density and growth status, a modified antibiotic removal kinetic model was proposed with significant physical meaning, thereby resulting in an optimal fit. Based on the mechanism and regulating effect of key factors on sulfonamide removal, sensitive and feasible factors (e.g., water quality regulation, other than initial algal density) and system coupling were screened to guide engineering applications. Finally, we suggested studying the long-term removal performance of antibiotics at environmentally relevant concentrations and toxicity interactions for further research.
Collapse
Affiliation(s)
- Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Weiyi Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Tong Wang
- School of Ecological & Environmental Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China.
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong 250014, China
| |
Collapse
|
5
|
Zhou Y, Chen X, Zhu Y, Pan X, Li W, Han J. Mechanisms of hormetic effects of ofloxacin on Chlorella pyrenoidosa under environmental-relevant concentration and long-term exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172856. [PMID: 38697534 DOI: 10.1016/j.scitotenv.2024.172856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Antibiotics are frequently detected in surface water and pose potential threats to organisms in aquatic ecosystem such as microalgae. The occurrence of biphasic dose responses raised the possibility of stimulation of microalgal biomass by antibiotics at environmental-relevant concentration and caused potential ecological risk such as algal bloom. However, the underlying mechanisms of low concentration-induced hormetic effects are not well understood. In this study, we evaluated the hormesis of ofloxacin on Chlorella pyrenoidosa under environmental-relevant concentration and long-term exposure. Results showed the hormetic effects of ofloxacin on cell density and carbon fixation rate (RC). The predicted maximum promotion was 17.45 % by 16.84 μg/L and 20.08 % by 15.78 μg/L at 21 d, respectively. The predicted maximum concentration of non-effect on cell density and RC at 21 d was 3.24 mg/L and 1.44 mg/L, respectively. Ofloxacin induced the mobilization of pigments and antioxidant enzymes to deal with oxidative stress. PCA analysis revealed Chl-a/Chl-b could act as a more sensitive biomarker under acute exposure while chlorophyll fluorescence parameters were in favor of monitoring long-term implication. The hormesis in increased secretion of extracellular organic matters was regarded as a defensive mechanism and accelerated indirect photodegradation of ofloxacin. Bioremoval was dominant and related to biomass accumulation in the total dissipation while abiotic removal appeared slight contributions. This study provided new insights into the understanding of hormesis of microalgae induced by antibiotics.
Collapse
Affiliation(s)
- Yuhao Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China
| | - Xinyang Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Yan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Xiangjie Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| |
Collapse
|
6
|
Tan XB, Zhao ZY, Gong H, Jiang T, Liu XP, Liao JY, Zhang YL. Growth of Scenedesmus obliquus in anaerobically digested swine wastewater from different cleaning processes for pollutants removal and biomass production. CHEMOSPHERE 2024; 352:141515. [PMID: 38387659 DOI: 10.1016/j.chemosphere.2024.141515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/24/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
Anaerobically digested swine wastewater (ASW) purification by microalgae provides a promising strategy for nutrients recovery, biomass production and CO2 capture. However, the characteristics of ASW from different cleaning processes vary greatly. At present, the cultivation of microalgae in ASW from different manure cleaning processes is rarely investigated and compared. That may bring uncertainty for microalgae growth using different ASW in large-scale application. Thus, the ASW from three cleaning processes were tested for cultivating microalgae, including manure dry collection (I), water flushing (II) and water submerging processes (III). The characteristics of ASW from three manure cleaning processes varied greatly such as nutrient and heavy metals levels. High concentration of ammonia and copper in ASW significantly inhibited microalgae growth. Fortunately, the supply of high CO2 (10%) effectively alleviated negative influences, ensuring microalgal growth at low dilution ratio. The characteristics of three ASW resulted in significant differences in microalgae growth and biomass components. The maximal biomass production in optimal diluted ASW-I, II and III reached 1.46 g L-1, 2.19 g L-1 and 2.47 g L-1, respectively. The removal of organic compounds, ammonia and phosphorus by optimal microalgae growth in diluted ASW-I, II and III was 50.6%/94.2%/64.7%, 63.7%/82.3%/57.6% and 83.2%/91.7%/59.7%, respectively. The culture in diluted ASW-I, II and III obtained the highest lipids production of 12.1 mg L-1·d-1, 16.5 mg L-1·d-1 and 19.4 mg L-1·d-1, respectively. The analysis of lipids compositions revealed that the proportion of saturated fatty acids accounted for 36.4%, 32.4% and 27.9 % in optimal diluted ASW-I, II and III, as ideal raw materials for biodiesel production.
Collapse
Affiliation(s)
- Xiao-Bo Tan
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China.
| | - Ze-Yuan Zhao
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Hui Gong
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Tao Jiang
- Zhuzhou Water Lnvestment Group Co., Ltd, Zhuzhou City, Hunan Province, 412099, China
| | - Xin-Ping Liu
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Jian-Yu Liao
- College of Urban and Environment Sciences, Hunan Provincial Key Laboratory of Comprehensive Utilization of Agricultural and Animal Husbandry Waste Resources, Hunan University of Technology, 88 Taishan Road, Zhuzhou City, Hunan Province, 412007, China
| | - Ya-Lei Zhang
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
7
|
Yu H, Chen X, Du X, Chang Y, Sun S, Tang S, Du Q, Song W. Exploring the molecular mechanism of Chlorella vulgaris in response to androstenedione exposure based on genes continuously up-regulated in transcription analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115996. [PMID: 38277974 DOI: 10.1016/j.ecoenv.2024.115996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Androstenedione (ADSD) is one of the widely detected androgens in diverse aquatic environments. However, there were few reports on the molecular mechanism of Chlorella vulgaris exposure to ADSD. In our previous research, we have investigated the genes associated with chlorophyll metabolism in Chlorella vulgaris response to ADSD. In this study, we focus on continuously up-regulated genes to explore the mechanism underlying Chlorella vulgaris resistance to ADSD toxicity. Chlorella vulgaris was exposed to ADSD with five concentration gradients. The continuously up-regulated genes were enriched by Series Test of Cluster (STC) analysis and verified by qRT-PCR. Microalgae Super Oxidase Dimutase (SOD) and Microalgae Malonic dialdehyde (MDA), two indicators of oxidative stress, were determined by ELISA after exposure to ADSD. The results showed that ADSD can stimulate the production of extracellular polymeric substances (EPS) and lead to enlargement in the cell body of Chlorella vulgaris. In addition, steroid biosynthesis and oxidoreductase activity processes were consistently up-regulated upon exposure to ADSD. In conclusion, our study highlighted the crucial role of phenotypic modification, hormone synthesis, and redox mechanisms in protecting Chlorella vulgaris cells from the harmful effects of ADSD contamination.
Collapse
Affiliation(s)
- Haiyang Yu
- School of Life Science and Bioengineering, Jining University, Jining 273155, China
| | - Xue Chen
- School of Engineering, Jining University, Jining 273155, China
| | - Xinxin Du
- School of Life Science and Bioengineering, Jining University, Jining 273155, China
| | - Yanhong Chang
- School of Life Science and Bioengineering, Jining University, Jining 273155, China
| | - Shuang Sun
- School of Life Science and Bioengineering, Jining University, Jining 273155, China
| | - Shaoyu Tang
- School of Engineering, Jining University, Jining 273155, China
| | - Qiuli Du
- School of Life Science and Bioengineering, Jining University, Jining 273155, China
| | - Wenlu Song
- School of Engineering, Jining University, Jining 273155, China.
| |
Collapse
|
8
|
Wang JX, Li P, Chen CZ, Liu L, Li ZH. Biodegradation of sulfadiazine by ryegrass (Lolium perenne L.) in a soil system: Analysis of detoxification mechanisms, transcriptome, and bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132811. [PMID: 37866149 DOI: 10.1016/j.jhazmat.2023.132811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
The indiscriminate use of sulfadiazine has caused severe harm to the environment, and biodegradation is a viable method for the removal of sulfadiazine. However, there are few studies that consider sulfadiazine biodegradation mechanisms. To comprehensively investigate the process of sulfadiazine biodegradation by plants in a soil system, a potted system that included ryegrass and soil was constructed in this study. The removal of sulfadiazine from the system was found to be greater than 95% by determining the sulfadiazine residue. During the sulfadiazine removal process, a significant decrease in ryegrass growth and a significant increase in antioxidant enzyme activity were observed, which indicates the toxic response and detoxification mechanism of sulfadiazine on ryegrass. The ryegrass transcriptome and soil bacterial communities were further investigated. These results revealed that most of the differentially expressed genes (DEGs) were enriched in the CYP450 enzyme family and phenylpropanoid biosynthesis pathway after sulfadiazine exposure. The expression of these genes was significantly upregulated. Sulfadiazine significantly increased the abundance of Vicinamibacteraceae, RB41, Ramlibacter, and Microvirga in the soil. These key genes and bacteria play an important role in sulfadiazine biodegradation. Through network analysis of the relationship between the DEGs and soil bacteria, it was found that many soil bacteria promote the expression of plant metabolic genes. This mutual promotion enhanced the sulfadiazine biodegradation in the soil system. This study demonstrated that this pot system could substantially remove sulfadiazine and elucidated the biodegradation mechanism through changes in plants and soil bacteria.
Collapse
Affiliation(s)
- Jin-Xin Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | | | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
9
|
Zeng Y, Chen X, Zhu J, Long D, Jian Y, Tan Q, Wang H. Effects of Cu (II) on the Growth of Chlorella vulgaris and Its Removal Efficiency of Pollutants in Synthetic Piggery Digestate. TOXICS 2024; 12:56. [PMID: 38251012 PMCID: PMC10819573 DOI: 10.3390/toxics12010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
C. vulgaris has a positive effect on the removal of nutrients from pig farm biogas slurry. However, swine wastewater often contains heavy metal ions, such as Cu (II), which may have impacts on the nutrient removal performance of C. vulgaris. Additionally, the heavy metal ions in wastewater can be adsorbed by microalgae. In this study, the stress effect of Cu (II) on the growth of Chlorella vulgaris, the Cu (II) removal by microalgae, and the effect of different concentrations of Cu (II) on the nutrient removal efficiency of C. vulgaris in biogas slurries were explored. The results showed that the microalgae biomass of microalgae on the sixth day of the experiment was the highest in the treatment with a Cu (II) concentration of 0.5 mg/L, which was 30.1% higher than that of the 2.5 mg/L group. C. vulgaris had higher removal efficiencies of Cu (II) at a Cu (II) concentration of 0.1~1.5 mg/L. The-OH, C=O, -COOH, and C-O groups on the surface of the algal cells play a significant role in the removal of Cu (II). The removal rates of COD, NH3-N, TN, and TP by C. vulgaris at a Cu (II) concentration of 0.5 mg/L were the highest, which were 89.0%, 53.7%, 69.6%, and 47.3%, respectively.
Collapse
Affiliation(s)
- Yaqiong Zeng
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Xiaoqing Chen
- College of Chemical and Environmental Engineering, Xinjiang Institute of Engineering, Urumqi 830023, China
| | - Jiaming Zhu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Dingbiao Long
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Yue Jian
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Qiong Tan
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Hao Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| |
Collapse
|
10
|
Liu D, Wang H, Teng Y, Wu Q, Tang C, Gao X, Chen C, Zhu L. Biochemical responses of freshwater microalgae Chlorella sorokiniana to combined exposure of Zn(Ⅱ) and estrone with simultaneous pollutants removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119392. [PMID: 37879179 DOI: 10.1016/j.jenvman.2023.119392] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
With the development of livestock industry, contaminants such as divalent zinc ions (Zn (Ⅱ)) and estrone are often simultaneously detected in livestock wastewater. Nevertheless, the combined toxicity of these two pollutants on microalgae is still unclear. Moreover, microalgae have the potential for biosorption and bioaccumulation of heavy metals and organic compounds. Thus, this study investigated the joint effects of Zn (Ⅱ) and estrone on microalgae Chlorella sorokiniana, in terms of growth, photosynthetic activity and biomolecules, as well as pollutants removal by algae. Interestingly, a low Zn (Ⅱ) concentration promoted C. sorokiniana growth and photosynthetic activity, while the high concentration experienced inhibition. As the increase of estrone concentration, chlorophyll a content increased continuously to resist the environmental stress. Concurrently, the secretion of extracellular polysaccharides and proteins by algae increased with exposure to Zn (Ⅱ) and estrone, reducing toxicity of pollutants to microalgae. Reactive oxygen species and superoxide dismutase activity increased as the increase of pollutant concentration after 96 h cultivation, but high pollutant concentrations resulted in damage of cells, as proved by increased MDA content. Additionally, C. sorokiniana displayed remarkable removal efficiency for Zn (Ⅱ) and estrone, reaching up to 86.14% and 84.96% respectively. The study provides insights into the biochemical responses of microalgae to pollutants and highlights the potential of microalgae in pollutants removal.
Collapse
Affiliation(s)
- Dongyang Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Hanzhi Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Yue Teng
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Chunming Tang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Xinxin Gao
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Chaoqi Chen
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China.
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
11
|
Li S, Zhu L. Copper regulates degradation of typical antibiotics by microalgal-fungal consortium in simulated swine wastewater: insights into metabolic routes and dissolved organic matters. WATER RESEARCH 2023; 245:120654. [PMID: 37778083 DOI: 10.1016/j.watres.2023.120654] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Microalgae-based biotechnology for antibiotics biodegradation in swine wastewater has been receiving an increasing attention. In this study, microalgae and fungi co-cultivation system, regulated by copper (Cu(II)), was investigated in terms of nutrients and sulfonamides degradation in simulated swine wastewater. Results showed that the removal of ammonium nitrogen (NH4+-N), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) by microalgal-fungal consortium increased under 0.1-0.5 mg/L Cu(II) with the highest removal efficiency of 79.19%, 76.18%, 93.93% and 93.46%, respectively. The addition of Cu(II) (0-0.5 mg/L) enhanced the removal of sulfamonomethoxine (SMM), sulfamethoxazole (SMX) and sulfamethazine (SMZ) from 49.05% to 58.76%, from 59.31% to 63.51%, and from 37.51% to 63.9%, respectively, and the main removal mechanism was found to be biodegradation. Biodegradation followed a pseudo-first-order model with variable half-lives (10.12 to 15.51 days for SMM, 9.01 to 10.88 days for SMX, and 8.74 to 12.85 days for SMZ). Through mass spectrometry analysis, metabolites and intermediates of sulfonamides were accordingly identified, suggesting that the degradation routes were involved with hydroxylation, deamination, oxidation, de-sulfonation and bond cleavage. Dissolved organic matters released by microalgal-fungal consortium were induced by Cu(II). Fulvic acid-like and protein-like substances were bound to Cu(II), reducing its concentration and thus mitigating the organismal damage to microorganisms. These findings drew an insightful understanding of microalgal-fungal consortium for sulfonamides remediation by Cu(II) regulation in simulated swine wastewater.
Collapse
Affiliation(s)
- Shuangxi Li
- School of Resources & Environmental Science, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
12
|
Wang H, Hu C, Wang Y, Zhao Y, Jin C, Guo L. Elucidating microalgae-mediated metabolism for sulfadiazine removal mechanism and transformation pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121598. [PMID: 37031851 DOI: 10.1016/j.envpol.2023.121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Sulfadiazine (SDZ) as a typical sulfonamide antibiotic is commonly detected in wastewater, and its removal mechanism and transformation pathways in microalgae-mediated system remain unclear. In this study, the SDZ removal through hydrolysis, photodegradation, and biodegradation by Chlorella pyrenoidosa was investigated. Higher superoxide dismutase activity and biochemical components accumulation were obtained under SDZ stress. The SDZ removal efficiencies at different initial concentrations were 65.9-67.6%, and the removal rate followed pseudo first-order kinetic model. Batch tests and HPLC-MS/MS analyses suggested that biodegradation and photodegradation through the reactions of amine group oxidation, ring opening, hydroxylation, and the cleavage of S-N, C-N, C-S bond were dominant removal mechanisms and pathways. Characteristics of transformation products were evaluated to analyze their environmental impacts. High-value products of lipid, carbohydrate, and protein in microalgae biomass presented economic potential of microalgae-mediated metabolism for SDZ removal. The findings of this study broadened the knowledge for the microalgae self-protection from SDZ stress and provided a deep insight into SDZ removal mechanism and transformation pathways.
Collapse
Affiliation(s)
- Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Caiye Hu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
13
|
Ren H, Ni J, Shen M, Zhou D, Sun F, Loke Show P. Enhanced carbon dioxide fixation of Chlorella vulgaris in microalgae reactor loaded with nanofiber membrane carried iron oxide nanoparticles. BIORESOURCE TECHNOLOGY 2023; 382:129176. [PMID: 37187334 DOI: 10.1016/j.biortech.2023.129176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
To improve the CO2 dissolution and carbon fixation in the process of microalgae capturing CO2 from flue gas, a nanofiber membrane containing iron oxide nanoparticles (NPsFe2O3) for CO2 adsorption was prepared, and coupled with microalgae utilization to achieve carbon removal. The performance test results showed that the largest specific surface area and pore size were 8.148 m2 g-1 and 27.505 Å, respectively, when the nanofiber membrane had 4% NPsFe2O3. Through CO2 adsorption experiments, it was found that the nanofiber membrane could prolong the CO2 residence time and increase CO2 dissolution. Then, the nanofiber membrane was used as a CO2 adsorbent and semifixed culture carrier in the Chlorella vulgaris culture process. The results showed that compared with the group without nanofiber membrane (0 layer), the biomass productivity, CO2 fixation efficiency and carbon fixation efficiency of Chlorella vulgaris with 2 layers of membranes increased by 1.4 times.
Collapse
Affiliation(s)
- Hongyan Ren
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Jing Ni
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Mingwei Shen
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Duan Zhou
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Fubao Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
14
|
Algae-mediated bioremediation of ciprofloxacin through a symbiotic microalgae-bacteria consortium. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
15
|
Yu C, Li C, Zhang Y, Du X, Wang JH, Chi ZY, Zhang Q. Effects of environment-relevant concentrations of antibiotics on seawater Chlorella sp. biofilm in artificial mariculture effluent. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
16
|
Qv M, Dai D, Liu D, Wu Q, Tang C, Li S, Zhu L. Towards advanced nutrient removal by microalgae-bacteria symbiosis system for wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 370:128574. [PMID: 36603749 DOI: 10.1016/j.biortech.2022.128574] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
In this study, the microalgae-bacteria symbiosis (ABS) system by co-culturing Chlorella sorokiniana with activated sludge was constructed for pollutants removal, and the according interaction mechanism was investigated. The results showed that the ABS system could almost completely remove ammonia nitrogen, and the removal efficiency of total nitrogen and total phosphorus could accordingly reach up to 65.3 % and 42.6 %. Brevundimonas greatly promoted microalgal biomass growth (maximum chlorophyll-a concentration of 9.4 mg/L), and microalgae contributed to the increase in the abundance of Dokdonella and Thermomonas in ABS system, thus facilitating nitrogen removal. The extended Derjaguin-Landau-Verwey-Overbeek theory indicated a repulsive potential barrier of 561.7 KT, while tryptophan-like proteins and tyrosine-like proteins were key extracellular polymeric substances for the formation of flocs by microalgae and activated sludge. These findings provide an in-depth understanding of interaction mechanism between microalgae and activated sludge for the removal of contaminants from wastewater.
Collapse
Affiliation(s)
- Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dongyang Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Chunming Tang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Shuangxi Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
17
|
Liu D, Qv M, Dai D, Wang X, Zhu L. Toxic responses of freshwater microalgae Chlorella sorokiniana due to exposure of flame retardants. CHEMOSPHERE 2023; 310:136808. [PMID: 36223822 DOI: 10.1016/j.chemosphere.2022.136808] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Flame retardants, such as Tetrabromobisphenol A (TBBPA), Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and tributyl phosphate (TBP), are frequently detected in surface water. However, the effects of FRs exposure on aquatic organisms especially freshwater microalgae are still unclear. In this study, the toxicities of TBBPA, TDCPP and TBP to microalgae Chlorella sorokiniana, in terms of growth inhibition, photosynthetic activity inhibition and oxidative damage, were investigated, and according ecological risks were assessed. The results showed that TBBPA, TDCPP and TBP had inhibitory effects on C. sorokiniana, with 96 h EC50 (concentration for 50% of maximal effect) values of 7.606, 41.794 and 49.996 mg/L, respectively. Fv/Fm decreased as the increase of exposure time under 15 mg/L TBBPA. Under 50 mg/L TDCPP and 80 mg/L TBP exposure, Fv/Fm decreased significantly after 24 h. However, Fv/Fm rose after 96 h, indicating that the damaged photosynthetic activity was reversible. The content of chlorophyll a decreased, as the increase of TBBPA concentration from 3 to 15 mg/L. However, chlorophyll a increased first and then decreased, as the increase of TDCPP and TBP concentrations from 0 to 50 mg/L and 0-80 mg/L, respectively. Results indicated that C. sorokiniana could use the phosphorus of TDCPP and TBP to ensure the production of chlorophyll a. The risen content of reactive oxygen species, malondialdehyde as well as superoxide dismutase activity indicated that exposure to FRs induced oxidative stress. Additionally, the risk quotients showed that tested FRs had ecological risks in natural waters or wastewaters. This study provides insights into the toxicological mechanisms of different FRs toward freshwater microalgae for better understanding of according environmental risks.
Collapse
Affiliation(s)
- Dongyang Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, PR China
| | - Mingxiang Qv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Dian Dai
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Xu Wang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China.
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
18
|
Yu J, You X, Wang Y, Jin C, Zhao Y, Guo L. Focus on the role of synthetic phytohormone for mixotrophic growth and lipid accumulation by Chlorella pyrenoidosa. CHEMOSPHERE 2022; 308:136558. [PMID: 36150488 DOI: 10.1016/j.chemosphere.2022.136558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/26/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Synthetic phytohormone (SP) is regarded as an attractive candidate for microalgae cultivation due to its potential for high-value microalgae biomass production. Herein, α-naphthylacetic acid (NAA), indomethacin (IN) and 2,4-dichlorophenoxyacetic acid (2,4-D) were used for the mixotrophic cultivation of Chlorella pyrenoidosa with mariculture wastewater (MW) acidogenic fermentation effluent. The growth and lipid accumulation of Chlorella pyrenoidosa added with SP were enhanced, given their high bioavailability of the nutrients. Among these three SPs, IN was optimal for Chlorella pyrenoidosa growth, with the maximum optical density of 1.81. NAA exhibited the best performance for lipid production and the proportion of lipid reached 50.24%. Furthermore, the energy of Chlorella pyrenoidosa cultured with SP preferentially allocated to lipogenesis. To understand the mechanism of lipid accumulation in Chlorella pyrenoidosa in response to SP, the enzyme activities involved in carbon metabolism were determined. The malic enzyme (ME) and acetyl-CoA carboxylase (ACCase) were positively correlated with lipid accumulation. Phosphoenolpyruvate carboxylase (PEPC) was the negative feedback enzyme for lipid synthesis. The findings could provide valuable information for regulation mechanism of lipid accumulation and value-added products recovery by microalgae.
Collapse
Affiliation(s)
- Jinghan Yu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xuting You
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, United States
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
19
|
Wang Q, He X, Xiong H, Chen Y, Huang L. Structure, mechanism, and toxicity in antibiotics metal complexation: Recent advances and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157778. [PMID: 35926602 DOI: 10.1016/j.scitotenv.2022.157778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic-metal complexes (AMCs) formed by antibiotics and metal ions have attracted considerable attentions in recent years. Although different removal methods for AMCs have been reported in the literature, very few investigations have focused on the mechanisms and toxic effects of antibiotic-metal coordination. This review briefly describes the structural characteristics of various commonly used antibiotics and the coordination mechanisms with metal ions. Considering the complexity of the real environment, various environmental factors affecting AMC formation are highlighted. The effects of AMCs on microbial community structure and the role of metal ions in influencing resistant genes from the molecular perspective are of interest within this work. The toxicities and mechanisms of AMCs on different species of biota are also discussed. These findings underline the need for more targeted detection and analysis methods and more suitable toxicity markers to verify the combination of antibiotics with metal ions and reveal environmental toxicities in future. This review presents an innovative idea that antibiotics combined with metal ions will change the toxicity and environmental behavior of antibiotics.
Collapse
Affiliation(s)
- Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Xi He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Haifeng Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China.
| |
Collapse
|
20
|
Wang H, Hu C, Wang Y, Jin C, She Z, Guo L. Mixotrophic cultivation of Chlorella pyrenoidosa under sulfadiazine stress: High-value product recovery and toxicity tolerance evaluation. BIORESOURCE TECHNOLOGY 2022; 363:127987. [PMID: 36126847 DOI: 10.1016/j.biortech.2022.127987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Sulfadiazine (SDZ) as a common sulfonamide antibiotic is frequently detected in wastewater, but there is little information on the high-value product recovery and toxicity tolerance evaluation of mixotrophic microalgae under SDZ stress. In this study, effects of SDZ on growth, photosynthesis, cellular damage, antioxidant capacity and intracellular biochemical components of Chlorella pyrenoidosa were investigated. Results showed that the growth of C. pyrenoidosa was inhibited by about 20% under high SDZ stress, but there was little impact on photosynthesis. Cellular damage and antioxidant capacity were evaluated using malondialdehyde (MDA) content and superoxide dismutase (SOD) activity to further explain the toxicity tolerance of mixotrophic microalgae. The SDZ stress not only increased lipid and carbohydrate content, respectively attaining to the maximum of 390.0 and 65.4 mg/L, but also improved the biodiesel quality of C. pyrenoidosa. The findings show the potential of mixotrophic microalgae for biodiesel production and wastewater treatment.
Collapse
Affiliation(s)
- Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Caiye Hu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
21
|
Wang Y, Li J, Lei Y, Cui R, Liang A, Li X, Kit Leong Y, Chang JS. Enhanced sulfonamides removal via microalgae-bacteria consortium via co-substrate supplementation. BIORESOURCE TECHNOLOGY 2022; 358:127431. [PMID: 35671911 DOI: 10.1016/j.biortech.2022.127431] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Both co-cultivation and co-substrate addition strategies have exhibited massive potential in microalgae-based antibiotic bioremediation. In this study, glucose and sodium acetate were employed as co-substrate in the cultivation of microalgae-bacteria consortium for enhanced sulfadiazine (SDZ) and sulfamethoxazole (SMX) removal. Glucose demonstrated a two-fold increase in biomass production with a maximum specific growth rate of 0.63 ± 0.01 d-1 compared with sodium acetate. The supplementation of co-substrate enhanced the degradation of SDZ significantly up to 703 ± 18% for sodium acetate and 290 ± 22% for glucose, but had almost no effect on SMX. The activities of antioxidant enzymes, including peroxidase, superoxide dismutase and catalase decreased with co-substrate supplementation. Chlorophyll a was associated with protection against sulfonamides and chlorophyll b might contribute to SDZ degradation. The addition of co-substrates influenced bacterial community structure greatly. Glucose enhanced the relative abundance of Proteobacteria, while sodium acetate improved the relative abundance of Bacteroidetes significantly.
Collapse
Affiliation(s)
- Yue Wang
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Jinghua Li
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Yao Lei
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Rong Cui
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Aiping Liang
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Xiaoqiang Li
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
22
|
Li S, Li Z, Liu D, Yin Z, Hu D, Yu Y, Li Z, Zhu L. Response of fungi-microalgae pellets to copper regulation in the removal of sulfonamides and release of dissolved organic matters. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128932. [PMID: 35460998 DOI: 10.1016/j.jhazmat.2022.128932] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Both sulfonamides (SAs) and copper (Cu(II)) were frequently detected together in swine wastewater. In this study, the regulation of Cu(II) on SAs adsorption and release of dissolved organic matters (DOMs) by fungi-microalgae pellets (FM-pellets) were investigated. Aspergillus oryzae pellets were prepared for combination with Chlorella vulgaris and the optimal conditions were at agitation speed of 130 rpm, fungi to microalgae ratio of 10:1 and the combined time of 3 h with the highest combination efficiency of 98.65%. The results showed that adsorption was the main mechanism for SAs removal. FM-pellets exhibited a high SAs adsorption potential within 6 h, and the adsorption capacity of sulfamethazine (SMZ), sulfamonomethoxine (SMM) and sulfamethoxazole (SMX) was 1.07, 0.94 and 1.67 mg/g, respectively. Furthermore, the removal of SMX, SMZ and SMM was greatly promoted from 62.31% to 85.21%, 58.71-67.91% and 64.17-80.31%, respectively, under the presence of 2 mg/L Cu(II) through ion exchange and adsorption bridging. DOMs were analyzed by the parallel factor (PARAFAC) to demonstrate the response mechanism of FM-pellets to Cu(II). Protein-like substances and NADH in DOMs released by FM-pellets formed complexes with Cu(II) to alleviate the damage on the organism. These findings provide new insights into the mechanism and response of Cu(II) in the removal of SAs by FM-pellets.
Collapse
Affiliation(s)
- Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Zhuo Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Dongyang Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Zhihong Yin
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Dan Hu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Zhaohua Li
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
23
|
Wang Y, Li J, Lei Y, Li X, Nagarajan D, Lee DJ, Chang JS. Bioremediation of sulfonamides by a microalgae-bacteria consortium - Analysis of pollutants removal efficiency, cellular composition, and bacterial community. BIORESOURCE TECHNOLOGY 2022; 351:126964. [PMID: 35272036 DOI: 10.1016/j.biortech.2022.126964] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics in wastewaters (e.g., sulfonamides (SAs)) are not effectively removed by the conventional bacterial processes. In this study, a microalgae (Scenedesmus obliquus)-based process was evaluated for the removal of SAs. The maximum removal efficiency of sulfadiazine (SDZ) and sulfamethoxazole (SMX) by the consortium was 5.85% and 40.84%, respectively. The lower SDZ biodegradation efficiency could be due to the difference in the lipophilic degree related to cell binding. The presence of SAs did not significantly inhibit the biomass production of the consortium (1311-1952 mg/L biomass) but led to a 36-51% decrease in total polysaccharide content and an increase in microalgae's protein content, which caused granule formation. The presence of SMX and SDZ resulted in an increase in lipid peroxidation activity with a 6.2 and 23.5-fold increase in malondialdehyde content, respectively. Rhodobacter and Phreatobacter were abundant in the consortium with SAs' presence, while alinarimonas, Catalinimonas and Cecembia were seen in their absence.
Collapse
Affiliation(s)
- Yue Wang
- School of Materials and Environmental Engineering, Yantai University, Yantai 264005, China
| | - Jinghua Li
- School of Materials and Environmental Engineering, Yantai University, Yantai 264005, China
| | - Yao Lei
- School of Materials and Environmental Engineering, Yantai University, Yantai 264005, China
| | - Xiaoqiang Li
- School of Materials and Environmental Engineering, Yantai University, Yantai 264005, China
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|