1
|
Rodrigues DADS, da Cunha CCRF, Pereira AR, Espírito Santo DRD, Silva SDQ, Starling MCVM, Santiago ADF, Afonso RJDCF. Biodegradation of trimethoprim and sulfamethoxazole in secondary effluent by microalgae-bacteria consortium. Int J Hyg Environ Health 2024; 264:114517. [PMID: 39724811 DOI: 10.1016/j.ijheh.2024.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Trimethoprim (TMP) and sulfamethoxazole (SMX) are bacteriostatic agents, which are co-administered to patients during infection treatment due to their synergetic effects. Once consumed, TMP and SMX end up in wastewater and are directed to municipal wastewater treatment plants (WWTPs) which fail to remove these contaminants from municipal wastewater. The discharge of WWTP effluents containing antibiotics in the environment is a major concern for public health as it contributes to the spread of antimicrobial resistance. Improving treatment applied in WWTPs is one of the measures to tackle this issue. In this study, a natural microalgae-bacteria consortium cultivated under low intensity LED irradiation was used as a quaternary treatment to assess the removal of TMP alone (50 μg L-1) and also mixed with SMX (TMP/SMX; 50 μg L-1 of each) from real WWTP secondary effluents from anaerobic treatment systems. The removal of the sulfonamide resistance gene, sul1, was also evaluated. This is the first study assessed the removal of TMP alone and TMP associated with SMX in real effluent using microalgae-bacteria consortium without nutrient enrichment. Biodegradation experiments were conducted for 7 days, residual amount of antibiotics were assessed by low-temperature partitioning extraction (LTPE) followed by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) and sul1 was analyzed by quantitative Polymerase Chain Reaction (qPCR). Results showed that SMX removal (48.34%) was higher than TMP (24.58%) in the mixture. The presence of both antibiotics at 50 μg L-1 did not inhibit microalgae-bacteria consortium growth. After 7 days, there was a slight increase in the absolute abundance of sul1 and 16S rRNA. The main removal mechanism for both antibiotics might be attributed to symbiotic biodegradation as bioadsorption, bioaccumulation and abiotic factors were very low or insignificant. While the application of a microalgae-bacteria consortium as a quaternary treatment seems to be a promising alternative, further research to improve degradation rate aiming at a global removal >80% as required in the Swiss and European directives is encouraged.
Collapse
Affiliation(s)
- Daniel Aparecido da Silva Rodrigues
- Multicenter Postgraduation Program in Chemistry, Minas Gerais, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil.
| | | | - Andressa Rezende Pereira
- Environmental Engineering Graduation Program, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| | - Daiana Rocha do Espírito Santo
- Postgraduation Program in Chemistry, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, 35450-000, Brazil
| | - Silvana de Queiroz Silva
- Department of Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, 35400-000, Minas Gerais, Brazil
| | - Maria Clara Vieira Martins Starling
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais (UFMG), Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - Aníbal da Fonseca Santiago
- Department of Civil Engineering, School of Mines, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| | - Robson José de Cássia Franco Afonso
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| |
Collapse
|
2
|
Eheneden I, Wang R, Chen G, Adesina OB, Haijing R, Bavumiragira JP, Zhao J. Sulfamethoxazole removal and ammonium conversion in microalgae consortium: Physiological responses and microbial community changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176539. [PMID: 39349193 DOI: 10.1016/j.scitotenv.2024.176539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Microalgae (Mychonastes sp.) consortium was investigated for nutrient and antibiotics removal and its responses to varying sulfamethoxazole (SMX) concentrations (0-1000 μg/L) in ammonia-rich wastewater. The results showed that the introduction of SMX (100-1000 μg/L) slightly improved ammonium nitrogen removal efficiency instead of inhibition. Swift SMX degradation was observed across all SMX-treated systems, with the highest SMX removal efficiency (96 %) at an SMX concentration of 100 μg/L. Biodegradation remained the dominant SMX removal mechanism, contributing 78 % of SMX removal at an SMX concentration of 800 μg/L, while adsorption and photolysis played minor roles. Addition of SMX augmented biomass and lipid productivity, but decreased chlorophyll contents in the microalgae consortium. Furthermore, extracellular polymeric substance (EPS) production correlated positively with SMX input concentration, with the microalgae consortium exposed to 800 μg/L SMX displaying the most pronounced stimulation of protein production (51.5 ± 2.0 mg/g DCW) and polysaccharides production (74.8 ± 3.9 mg/g DCW). In response to an increase in SMX concentrations, enzyme activities associated with antioxidant defense, such as superoxide dismutase (SOD), peroxidase (POD) and malondialdehyde (MDA) increased, the catalase (CAT) decreased, indicating an initial defense mechanism. Concurrently, the relative abundance of Mychonastes sp. within the consortium rose from 87 % at 300 μg/L SMX to 99.9 % at 800 μg/L SMX. while Shannon indices of the bacterial community increased from 1.415 to 2.867. This shift inhibited the initially dominant Saprospiraceae bacteria, facilitating the profound increase of adapted Aquimonas. These findings demonstrate the feasibility of the simultaneous removal of antibiotics and nutrients from wastewater with a microalgae consortium system.
Collapse
Affiliation(s)
- Iyobosa Eheneden
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rongchang Wang
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Gaoxiang Chen
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Odunayo Blessing Adesina
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ren Haijing
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jean Pierre Bavumiragira
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianfu Zhao
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Xiao Z, Meng H, Li S, Ning W, Song Y, Han J, Chang JS, Wang Y, Ho SH. Insights into the removal of antibiotics from livestock and aquaculture wastewater by algae-bacteria symbiosis systems. ENVIRONMENTAL RESEARCH 2024; 257:119326. [PMID: 38849002 DOI: 10.1016/j.envres.2024.119326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
With the burgeoning growth of the livestock and aquaculture industries, antibiotic residues in treated wastewater have become a serious ecological threat. Traditional biological wastewater treatment technologies-while effective for removing conventional pollutants, such as organic carbon, ammonia and phosphate-struggle to eliminate emerging contaminants, notably antibiotics. Recently, the use of microalgae has emerged as a sustainable and promising approach for the removal of antibiotics due to their non-target status, rapid growth and carbon recovery capabilities. This review aims to analyse the current state of antibiotic removal from wastewater using algae-bacteria symbiosis systems and provide valuable recommendations for the development of livestock/aquaculture wastewater treatment technologies. It (1) summarises the biological removal mechanisms of typical antibiotics, including bioadsorption, bioaccumulation, biodegradation and co-metabolism; (2) discusses the roles of intracellular regulation, involving extracellular polymeric substances, pigments, antioxidant enzyme systems, signalling molecules and metabolic pathways; (3) analyses the role of treatment facilities in facilitating algae-bacteria symbiosis, such as sequencing batch reactors, stabilisation ponds, membrane bioreactors and bioelectrochemical systems; and (4) provides insights into bottlenecks and potential solutions. This review offers valuable information on the mechanisms and strategies involved in the removal of antibiotics from livestock/aquaculture wastewater through the symbiosis of microalgae and bacteria.
Collapse
Affiliation(s)
- Zhihua Xiao
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Hao Meng
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weihao Ning
- Xinrui Environmental Protection Technology Co., Ltd, Yantai, 264000, China
| | - Youliang Song
- Shaoxing Academy of Agricultural Sciences, Shaoxing, 312003, China
| | - Jinglong Han
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yue Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
4
|
Zheng H, Zhu Z, Li S, Niu J, Dong X, Leong YK, Chang JS. Dissecting the ecological risks of sulfadiazine degradation intermediates under different advanced oxidation systems: From toxicity to the fate of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173678. [PMID: 38848919 DOI: 10.1016/j.scitotenv.2024.173678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/20/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
The incomplete degradation of antibiotics in water can produce intermediates that carry environmental risks and thus warrant concerns. In this study, the degradation of high concentrations of antibiotic sulfadiazine (SDZ) by advanced oxidation processes that leverage different reactive oxide species was systematically evaluated in terms of the influence of different degradation intermediates on the propagation of antibiotic resistance genes (ARGs). The ozone, persulfate, and photocatalytic oxidation systems for SDZ degradation are dominated by ozone, direct electron transfer, and singlet oxygen, hole, and superoxide radicals, respectively. These processes produce 15 intermediates via six degradation pathways. Notably, it was determined that three specific intermediates produced by the ozone and persulfate systems were more toxic than SDZ. In contrast, the photocatalytic system did not produce any intermediates with toxicity exceeding that of SDZ. Microcosm experiments combined with metagenomics confirmed significant changes in microbiota community structure after treatment with SDZ and its intermediates, including significant changes in the abundance of Flavobacterium, Dungenella, Archangium, and Comamonas. This treatment also led to the emergence of sulfonamide ARGs. The total abundance of sulfonamide ARGs was found to be positively correlated with residual SDZ concentration, with the lowest total abundance observed in the photocatalytic system. Additionally, the correlation analysis unveiled microbiota carrying sulfonamide ARGs.
Collapse
Affiliation(s)
- Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Zhiwei Zhu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xu Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
5
|
Zhuang LL, Qian W, Wang X, Wang T, Zhang J. General performance, kinetic modification, and key regulating factor recognition of microalgae-based sulfonamide removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134891. [PMID: 38878437 DOI: 10.1016/j.jhazmat.2024.134891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Sulfonamides have been widely detected in water treatment plants. Advanced wastewater treatment for sulfonamide removal based on microalgal cultivation can reduce the ecological risk after discharge, achieve carbon fixation, and simultaneously recover bioresource. However, the general removal performance, key factors and their impacts, degradation kinetics, and potential coupling technologies have not been systematically summarized. To guide the construction and enhance the efficient performance of the purification system, this study summarizes the quantified characteristics of sulfonamide removal based on more than 100 groups of data from the literature. The biodegradation potential of sulfonamides from different subclasses and their toxicity to microalgae were statistically analyzed; therefore, a preferred option for further application was proposed. The mechanisms by which the properties of both sulfonamides and microalgae affect sulfonamide removal were comprehensively summarized. Thereafter, multiple principles for choosing optimal microalgae were proposed from the perspective of engineering applications. Considering the microalgal density and growth status, a modified antibiotic removal kinetic model was proposed with significant physical meaning, thereby resulting in an optimal fit. Based on the mechanism and regulating effect of key factors on sulfonamide removal, sensitive and feasible factors (e.g., water quality regulation, other than initial algal density) and system coupling were screened to guide engineering applications. Finally, we suggested studying the long-term removal performance of antibiotics at environmentally relevant concentrations and toxicity interactions for further research.
Collapse
Affiliation(s)
- Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Weiyi Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Tong Wang
- School of Ecological & Environmental Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China.
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong 250014, China
| |
Collapse
|
6
|
Zhang Y, Li J, Si L, Gao M, Wang S, Wang X. Sudden sulfamethoxazole shock leads to nitrite accumulation in microalgae-nitrifying bacteria consortia: Physiological responses and light regulating strategy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121714. [PMID: 39032253 DOI: 10.1016/j.jenvman.2024.121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/01/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
Antibiotic shock may potentially impact the performance of promising microalgae-nitrifying bacteria consortia (MNBC) processes. This study investigated physiological behaviors of MNBC under sulfamethoxazole (SMX) shock (mg/L level) and verified a light regulating strategy for improving process performance. Results showed that SMX shock did not affect ammonium removal but caused nitrite accumulation, resulting from combined effects of excessive reactive oxidative species (ROS) production, inhibited microalgal photosynthetic activity, upregulated expressions of amoA and hao, and downregulated expression of nxrA. Moreover, high ammonium concentration aggravated nitrite accumulation and reduced ammonium removal owing to significantly reduced dissolved oxygen (DO). Increasing light intensity enhanced microalgal photo-oxygenation and promoted expressions of all nitrification-related genes, thus improving ammonium removal and alleviating nitrite accumulation. A central composite design coupled with response surface methodology (CCD-RSM) further demonstrated the negative impacts of SMX shock and high ammonium on MNBC and the effectiveness of the light regulation in maintaining stable process performance. This study provides theoretical basis for physiological responses and regulatory strategy of the MNBC process facing short-term antibiotic shock.
Collapse
Affiliation(s)
- Yuqing Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Junrong Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Lili Si
- Shandong Hengkun Environmental Engineering Co., Ltd, Jinan, 250013, China; Aeration System R&D Laboratory of Shandong University-Hengkun Environment, Qingdao, 266237, China
| | - Mingming Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Aeration System R&D Laboratory of Shandong University-Hengkun Environment, Qingdao, 266237, China; Weihai Research Institute of Industrial Technology of Shandong University, Weihai, 264209, China
| | - Xinhua Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Aeration System R&D Laboratory of Shandong University-Hengkun Environment, Qingdao, 266237, China.
| |
Collapse
|
7
|
Gong W, Guo L, Huang C, Xie B, Jiang M, Zhao Y, Zhang H, Wu Y, Liang H. A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: Antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172601. [PMID: 38657817 DOI: 10.1016/j.scitotenv.2024.172601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Antibiotic residues in mariculture wastewater seriously affect the aquatic environment. Antibiotic Resistance Genes (ARGs) produced under antibiotic stress flow through the environment and eventually enter the human body, seriously affecting human health. Microalgal-bacterial symbiotic system (MBSS) can remove antibiotics from mariculture and reduce the flow of ARGs into the environment. This review encapsulates the present scenario of mariculture wastewater, the removal mechanism of MBSS for antibiotics, and the biomolecular information under metagenomic assay. When confronted with antibiotics, there was a notable augmentation in the extracellular polymeric substances (EPS) content within MBSS, along with a concurrent elevation in the proportion of protein (PN) constituents within the EPS, which limits the entry of antibiotics into the cellular interior. Quorum sensing stimulates the microorganisms to produce biological responses (DNA synthesis - for adhesion) through signaling. Oxidative stress promotes gene expression (coupling, conjugation) to enhance horizontal gene transfer (HGT) in MBSS. The microbial community under metagenomic detection is dominated by aerobic bacteria in the bacterial-microalgal system. Compared to aerobic bacteria, anaerobic bacteria had the significant advantage of decreasing the distribution of ARGs. Overall, MBSS exhibits remarkable efficacy in mitigating the challenges posed by antibiotics and resistant genes from mariculture wastewater.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Lin Guo
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Chenxin Huang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.
| | - Mengmeng Jiang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Yuzhou Zhao
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Haotian Zhang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - YuXuan Wu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
8
|
Phyu K, Zhi S, Liang J, Chang CC, Liu J, Cao Y, Wang H, Zhang K. Microalgal-bacterial consortia for the treatment of livestock wastewater: Removal of pollutants, interaction mechanisms, influencing factors, and prospects for application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123864. [PMID: 38554837 DOI: 10.1016/j.envpol.2024.123864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The livestock sector is responsible for a significant amount of wastewater globally. The microalgal-bacterial consortium (MBC) treatment has gained increasing attention as it is able to eliminate pollutants to yield value-added microalgal products. This review offers a critical discussion of the source of pollutants from livestock wastewater and the environmental impact of these pollutants. It also discusses the interactions between microalgae and bacteria in treatment systems and natural habitats in detail. The effects on MBC on the removal of various pollutants (conventional and emerging) are highlighted, focusing specifically on analysis of the removal mechanisms. Notably, the various influencing factors are classified into internal, external, and operating factors, and the mutual feedback relationships between them and the target (removal efficiency and biomass) have been thoroughly analysed. Finally, a wastewater recycling treatment model based on MBC is proposed for the construction of a green livestock farm, and the application value of various microalgal products has been analysed. The overall aim was to indicate that the use of MBC can provide cost-effective and eco-friendly approaches for the treatment of livestock wastewater, thereby advancing the path toward a promising microalgal-bacterial-based technology.
Collapse
Affiliation(s)
- KhinKhin Phyu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory of Low-Carbon Green Agriculture, North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Junfeng Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory of Low-Carbon Green Agriculture, North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Chein-Chi Chang
- Washington D.C. Water and Sewer Authority, Ellicott City, MD, 21042, USA.
| | - Jiahua Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Yuang Cao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Han Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory of Low-Carbon Green Agriculture, North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
9
|
Kumar N, Shukla P. Microalgal multiomics-based approaches in bioremediation of hazardous contaminants. ENVIRONMENTAL RESEARCH 2024; 247:118135. [PMID: 38218523 DOI: 10.1016/j.envres.2024.118135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
The enhanced industrial growth and higher living standards owing to the incessant population growth have caused heightened production of various chemicals in different manufacturing sectors globally, resulting in pollution of aquatic systems and soil with hazardous chemical contaminants. The bioremediation of such hazardous pollutants through microalgal processes is a viable and sustainable approach. Accomplishing microalgal-based bioremediation of polluted wastewater requires a comprehensive understanding of microalgal metabolic and physiological dynamics. Microalgae-bacterial consortia have emerged as a sustainable agent for synergistic bioremediation and metabolite production. Effective bioremediation involves proper consortium functioning and dynamics. The present review highlights the mechanistic processes employed through microalgae in reducing contaminants present in wastewater. It discusses the multi-omics approaches and their advantages in understanding the biological processes, monitoring, and dynamics among the partners in consortium through metagenomics. Transcriptomics, proteomics, and metabolomics enable an understanding of microalgal cell response toward the contaminants in the wastewater. Finally, the challenges and future research endeavors are summarised to provide an outlook on microalgae-based bioremediation.
Collapse
Affiliation(s)
- Niwas Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Wani AK, Ul Gani Mir T, Akhtar N, Chopra C, Bashir SM, Hassan S, Kumar V, Singh R, Américo-Pinheiro JHP. Algae-Mediated Removal of Prevalent Genotoxic Antibiotics: Molecular Perspective on Algae-Bacteria Consortia and Bioreactor-Based Strategies. Curr Microbiol 2024; 81:112. [PMID: 38472428 DOI: 10.1007/s00284-024-03631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024]
Abstract
Antibiotic pollution poses a potential risk of genotoxicity, as antibiotics released into the environment can induce DNA damage and mutagenesis in various organisms. This pollution, stemming from pharmaceutical manufacturing, agriculture, and improper disposal, can disrupt aquatic ecosystems and potentially impact human health through the consumption of contaminated water and food. The removal of genotoxic antibiotics using algae-mediated approaches has gained considerable attention due to its potential for mitigating the environmental and health risks associated with these compounds. The paper provides an in-depth examination of the molecular aspects concerning algae and bioreactor-driven methodologies utilized for the elimination of deleterious antibiotics. The molecular analysis encompasses diverse facets, encompassing the discernment and profiling of algae species proficient in antibiotic degradation, the explication of enzymatic degradation pathways, and the refinement of bioreactor configurations to augment removal efficacy. Emphasizing the significance of investigating algal approaches for mitigating antibiotic pollution, this paper underscores their potential as a sustainable solution, safeguarding both the environment and human health.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tahir Ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, 190006, India
| | - Shabir Hassan
- Department of Biology, College of Arts and Sciences, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates
| | - Vineet Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, São Paulo, 18610-034, Brazil.
- Brazil University, Street Carolina Fonseca, 584, São Paulo, São Paulo, 08230-030, Brazil.
| |
Collapse
|
11
|
Fang Y, Lin G, Liu Y, Zhang J. Advanced treatment of antibiotic-polluted wastewater by a consortium composed of bacteria and mixed cyanobacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123293. [PMID: 38184153 DOI: 10.1016/j.envpol.2024.123293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
This study constructed a cyanobacteria-bacteria consortium using a mixture of non-toxic cyanobacteria (Synechococcus sp. and Chroococcus sp.) immobilized in calcium alginate and native bacteria in wastewater. The consortium was used for the advanced treatment of sulfamethoxazole-polluted wastewater and the production of cyanobacterial lipid. Mixed cyanobacteria increased the abundances of denitrifying bacteria and phosphorus-accumulating bacteria as well as stimulated various functional enzymes in the wastewater bacterial community, which efficiently removed 70.01-71.86% of TN, 91.45-97.04% of TP and 70.72-76.85% of COD from the wastewater. The removal efficiency of 55.29-69.90% for sulfamethoxazole was mainly attributed to the upregulation of genes encoding oxidases, reductases, oxidoreductases and transferases in two cyanobacterial species as well as the increased abundances of Stenotrophomonas, Sediminibacterium, Arenimonas, Novosphingobium, Flavobacterium and Hydrogenophaga in wastewater bacterial community. Transcriptomic responses proved that mixed cyanobacteria presented an elevated lipid productivity of 33.90 mg/L/day as an adaptive stress response to sulfamethoxazole. Sediminibacterium, Flavobacterium and Exiguobacterium in the wastewater bacterial community may also promote cyanobacterial lipid synthesis through symbiosis. Results of this study proved that the mixed cyanobacteria-bacteria consortium was a promising approach for advanced wastewater treatment coupled to cyanobacterial lipid production.
Collapse
Affiliation(s)
- Youshuai Fang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Guannan Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
12
|
Mehariya S, Das P, Thaher MI, Abdul Quadir M, Khan S, Sayadi S, Hawari AH, Verma P, Bhatia SK, Karthikeyan OP, Zuorro A, Al-Jabri H. Microalgae: A potential bioagent for treatment of emerging contaminants from domestic wastewater. CHEMOSPHERE 2024; 351:141245. [PMID: 38242513 DOI: 10.1016/j.chemosphere.2024.141245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/24/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Water crisis around the world leads to a growing interest in emerging contaminants (ECs) that can affect human health and the environment. Research showed that thousands of compounds from domestic consumers, such as endocrine disrupting chemicals (EDCs), personal care products (PCPs), and pharmaceuticals active compounds (PhAcs), could be found in wastewater in concentration mostly from ng L-1 to μg L-1. However, generally, wastewater treatment plants (WWTPs) are not designed to remove these ECs from wastewater to their discharge levels. Scientists are looking for economically feasible biotreatment options enabling the complete removal of ECs before discharge. Microalgae cultivation in domestic wastewater is likely a feasible approach for removing emerging contaminants and simultaneously removing any residual organic nutrients. Microalgal growth rate and contaminants removal efficiency could be affected by various factors, including light intensity, CO2 addition, presence of different nutrients, etc., and these parameters could greatly help make microalgae treatment more efficient. Furthermore, the algal biomass harvests could be repurposed to produce various bulk chemicals such as sustainable aviation fuel, biofuel, bioplastic, and biochar; this could significantly enhance the economic viability. Therefore, this review summarizes the microalgae-based bioprocess and their mechanisms for removing different ECs from different wastewaters and highlights the different strategies to improve the ECs removal efficiency. Furthermore, this review shows the role of different ECs in biomass profile and the relevance of using ECs-treated microalgae biomass to produce green products, as well as highlights the challenges and future research recommendations.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Mahmoud Ibrahim Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohammed Abdul Quadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Sami Sayadi
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Alaa H Hawari
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | | | | | - Hareb Al-Jabri
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
13
|
Peng P, Zhou L, Yilimulati M, Zhang S. Unleashing the power of acetylacetone: Effective control of harmful cyanobacterial blooms with ecological safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168644. [PMID: 38000755 DOI: 10.1016/j.scitotenv.2023.168644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Harmful algal blooms resulting from eutrophication pose a severe threat to human health. Acetylacetone (AA) has emerged as a potential chemical for combatting cyanobacterial blooms, but its real-world application remains limited. In this study, we conducted a 42-day evaluation of AA's effectiveness in controlling blooms in river water, with a focus on the interplay between ecological community structure, organism functional traits, and water quality. At a concentration of 0.2 mM, AA effectively suppressed the growth of Cyanobacteria (88 %), Bacteroidia (49 %), and Alphaproteobacteria (52 %), while promoting the abundance of Gammaproteobacteria (5.0 times) and Actinobacteria (7.2 times) that are associated with the degradation of organic matter. Notably, after dosing of AA, the OD680 (0.07 ± 0.02) and turbidity (8.6 ± 2.1) remained at a satisfactory level. AA induced significant disruptions in two photosynthesis and two biosynthesis pathways (P < 0.05), while simultaneously enriching eight pathways of xenobiotics biodegradation and metabolism. This enrichment facilitated the reduction of organic pollutants and supported improved water quality. Importantly, AA treatment decreased the abundance of two macrolide-related antibiotic resistance genes (ARGs), ereA and vatE, while slightly increased the abundance of two aminoglycoside-related ARGs, aacA and strB. Overall, our findings establish AA as an efficient and durable algicide with favorable ecological safety. Moreover, this work contributes to the development of effective strategies for maintaining and restoring the health and resilience of aquatic ecosystems impacted by harmful algal blooms.
Collapse
Affiliation(s)
- Peng Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lang Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mihebai Yilimulati
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
14
|
Kishor R, Verma M, Saratale GD, Romanholo Ferreira LF, Kharat AS, Chandra R, Raj A, Bharagava RN. Treatment of industrial wastewaters by algae-bacterial consortium with Bio-H 2 production: Recent updates, challenges and future prospects. CHEMOSPHERE 2024; 349:140742. [PMID: 38013027 DOI: 10.1016/j.chemosphere.2023.140742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Currently, scarcity/security of clean water and energy resources are the most serious problems worldwide. Industries use large volume of ground water and a variety of chemicals to manufacture the products and discharge large volume of wastewater into environment, which causes severe impacts on environment and public health. Fossil fuels are considered as major energy resources for electricity and transportation sectors, which release large amount of CO2 and micro/macro pollutants, leading to cause the global warming and public health hazards. Therefore, algae-bacterial consortium (A-BC) may be eco-friendly, cost-effective and sustainable alternative way to treat the industrial wastewaters (IWWs) with Bio-H2 production. A-BC has potential to reduce the global warming and eutrophication. It also protects environment and public health as it converts toxic IWWs into non or less toxic (biomass). It also reduces 94%, 90% and 50% input costs of nutrients, freshwater and energy, respectively during IWWs treatment and Bio-H2 production. Most importantly, it produce sustainable alternative (Bio-H2) to replace use of fossil fuels and fill the world's energy demand in eco-friendly manner. Thus, this review paper provides a detailed knowledge on industrial wastewaters, their pollutants and toxic effects on water/soil/plant/humans and animals. It also provides an overview on A-BC, IWWs treatment, Bio-H2 production, fermentation process and its enhancement methods. Further, various molecular and analytical techniques are also discussed to characterize the A-BC structure, interactions, metabolites and Bio-H2 yield. The significance of A-BC, recent update, challenges and future prospects are also discussed.
Collapse
Affiliation(s)
- Roop Kishor
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226 025 UP, India
| | - Meenakshi Verma
- University Centre of Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali 140413, Panjab, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | | | - Arun S Kharat
- Laboratory of Applied Microbiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Ram Chandra
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226 025 UP, India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, UP, India
| | - Ram Naresh Bharagava
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226 025 UP, India.
| |
Collapse
|
15
|
Bai Y, Ji B. Advances in responses of microalgal-bacterial symbiosis to emerging pollutants in wastewater. World J Microbiol Biotechnol 2023; 40:40. [PMID: 38071273 DOI: 10.1007/s11274-023-03819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Nowadays, emerging pollutants are widely used and exist in wastewater, such as antibiotics, heavy metals, nanoparticle and microplastic. As a green alternative for wastewater treatment, microalgal-bacterial symbiosis has been aware of owning multiple merits of low energy consumption and little greenhouse gas emission. Thus, the responses of microalgal-bacterial symbiosis to emerging pollutants in wastewater treatment have become a hotspot in recent years. In this review paper, the removal performance of microalgal-bacterial symbiosis on organics, nitrogen and phosphorus in wastewater containing emerging pollutants has been summarized. The adaptation mechanisms of microalgal-bacterial symbiosis to emerging pollutants have been analyzed. It is found that antibiotics usually have hormesis effects on microalgal-bacterial symbiosis, and that microalgal-bacterial symbiosis appears to show more capacity to remove tetracycline and sulfamethoxazole, rather than oxytetracycline and enrofloxacin. Generally, microalgal-bacterial symbiosis can adapt to heavy metals at a concentration of less than 1 mg/L, but its capabilities to remove contaminants can be significantly affected at 10 mg/L heavy metals. Further research should focus on the influence of mixed emerging pollutants on microalgal-bacterial symbiosis, and the feasibility of using selected emerging pollutants (e.g., antibiotics) as a carbon source for microalgal-bacterial symbiosis should also be explored. This review is expected to deepen our understandings on emerging pollutants removal from wastewater by microalgal-bacterial symbiosis.
Collapse
Affiliation(s)
- Yang Bai
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
16
|
Wang Y, Ning W, Li S, Gao C, Cui R, Guo W, Chang JS, Ho SH. Metabonomics analysis of microalga Scenedesmus obliquus under ciprofloxacin stress. ENVIRONMENTAL RESEARCH 2023; 237:116974. [PMID: 37625537 DOI: 10.1016/j.envres.2023.116974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The wide use of antibiotics in aquaculture has triggered global ecological security issue. Microalgal bioremediation is a promising strategy for antibiotics elimination due to carbon recovery, detoxification and various ecological advantages. However, a lack of understanding with respect to the corresponding regulation mechanism towards antibiotic stress may limit its practical applicability. The microalga Scenedesmus obliquus was shown to be capable of effectively eliminating ciprofloxacin (CIP), which is a common antibiotic used in aquaculture. However, the corresponding transcriptional alterations require further investigation and verification at the metabolomic level. Thus, this study uncovered the metabolomic profiles and detailed toxic and defense mechanisms towards CIP in S. obliquus using untargeted metabolomics. The enhanced oligosaccharide/polyol/lipid transport, up-regulation of carbohydrate and arachidonic acid metabolic pathways and increased energy production via EMP metabolism were observed as defense mechanisms of microalgal cells to xenobiotic CIP. The toxic metabolic responses included: (1) down-regulation of parts of mineral and organic transporters; (2) electrons competition between antibiotic and NAD during intracellular CIP degradation; and (3) suppressed expression of the hem gene in chlorophyll biosynthesis. This study describes the metabolic profile of microalgae during CIP elimination and reveals the key pathways from the perspective of metabolism, thereby providing information on the precise regulation of antibiotic bioremediation via microalgae.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Weihao Ning
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Changfei Gao
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Rong Cui
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong, China; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
17
|
Chu Y, Li S, Xie P, Chen X, Li X, Ho SH. New insight into the concentration-dependent removal of multiple antibiotics by Chlorella sorokiniana. BIORESOURCE TECHNOLOGY 2023; 385:129409. [PMID: 37392966 DOI: 10.1016/j.biortech.2023.129409] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Microalgae have attracted increasing attention as an environmentally friendly treatment for antibiotics. However, the effect of antibiotic concentration on the removal ability of microalgae with the underlying mechanisms remains unclear. Thus, this work investigates the removal of tetracycline (TET), sulfathiazole (STZ), and ciprofloxacin (CIP) at different concentrations using Chlorella sorokiniana. The results indicate that microalgae have a concentration-dependent effect on antibiotic removal; however, the removal trends for the three antibiotics differed significantly. Specifically, TET showed nearly 100% removal efficiency at any concentration. The high concentration of STZ inhibited microalgal photosynthesis and induced the production of ROS, leading to antioxidant damage and inhibiting removal efficiency. Conversely, CIP enhanced the ability of microalgae to remove CIP by inducing a dual peroxidase and cytochrome p450 enzyme response. Furthermore, the economic analysis demonstrated that microalgae treatment antibiotics were calculated to be 4.93€/m3, which becomes cheaper than the other microalgae water treatment process.
Collapse
Affiliation(s)
- Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
18
|
Wang Y, Lin R, Cao Y, Li S, Cui R, Guo W, Ho SH, Kit Leong Y, Lee DJ, Chang JS. Simultaneous Removal of Sulfamethoxazole during Fermentative Production of Short-Chain Fatty Acids. BIORESOURCE TECHNOLOGY 2023:129317. [PMID: 37315625 DOI: 10.1016/j.biortech.2023.129317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
This study explores the simultaneous sulfamethoxazole (SMX) removal and short-chain fatty acids (SCFAs) production by a Clostridium sensu stricto-dominated microbial consortium. SMX is a commonly prescribed and persistent antimicrobial agent frequently detected in aquatic environments, while the prevalence of antibiotic-resistant genes limits the biological removal of SMX. Under strictly anaerobic conditions, sequencing batch cultivation coupled with co-metabolism resulted in the production of butyric acid, valeric acid, succinic acid, and caproic acid. Continuous cultivation in a CSTR achieved a maximum butyric acid production rate and yield of 0.167 g/L/h and 9.56 mg/g COD, respectively, while achieving a maximum SMX degradation rate and removal capacity of 116.06 mg/L/h and 55.8 g SMX/g biomass. Furthermore, continuous anaerobic fermentation reduced sul genes prevalence, thus limiting the transmission of antibiotic resistance genes during antibiotic degradation. These findings suggest a promising approach for efficient antibiotic elimination while simultaneously producing valuable products (e.g., SCFAs).
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264000, China
| | - Rongrong Lin
- School of Environmental and Materials Engineering, Yantai University, Yantai 264000, China
| | - Yushuang Cao
- School of Environmental and Materials Engineering, Yantai University, Yantai 264000, China
| | - Shuangfei Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Rong Cui
- School of Environmental and Materials Engineering, Yantai University, Yantai 264000, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
19
|
Photosynthetic and transcriptomic responses of Chlorella sp. to tigecycline. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
20
|
Biliani SE, Manariotis ID. Wastewater treatment by high density algal flocs for nutrient removal and biomass production. JOURNAL OF APPLIED PHYCOLOGY 2023; 35:1237-1250. [PMID: 37249918 PMCID: PMC9990567 DOI: 10.1007/s10811-023-02931-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 05/31/2023]
Abstract
The present work investigated the efficiency of algal flocs biomass for the treatment of primary and secondary effluent in static and mixing conditions under different hydraulic retention time (HRT). Primary effluent fed cultures created a high-density biomass of 2.8 and 3.8 g L-1 under static and mixing conditions, respectively. Secondary effluent was more effective in order to create even higher density biomass of 7.8 and 6 g L-1 under static and mixing conditions, respectively. The algal floc biomass developed was quite effective for organic matter and nutrient removal. Primary effluent fed cultures seemed to be more efficient for chemical oxygen demand (COD) and ammonia nitrogen removal, while secondary effluent fed cultures for nitrates removal. At an HRT of 8 days using primary effluent, the removal of COD, ammonia nitrogen and total phosphorus was 86.2, 100 and 97.4%, respectively. The cultures fed with secondary effluent, even at low HRT of 1.2 days, achieved removals of 88.4, 77.5, 100 and 98.6% for COD, nitrates, ammonia, and total phosphorus, respectively. Supplementary Information The online version contains supplementary material available at 10.1007/s10811-023-02931-2.
Collapse
Affiliation(s)
- Styliani E. Biliani
- Environmental Engineering Laboratory, Department of Civil Engineering, University of Patras, 26504 Rio, Greece
| | - Ioannis D. Manariotis
- Environmental Engineering Laboratory, Department of Civil Engineering, University of Patras, 26504 Rio, Greece
| |
Collapse
|
21
|
Algae-mediated bioremediation of ciprofloxacin through a symbiotic microalgae-bacteria consortium. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
22
|
Liu Q, Hou J, Zeng Y, Xia J, Miao L, Wu J. Integrated photocatalysis and moving bed biofilm reactor (MBBR) for treating conventional and emerging organic pollutants from synthetic wastewater: Performances and microbial community responses. BIORESOURCE TECHNOLOGY 2023; 370:128530. [PMID: 36574888 DOI: 10.1016/j.biortech.2022.128530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Increasing concern for emerging organic pollutants (e.g. antibiotics) urges improvements in conventional biological wastewater treatment processes. This study examined the performance of an integrated photocatalysis and moving bed biofilm reactor (MBBR) system in treating synthetic wastewater containing sulfamethoxazole (SMX). It was found that the integrated system could remove over 80.5 % of SMX and 67.7-80.7 % of chemical oxygen demand (COD) with a hydraulic retention time of 24 h. The introduction of photocatalysis had no impact on COD removal and significantly enhanced SMX removal. High-throughput analysis indicated that microbial community greatly altered due to photocatalytic oxidation stress, with clostridiaceae and enterobacteriaceae becoming dominant families. Nevertheless, microorganisms maintained metabolic activity, which may be ascribed to the protection of carriers and microbial self-preservation by secreting extracellular polymeric substances and antioxidant enzymes. Collectively, this study sheds light on treating wastewater containing conventional and emerging organic pollutants by integrating photocatalysis with MBBR.
Collapse
Affiliation(s)
- Qidi Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuan Zeng
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Jun Xia
- School of Civil Engineering and Transportation, Hohai University, Nanjing 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
23
|
Li Y, Yang X, Wong M, Geng B. Atrazine biodegradation in water by co-immobilized Citricoccus sp. strain TT3 with Chlorella vulgaris under a harsh environment. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Yao X, Sun J, Bai X, Yuan Y, Zhang Y, Xu Y, Huang G. A high-efficiency mixotrophic photoelectroactive biofilm reactor (MPBR) for enhanced simultaneous removal of nutrients and antibiotics by integrating light intensity regulation and microbial extracellular electron extraction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116520. [PMID: 36306650 DOI: 10.1016/j.jenvman.2022.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The performance of a mixotrophic photoelectroactive biofilm reactor (MPBR) was improved in order to achieve enhanced simultaneous removal of multiple aqueous pollutants and the production of valuable biomass. The MPBR was optimized by integrating the regulation of light intensity (3000, 8000 and 23000 lux) and microbial extracellular electron extraction (using an electrode at -0.3, 0 and 0.3 V). Results showed that the MPBR operated at a high light intensity (23000 lux) with a potential of -0.3 V (Coulomb efficiency (CE) of 9.65%) achieved maximum pollutant removal efficiencies, effectively removing 65% NH4+-N, 95% PO43--P and 52% sulfadiazine (SDZ) within 72 h, exhibiting an increase by 30%, 56% and 26% compared to an MPBR operated at the same light intensity but without an externally applied potential. The use of an electrode with an applied potential of -0.3V was most suitable for the extraction of photosynthetic electrons from the photoelectroactive biofilm, in which Rhodocyclaceae was highly enriched, effectively alleviating photoinhibition and thereby enhancing N, P assimilation and SDZ degradation under high light conditions. A maximum lipid content of 409.28 mg/g was obtained under low light intensity (3000 lux) conditions with an applied potential of 0.3 V (CE 9.08%), while a maximum protein content of 362.29 mg/g was obtained at a low light intensity (3000 lux) and 0 V (CE 10.71%). The selective enrichment of Chlorobium and the subsequent enhanced conversion of excess available carbon under low light and positive potential stimulation conditions, were responsible for the enhanced accumulation of proteins and lipids in biomass.
Collapse
Affiliation(s)
- Xinyuan Yao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jian Sun
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xiaoyan Bai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yong Yuan
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yaping Zhang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanbin Xu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guofu Huang
- School of Chemical Engineering and Environment, Weifang University of Science and Technology, Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang, 262700, China
| |
Collapse
|
25
|
Zheng H, Zhang Y, Li S, Feng X, Wu Q, Kit Leong Y, Chang JS. Antibiotic sulfadiazine degradation by persulfate oxidation: Intermediates dependence of ecotoxicity and the induction of antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2023; 368:128306. [PMID: 36372382 DOI: 10.1016/j.biortech.2022.128306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
To preserve the water resources, this study has analyzed the ecotoxicity and antibiotic resistance genes (ARGs) induction capacity of sulfadiazine degradation intermediates resulting from persulfate activation oxidation enhanced by ultraviolet, ultrasound and microwave. The five degradation pathways caused by the contribution discrepancy of electron transfer and singlet oxygen (1O2) and variations in the ecotoxicity of different degradation products were analyzed. Microcosm experiment exhibited that the microbial community in actual water changed significantly with SDZ and degradation intermediates, in which the dominant genera were Aeromonas, Cupriavidus, Elizabethkingia and Achromobacter. Except for the selective pressure on bacteria, the degradation intermediates also exert a certain degree or even stronger induction on sulfonamide ARGs (sul4, sul1 and sul2) than SDZ. Furthermore, the potential hosts for sulfonamide ARGs were revealed by network analysis. These results provide a better understanding of antibiotics degradation mechanism and ARGs occurrence, which is useful for controlling the spread of ARGs.
Collapse
Affiliation(s)
- Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yunfei Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Urban Water Resources Development and Northern National Engineering Research Center, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaochi Feng
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Qinglian Wu
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
26
|
Zhou JL, Yang L, Huang KX, Chen DZ, Gao F. Mechanisms and application of microalgae on removing emerging contaminants from wastewater: A review. BIORESOURCE TECHNOLOGY 2022; 364:128049. [PMID: 36191750 DOI: 10.1016/j.biortech.2022.128049] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
This study reviews the development of the ability of microalgae to remove emerging contaminants (ECs) from wastewater. Contaminant removal by microalgae-based systems (MBSs) includes biosorption, bioaccumulation, biodegradation, photolysis, hydrolysis, and volatilization. Usually, the existence of ECs can inhibit microalgae growth and reduce their removal ability. Therefore, three methods (acclimation, co-metabolism, and algal-bacterial consortia) are proposed in this paper to improve the removal performance of ECs by microalgae. Finally, due to the high removal performance of contaminants from wastewater by algal-bacterial consortia systems, three kinds of algal-bacterial consortia applications (algal-bacterial activatedsludge, algal-bacterial biofilm reactor, and algal-bacterial constructed wetland system) are recommended in this paper. These applications are promising for ECs removal. But most of them are still in their infancy, and limited research has been conducted on operational mechanisms and removal processes. Extra research is needed to clarify the applicability and cost-effectiveness of hybrid processes.
Collapse
Affiliation(s)
- Jin-Long Zhou
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Lei Yang
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Kai-Xuan Huang
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Dong-Zhi Chen
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
27
|
González-González RB, Flores-Contreras EA, Parra-Saldívar R, Iqbal HMN. Bio-removal of emerging pollutants by advanced bioremediation techniques. ENVIRONMENTAL RESEARCH 2022; 214:113936. [PMID: 35932833 DOI: 10.1016/j.envres.2022.113936] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This review highlights the relevance of bioremediation techniques for the removal of emerging pollutants (EPs). The EPs are chemical or biological pollutants that are not currently monitored or regulated by environmental authorities, but which can enter the environment and cause harmful effects to the environment and human health. In recent times, an ample range of EPs have been found in water bodies, where they can unbalance ecosystems and cause negative effects on non-target species. In addition, some EPs have shown high rates of bioaccumulation in aquatic species, thus affecting the safety and quality of seafood. The negative impacts of emerging pollutants, their wide distribution in the environment, their bioaccumulation rates, and their resistance to wastewater treatment plants processes have led to research on sustainable remediation. Remediation techniques have been recently directed to advanced biological remediation technologies. Such technologies have exhibited numerous advantages like in-situ remediation, low costs, eco-friendliness, high public acceptance, and so on. Thus, the present review has compiled the most recent studies on bioremediation techniques for water decontamination from emerging pollutants to extend the current knowledge on sustainable remediation technologies. Biological emerging contaminants, agrochemicals, endocrine-disrupting chemicals, and pharmaceutical and personal care products were considered for this review study, and their removal by bioremediation techniques involving plants, bacteria, microalgae, and fungi. Finally, further research opportunities are presented based on current challenges from an economic, biological, and operation perspective.
Collapse
Affiliation(s)
| | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
28
|
Zhang J, Xia A, Yao D, Guo X, Lam SS, Huang Y, Zhu X, Zhu X, Liao Q. Removal of oxytetracycline and ofloxacin in wastewater by microalgae-bacteria symbiosis for bioenergy production. BIORESOURCE TECHNOLOGY 2022; 363:127891. [PMID: 36089133 DOI: 10.1016/j.biortech.2022.127891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The development of microalgae-bacteria symbiosis for treating wastewater is flourishing owing to its high biomass productivity and exceptional ability to purify contaminants. A nature-selected microalgae-bacteria symbiosis, mainly consisting of Dictyosphaerium and Pseudomonas, was used to treat oxytetracycline (OTC), ofloxacin (OFLX), and antibiotic-containing swine wastewater. Increased antibiotic concentration gradually reduced biomass productivity and intricately changed symbiosis composition, while 1 mg/L OTC accelerated the growth of symbiosis. The symbiosis biomass productivity reached 3.4-3.5 g/L (5.7-15.3 % protein, 18.4-39.3 % carbohydrate, and 2.1-3.9 % chlorophyll) when cultured in antibiotic-containing swine wastewater. The symbiosis displayed an excellent capacity to remove 76.3-83.4 % chemical oxygen demand, 53.5-62.4 % total ammonia nitrogen, 97.5-100.0 % total phosphorus, 96.3-100.0 % OTC, and 32.8-60.1 % OFLX in swine wastewater. The microbial community analysis revealed that the existence of OTC/OFLX increased the richness and evenness of microalgae but reduced bacteria species in microalgae-bacteria, and the toxicity of OFLX to bacteria was stronger than that of OTC.
Collapse
Affiliation(s)
- Jingmiao Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Dunxue Yao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaobo Guo
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
29
|
Wang Z, Chu Y, Chang H, Xie P, Zhang C, Li F, Ho SH. Advanced insights on removal of antibiotics by microalgae-bacteria consortia: A state-of-the-art review and emerging prospects. CHEMOSPHERE 2022; 307:136117. [PMID: 35998727 DOI: 10.1016/j.chemosphere.2022.136117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics abuse has triggered a growing environmental problem, posing a major threat to both ecosystem and human health. Unfortunately, there are still several shortcomings to current antibiotics removal technologies. Microalgae-bacteria consortia have been shown to be a promising antibiotics treatment technology owing to advantages of high antibiotics removal efficiency, low operational cost, and carbon emission reduction. This review aims to introduce the removal mechanisms, influencing factors, and future research perspectives for using microalgae-bacteria consortia to remove antibiotics. The interaction mechanisms between microalgae and bacteria are comprehensively revealed, and their exclusive advantages have been summarized in a "Trilogy" strategy, including "reinforced physical contact", "upgraded substance utilization along with antibiotics degradation", and "robust biological regulation". What's more, the relationship between different interaction mechanisms is emphatically analyzed. The important influencing factors, including concentration and classes of antibiotics, environmental conditions, and operational parameters, of antibiotics removal were also assessed. Three innovative treatment systems (microalgae-bacteria fuel cells (MBFCs), microalgae-bacteria membrane photobioreactors (MB-MPBRs), and microalgae-bacteria granular sludge (MBGS)) along with three advanced techniques (metabolic engineering, machine learning, and molecular docking and dynamics) are then introduced. In addition, concrete implementing schemes of the above advanced techniques are also provided. Finally, the current challenges and future research directions in using microalgae-bacteria consortia to remove antibiotics have been summarized. Overall, this review addresses the current state of microalgae-bacteria consortia for antibiotics treatment and provides corresponding recommendations for enhancing antibiotics removal efficiency.
Collapse
Affiliation(s)
- Zeyuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
30
|
Hu G, Fan S, Wang H, Ji B. Adaptation responses of microalgal-bacterial granular sludge to sulfamethoxazole. BIORESOURCE TECHNOLOGY 2022; 364:128090. [PMID: 36243257 DOI: 10.1016/j.biortech.2022.128090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The presence of widely used sulfamethoxazole (SMX) in wastewater poses a threat to aquatic organisms and humans. Here, the responses of the emerging microalgal-bacterial granular sludge (MBGS) process in treating SMX-containing wastewater were investigated. The results indicated that 1, 5 and 10 mg/L SMX had little effect on the removals of organics and nutrients after an acclimation period of three to five days. SMX reduced intracellular glycogen content of MBGS, while the production of chlorophyll and extracellular polymeric substances tended to be promoted. Furthermore, the potential mechanisms on how MBGS adapted to SMX were deciphered to be the alterations of microbial community structure and function of MBGS. SMX might be degraded intracellularly into a carbon source for microbial metabolism and the SMX degraders were suspected to be Scenedesmaceae, Rhodocyclaceae and Burkholderiaceae. This study suggests that the MBGS process can handle SMX-containing wastewater, advancing knowledge on MBGS for antibiotics degradation.
Collapse
Affiliation(s)
- Guosheng Hu
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Siqi Fan
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
31
|
Nagarajan D, Lee DJ, Varjani S, Lam SS, Allakhverdiev SI, Chang JS. Microalgae-based wastewater treatment - Microalgae-bacteria consortia, multi-omics approaches and algal stress response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157110. [PMID: 35787906 DOI: 10.1016/j.scitotenv.2022.157110] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Sustainable environmental management is one of the important aspects of sustainable development goals. Increasing amounts of wastewaters (WW) from exponential economic growth is a major challenge, and conventional treatment methods entail a huge carbon footprint in terms of energy use and GHG emissions. Microalgae-based WW treatment is a potential candidate for sustainable WW treatment. The nutrients which are otherwise unutilized in the conventional processes are recovered in the beneficial microalgal biomass. This review presents comprehensive information regarding the potential of microalgae as sustainable bioremediation agents. Microalgae-bacterial consortia play a critical role in synergistic nutrient removal, supported by the complex nutritional and metabolite exchange between microalgae and the associated bacteria. Design of effective microalgae-bacteria consortia either by screening or by recent technologies such as synthetic biology approaches are highly required for efficient WW treatment. Furthermore, this review discusses the crucial research gap in microalgal WW treatment - the application of a multi-omics platform for understanding microalgal response towards WW conditions and the design of effective microalgal or microalgae-bacteria consortia based on genetic information. While metagenomics helps in the identification and monitoring of the microbial community throughout the treatment process, transcriptomics, proteomics and metabolomics aid in studying the algal cellular response towards the nutrients and pollutants in WW. It has been established that the integration of microalgal processes into conventional WW treatment systems is feasible. In this direction, future research directions for microalgal WW treatment emphasize the need for identifying the niche in WW treatment, while highlighting the pilot sale plants in existence. Microalgae-based WW treatment could be a potential phase in the waste hierarchy of circular economy and sustainability, considering WWs are a rich secondary source of finite resources such as nitrogen and phosphorus.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
32
|
Drzymała J, Kalka J, Sochacki A, Felis E. Towards Sustainable Wastewater Treatment: Bioindication as a Technique for Supporting Treatment Efficiency Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11859. [PMID: 36231168 PMCID: PMC9565086 DOI: 10.3390/ijerph191911859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Constructed wetlands (CWs) are a promising alternative for conventional methods of wastewater treatment. However, the biggest challenge in wastewater treatment is the improvement of the technology used so that it is possible to remove micropollutants without additional costs. The impact of wastewater treatment in CWs on toxicity towards Aliivibrio fischeri, Daphnia magna and Lemna minor was investigated. The effects of feeding regime (wastewater fed in five batches per week at a batch volume of 1 L, or twice per week at a batch volume of 2.5 L) and the presence of pharmaceuticals (diclofenac and sulfamethoxazole), as well as the presence of Miscantus giganteus plants in CW columns (twelve of the 24 columns that were planted) were analyzed. A reduction in toxicity was observed in all experimental setups. The effluents from constructed wetlands were classified as moderately toxic (average TU for A. fischeri, D. magna and L. minor was 0.9, 2.5 and 5.5, respectively). The feeding regime of 5 days of feeding/2 days of resting resulted in a positive impact on the ecotoxicological and chemical parameters of wastewater (removal of TOC, N-NH4 and pharmaceuticals). Extended exposure of Miscantus giganteus to the wastewater containing pharmaceuticals resulted in elevated activity of antioxidant enzymes (catalase and superoxide dismutase) in leaf material.
Collapse
Affiliation(s)
- Justyna Drzymała
- The Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Joanna Kalka
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka str 2A, 44-100 Gliwice, Poland
| | - Adam Sochacki
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka str 2A, 44-100 Gliwice, Poland
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Ewa Felis
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka str 2A, 44-100 Gliwice, Poland
| |
Collapse
|
33
|
Zhou D, Meng R, Xiao P, Chang T, Li Y, Han J, Cheng P, Zhou C, Yan X. Frequent antibiotic exposure stabilized the associated bacterial community while altering physiological and biochemical characteristics of the coccolithophore Chrysotila roscoffensis. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Wang Y, Li J, Lei Y, Cui R, Liang A, Li X, Kit Leong Y, Chang JS. Enhanced sulfonamides removal via microalgae-bacteria consortium via co-substrate supplementation. BIORESOURCE TECHNOLOGY 2022; 358:127431. [PMID: 35671911 DOI: 10.1016/j.biortech.2022.127431] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Both co-cultivation and co-substrate addition strategies have exhibited massive potential in microalgae-based antibiotic bioremediation. In this study, glucose and sodium acetate were employed as co-substrate in the cultivation of microalgae-bacteria consortium for enhanced sulfadiazine (SDZ) and sulfamethoxazole (SMX) removal. Glucose demonstrated a two-fold increase in biomass production with a maximum specific growth rate of 0.63 ± 0.01 d-1 compared with sodium acetate. The supplementation of co-substrate enhanced the degradation of SDZ significantly up to 703 ± 18% for sodium acetate and 290 ± 22% for glucose, but had almost no effect on SMX. The activities of antioxidant enzymes, including peroxidase, superoxide dismutase and catalase decreased with co-substrate supplementation. Chlorophyll a was associated with protection against sulfonamides and chlorophyll b might contribute to SDZ degradation. The addition of co-substrates influenced bacterial community structure greatly. Glucose enhanced the relative abundance of Proteobacteria, while sodium acetate improved the relative abundance of Bacteroidetes significantly.
Collapse
Affiliation(s)
- Yue Wang
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Jinghua Li
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Yao Lei
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Rong Cui
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Aiping Liang
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Xiaoqiang Li
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
35
|
Liu Z, Sun X, Sun Z. Degradation mechanism of montmorillonite-enhanced antibiotic wastewater: performance, antibiotic resistance genes, microbial communities, and functional metabolism. BIORESOURCE TECHNOLOGY 2022; 352:127098. [PMID: 35367605 DOI: 10.1016/j.biortech.2022.127098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The effective degradation of Sulfamethoxazole (SMX) is of great importance to alleviate environmental pollution. In this study, the degradation capacity of an ordinary sequencing batch activated sludge system (SBR) and montmorillonite (MMT) system was compared for their ability to degrade different concentrations of SMX. Compared with SBR system, the MMT system exhibited higher stability and degradation capacity. The changes in the composition of tightly bound extracellular polymeric substances (TB-EPS) were likely key to the observed stability of the system. High concentrations of SMX inhibited the degradation performance of SBR. MMT-supplemented reduced the generation of antibiotic resistance genes (ARGs). Thauera is a gene that is able to degrade SMX, and its abundance in MMT system reached 7.84%. As potential hosts of ARGs, the proportions of Paenarthrobacter and Caldilineacea were significantly correlated with sulfonamide resistance genes (sul1 and sul2). Overall, MMT-supplemented system was found to be a favorable method of treating antibiotic.
Collapse
Affiliation(s)
- Zhibin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Xiuping Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|