1
|
Chen M, Cao Z, Jing B, Chen W, Wen X, Han M, Wang Y, Liao X, Wu Y, Chen T. The production of methyl mercaptan is the main odor source of chicken manure treated with a vertical aerobic fermenter. ENVIRONMENTAL RESEARCH 2024; 260:119634. [PMID: 39029729 DOI: 10.1016/j.envres.2024.119634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
The process of harmless treatment of livestock manure produces a large amount of odor, which poses a potential threat to human and livestock health. A vertical fermentation tank system is commonly used for the environmentally sound treatment of chicken manure in China, but the composition and concentration of the odor produced and the factors affecting odor emissions remain unclear. In this study, we investigated the types and concentrations of odors produced in the mixing room (MR), vertical fermenter (VF), and aging room (AR) of the system, and analyzed the effects of bacterial communities and metabolic genes on odor production. The results revealed that 34, 26 and 26 odors were detected in the VF, MR and AR, respectively. The total odor concentration in the VF was 66613 ± 10097, which was significantly greater than that in the MR (1157 ± 675) and AR (1143 ± 1005) (P < 0.001), suggesting that the VF was the main source of odor in the vertical fermentation tank system. Methyl mercaptan had the greatest contribution to the odor produced by VF, reaching 47.82%, and the concentration was 0.6145 ± 0.2164 mg/m3. The abundance of metabolic genes did not correlate significantly with odor production, but PICRUSt analysis showed that cysteine and methionine metabolism involved in methyl mercaptan production was significantly more enriched in MR and VF than in AR. Bacillus was the most abundant genus in the VF, with a relative abundance significantly greater than that in the MR (P < 0.05). The RDA results revealed that Bacillus was significantly and positively correlated with methyl mercaptan. The use of large-scale aerobic fermentation systems to treat chicken manure needs to focused on the production of methyl mercaptan.
Collapse
Affiliation(s)
- Majian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen Cao
- Wen's Foodstuff Group Co., Ltd., Yunfu, 527400, China
| | - Boyu Jing
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Wenjun Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Meng Han
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China.
| | - Tao Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Xu W, Wang W, Ma R, Guo D, Wang Y, Li X, Yuan J, Wang Y, Dong H. Dual mechanism of membrane covering on GHG and NH 3 mitigation during industrial-scale experiment on dairy manure composting: Inhibiting formation and blocking emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122585. [PMID: 39303595 DOI: 10.1016/j.jenvman.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
An industrial-scale experiment on dairy manure composting with the control group (Ctrl) and the membrane covering group (CM) was conducted to explore the effects of functional membrane covering on gas emissions, the conversion of carbon and nitrogen, and revealing the underlying mechanisms. Results indicated that CM achieved the synergistic effects on gas mitigation and improved compost product quality. CO2, CH4, N2O, and NH3 emissions were reduced by 81.8%, 87.0%, 82.6%, and 82.2%, respectively. The micro-aerobic condition formed in membrane covering compost pile together with the covering inhibiting effect dominated the mitigation effect. CM significantly downregulated the mcrA gene copies and the value of mcrA/pmoA (p < 0.01), which reduced CH4 emission. CM decreased the nirS and nirK gene copies and increased the nosZ gene copies to reduce N2O emission. Functional Annotation of Prokaryotic Taxa showed that membrane covering effectively amended part of carbon and nitrogen cycles, which stimulated the degradation of organic matter, accelerated compost maturity and reduced the gaseous emissions.
Collapse
Affiliation(s)
- Wenqian Xu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenzan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruiqiang Ma
- Zhongnong Chuangda Environmental Protection Technology Co., Ltd., Beijing, 100081, China
| | - Dongpo Guo
- Beijing Green Tech Science and Technology Co., Ltd., Beijing, 100080, China
| | - Youxu Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Yue Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
3
|
Xie C, Wang X, Zhang B, Liu J, Zhang P, Shen G, Yin X, Kong D, Yang J, Yao H, You X, Li Y. Co-composting of tail vegetable with flue-cured tobacco leaves: analysis of nitrogen transformation and estimation as a seed germination agent for halophyte. Front Microbiol 2024; 15:1433092. [PMID: 39296297 PMCID: PMC11408338 DOI: 10.3389/fmicb.2024.1433092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Resource utilization of tail vegetables has raised increasing concerns in the modern agriculture. However, the effect and related mechanisms of flue-cured tobacco leaves on the product quality, phytotoxicity and bacterially-mediated nitrogen (N) transformation process of tail vegetable composting were poorly understood. Amendments of high-dosed (5% and 10% w/w) tobacco leaves into the compost accelerated the heating process, prolonged the time of thermophilic stage, increased the peak temperature, thereby improving maturity and shortening composting duration. The tobacco leaf amendments at the 10% (w/w) increased the N conservation (TN and NH4-N content) of compost, due to the supply of N-containing nutrient and promotion of organic matter degradation by tobacco leaves. Besides, tobacco leaf amendments promoted the seed germination and root development of wild soybean, exhibiting the feasibility of composting product for promoting the growth of salt-tolerant plants, but no dose-dependent effect was found for tobacco leaf amendments. Addition of high dosed (5% and 10% w/w) tobacco leaves shifted the bacterial community towards lignocellulosic and N-fixing bacteria, contributing to increasing the compost maturity and N retention. PICRUSt 2 functional prediction revealed that N-related bacterial metabolism (i.e., hydroxylamine oxidation and denitrifying process) was enhanced in the tobacco leaf treatments, which contributed to N retention and elevated nutrient quality of composting. To the best knowledge, this was the first study to explore the effect of tobacco waste additives on the nutrient transformation and halophyte growth promotion of organic waste composting. These findings will deepen the understanding of microbially-mediated N transformation and composting processes involving flue-cured tobacco leaves.
Collapse
Affiliation(s)
- Chenghao Xie
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | | | - Jiantao Liu
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Peng Zhang
- Plant Functional Component Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Guangcai Shen
- Tobacco Baoshan Industrial Co., Ltd., Baoshan, China
| | - Xingsheng Yin
- Tobacco Baoshan Industrial Co., Ltd., Baoshan, China
| | - Decai Kong
- Tobacco Shandong Industrial Co., Ltd., Jinan, China
| | - Junjie Yang
- Tobacco Shandong Industrial Co., Ltd., Jinan, China
| | - Hui Yao
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, China
| |
Collapse
|
4
|
He Y, He Y, Abdullah Al-Dhabi N, Gao P, Huang H, Yan B, Cui X, Tang W, Zhang J, Lu Y, Peng F. Effects of exogenous thermophilic bacteria and ripening agent on greenhouse gas emissions, enzyme activity and microbial community during straw composting. BIORESOURCE TECHNOLOGY 2024; 407:131114. [PMID: 39009049 DOI: 10.1016/j.biortech.2024.131114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
This research examined the impact of exogenous thermophilic bacteria and ripening agents on greenhouse gas (GHG) emission, enzyme activity, and microbial community during composting. The use of ripening agents alone resulted in a 30.9 % reduction in CO2 emissions, while the use of ripening agents and thermophilic bacteria resulted in a 50.8 % reduction in N2O emissions. Pearson's analysis showed that organic matter and nitrate nitrogen were the key parameters affecting GHG emissions. There was an inverse correlation between CO2 and CH4 releases and methane monooxygenase α subunit and N2O reductase activity (P<0.05). Additionally, N2O emissions were positively related to β-1, 4-N-acetylglucosaminidase, and ammonia monooxygenase activity (P<0.05). Deinococcota, Chloroflexi, and Bacteroidota are closely related to CO2 and N2O emissions. Overall, adding thermophilic bacteria represents an effective strategy to mitigate GHG emissions during composting.
Collapse
Affiliation(s)
- Yuewei He
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China; College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yuedong He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Peng Gao
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| | - Hongli Huang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Binghua Yan
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Xinwei Cui
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China.
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yaoxiong Lu
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| | - Fuyuan Peng
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| |
Collapse
|
5
|
Su J, Zhou K, Chen W, Xu S, Feng Z, Chang Y, Ding X, Zheng Y, Tao X, Zhang A, Wang Y, Li J, Ding G, Wei Y. Enhanced organic degradation and microbial community cooperation by inoculating Bacillus licheniformis in low temperature composting. J Environ Sci (China) 2024; 143:189-200. [PMID: 38644016 DOI: 10.1016/j.jes.2023.08.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 04/23/2024]
Abstract
Microbial activity and interaction are the important driving factors in the start-up phase of food waste composting at low temperature. The aim of this study was to explore the effect of inoculating Bacillus licheniformis on the degradation of organic components and the potential microbe-driven mechanism from the aspects of organic matter degradation, enzyme activity, microbial community interaction, and microbial metabolic function. The results showed that after inoculating B. licheniformis, temperature increased to 47.8°C on day 2, and the degradation of readily degraded carbohydrates (RDC) increased by 31.2%, and the bioheat production increased by 16.5%. There was an obvious enhancement of extracellular enzymes activities after inoculation, especially amylase activity, which increased by 7.68 times on day 4. The inoculated B. licheniformis colonized in composting as key genus in the start-up phase. Modular network analysis and Mantel test indicated that inoculation drove the cooperation between microbial network modules who were responsible for various organic components (RDC, lipid, protein, and lignocellulose) degradation in the start-up phase. Metabolic function prediction suggested that carbohydrate metabolisms including starch and sucrose metabolism, glycolysis / gluconeogenesis, pyruvate metabolism, etc., were improved by increasing the abundance of related functional genes after inoculation. In conclusion, inoculating B. licheniformis accelerated organic degradation by driving the cooperation between microbial network modules and enhancing microbial metabolism in the start-up phase of composting.
Collapse
Affiliation(s)
- Jing Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Wenjie Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Ziwei Feng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Xiaoyan Ding
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yi Zheng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Xingling Tao
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Ake Zhang
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; Fuyang Academy of Agricultural Sciences, Fuyang 236065, China
| | - Yue Wang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
6
|
Zhu L, Huang C, Li L, Wang S, Wu X, Shan G, Tian Y. Innovative insights into organic nitrogen degradation through protein family domains analysis in chicken and pig manure composting using metagenomic sequencing. BIORESOURCE TECHNOLOGY 2024; 406:131048. [PMID: 38945501 DOI: 10.1016/j.biortech.2024.131048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The nitrogen loss in composting is primarily driven by the transformation of organic nitrogen, yet the mechanisms underlying the degradation process remain incompletely understood. This study employed protein family domains (Pfams) analysis based on metagenomic sequencing to investigate the functional characteristics, key microorganisms, and environmental parameters influencing organic nitrogen degradation in chicken manure and pig manure composting. 154 Pfams associated with ammonification function were identified. Predominant Pfams: proteolytic peptidase, followed by chitin/cell wall degraders, least involved in nucleic acid degradation. Ammonifying microbial diversity was basically consistent among compost types, particularly in the thermophilic stage with the peak of abundance of dominant ammonifying microorganisms. Viruses played an important role in ammonification process, especially Uroviricota. 26 key ammonifying genera were identified by the microbial network. pH dominated the metabolic activity of ammonifying microorganisms in various manure compost types, primarily consisting of protein-degrading bacteria with stable community structures.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Simiao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinxin Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guangchun Shan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Liu Z, Cao S, He X, Liu G, Yao H, Ding S, Fang J. Effects of crayfish shell powder and bamboo-derived biochar on nitrogen conversion, bacterial community and nitrogen functional genes during pig manure composting. BIORESOURCE TECHNOLOGY 2024; 402:130783. [PMID: 38701980 DOI: 10.1016/j.biortech.2024.130783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
This study investigated the effects of crayfish shell powder (CSP) and bamboo-derived biochar (BDB) on nitrogen metabolism, bacterial community and nitrogen functional genes during pig manure composting. Four treatments were established: CP (with no additives), TP1 (5 % BDB), TP2 (5 % CSP) and TP3 (2.5 % BDB + 2.5 % CSP). Compared to CP, the germination index (GI) of TP reached > 85 % 10 days earlier. Meanwhile, TP3 reduced NH3 and N2O emissions by 42.90 % and 65.9 %, respectively, while increased TN (total nitrogen) concentration by 5.43 g/kg. Furthermore, additives changed the bacterial structure and formed a beneficial symbiotic relationship with essential N-preserving bacteria, thereby enhancing nitrogen retention throughout the composting process. Metagenomic analysis revealed that additives upregulated nitrification genes and downregulated denitrification and nitrate reduction genes, ultimately improving nitrogen cycling and mitigating NH3 and N2O emissions. In conclusion, the results confirmed that TP3 was the most effective treatment in reducing nitrogen loss.
Collapse
Affiliation(s)
- Zhuangzhuang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Shuhua Cao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Co., LTD, PR China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China.
| |
Collapse
|
8
|
Xu J, Zhang Z, Wu Y, Liu B, Xia X, Chen Y. Effects of C/N ratio on N 2O emissions and nitrogen functional genes during vegetable waste composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32538-32552. [PMID: 38656720 DOI: 10.1007/s11356-024-33427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Nitrous oxide (N2O) generation during composting not only leads to losses of nitrogen (N) but also reduces the agronomic values and environmental benefits of composting. This study aimed to investigate the effect of the C/N ratio on N2O emissions and its underlying mechanisms at the genetic level during the composting of vegetable waste. The experiment was set up with three treatments, including low C/N treatment (LT, C/N = 18), middle C/N treatment (MT, C/N = 30), and high C/N treatment (HT, C/N = 50). The results showed that N2O emission was mainly concentrated in the cooling and maturation periods, and the cumulative N2O emissions decreased as the C/N ratio increased. Specifically, the cumulative N2O emission was 57,401 mg in LT, significantly higher than 2155 mg in MT and 1353 mg in HT. Lowering the C/N ratio led to increasing TN, NH4+-N, and NO3--N contents throughout the composting process. All detected nitrification-related gene abundances in LT continued to increase during composting, significantly surpassing those in MT during the cooling period. By contrast, in HT, there was a slight increase in the abundance of detected nitrification-related genes but a significant decrease in the abundance of narG, napA, and norB genes in the thermophilic and cooling periods. The structural equation model revealed that hao and nosZ genes were vital in N2O emissions. In conclusion, increasing the C/N ratio effectively contributed to N2O reduction during vegetable waste composting.
Collapse
Affiliation(s)
- Jingang Xu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Zhi Zhang
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yupeng Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bo Liu
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Xiange Xia
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yunfeng Chen
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China.
| |
Collapse
|
9
|
Zhang Y, Deng F, Su X, Su H, Li D. Semi-permeable membrane-covered high-temperature aerobic composting: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120741. [PMID: 38522273 DOI: 10.1016/j.jenvman.2024.120741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Semi-permeable membrane-covered high-temperature aerobic composting (SMHC) is a suitable technology for the safe treatment and disposal of organic solid waste as well as for improving the quality of the final compost. This paper presents a comprehensive summary of the impact of semi-permeable membranes centered on expanded polytetrafluoroethylene (e-PTFE) on compost physicochemical properties, carbon and nitrogen transformations, greenhouse gas emission reduction, microbial community succession, antibiotic removal, and antibiotic resistance genes migration. It is worth noting that the semi-permeable membrane can form a micro-positive pressure environment under the membrane, promote the uniform distribution of air in the heap, reduce the proportion of anaerobic area in the heap, improve the decomposition rate of organic matter, accelerate the decomposition of compost and improve the quality of compost. In addition, this paper presents several recommendations for future research areas in the SMHC. This investigation aims to guide for implementation of semi-permeable membranes in high-temperature aerobic fermentation processes by systematically compiling the latest research progress on SMHC.
Collapse
Affiliation(s)
- Yanzhao Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Fang Deng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiongshuang Su
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Haifeng Su
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
10
|
Xiong J, Zhuo Q, Su Y, Qu H, He X, Han L, Huang G. Nitrogen evolution during membrane-covered aerobic composting: Interconversion between nitrogen forms and migration pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118727. [PMID: 37531862 DOI: 10.1016/j.jenvman.2023.118727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Aerobic composting is a promising technology for converting manure into organic fertilizer with low capital investment and easy operation. However, the large nitrogen losses in conventional aerobic composting impede its development. Interconversion of nitrogen species was studied during membrane-covered aerobic composting (MCAC) and conventional aerobic composting, and solid-, liquid-, and gas-phase nitrogen migration pathways were identified by performing nitrogen balance measurements. During the thermophilic phase, nitrogenous organic matter degradation and therefore NH3 production were faster during MCAC than uncovered composting. However, the water films inside and outside the membrane decreased NH3 release by 13.92%-22.91%. The micro-positive pressure environment during MCAC decreased N2O production and emission by 20.35%-27.01%. Less leachate was produced and therefore less nitrogen and other pollutants were released during MCAC than uncovered composting. The nitrogen succession patterns during MCAC and uncovered composting were different and NH4+ storage in organic nitrogen fractions was better facilitated during MCAC than uncovered composting. Overall, MCAC decreased total nitrogen losses by 33.24%-50.07% and effectively decreased environmental pollution and increased the nitrogen content of the produced compost.
Collapse
Affiliation(s)
- Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Qianting Zhuo
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Huiwen Qu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
11
|
Zhao Y, Hou X, Wang L, Wang L, Yao B, Li Y. Fe-loaded biochar thin-layer capping for the remediation of sediment polluted with nitrate and bisphenol A: Insight into interdomain microbial interactions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122478. [PMID: 37678739 DOI: 10.1016/j.envpol.2023.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
The information on the collaborative removal of nitrate and trace organic contaminants in the thin-layer capping system covered with Fe-loaded biochar (FeBC) is limited. The community changes of bacteria, archaea and fungi, and their co-occurrence patterns during the remediation processes are also unknown. In this study, the optimized biochar (BC) and FeBC were selected as the capping materials in a batch experiment for the remediation of overlying water and sediment polluted with nitrate and bisphenol A (BPA). The community structure and metabolic activities of bacteria, archaea and fungi were investigated. During the incubation (28 d), the nitrate in overlying water decreased from 29.6 to 11.0 mg L-1 in the FeBC group, 2.9 and 1.8 times higher than the removal efficiencies in Control and BC group. The nitrate in the sediment declined from 5.03 to 0.75 mg kg-1 in the FeBC group, 1.3 and 1.1 times higher than those in Control and BC group. The BPA content in the overlying water in BC group and FeBC group maintained below 0.4 mg L-1 during incubation, signally lower than in the Control group. After capping with FeBC, a series of species in bacteria, archaea and fungi could collaboratively contribute to the removal of nitrate and BPA. In the FeBC group, more metabolism pathways related to nitrogen metabolism (KO00910) and Bisphenol degradation (KO00363) were generated. The co-occurrence network analysis manifested a more intense interaction within bacteria communities than archaea and fungi. Proteobacteria, Firmicutes, Actinobacteria in bacteria, and Crenarchaeota in archaea are verified keystone species in co-occurrence network construction. The information demonstrated the improved pollutant attenuation by optimizing biochar properties, improving microbial diversity and upgrading microbial metabolic activities. Our results are of significance in providing theoretical guidance on the remediation of sediments polluted with nitrate and trace organic contaminants.
Collapse
Affiliation(s)
- Yiheng Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China; Institute of Water Science and Technology, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China.
| | - Linqiong Wang
- College of Oceanography, Hohai University, Nanjing, 210098, PR China
| | - Bian Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| |
Collapse
|
12
|
Li R, Cai L, Cao J, Wang P, Qu H, Chen M, Chen Y. Effect of different multichannel ventilation methods on aerobic composting and vegetable waste gas emissions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112104-112116. [PMID: 37824054 DOI: 10.1007/s11356-023-30017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Aerobic composting, especially semipermeable membrane-covered aerobic fermentation, is known to be an effective method for recycling and reducing vegetable waste. However, this approach has rarely been applied to the aerobic composting of vegetable waste; in addition, the product characteristics and GHG emissions of the composting process have not been studied in-depth. This study investigated the effect of using different structural ventilation systems on composting efficiency and greenhouse gas emissions in a semipermeable membrane-covered vegetable waste compost. The results for the groups (MV1, MV2, and MV3) with bottom ventilation plus multichannel ventilation and the group (BV) with single bottom ventilation were compared here. The MV2 group effectively increased the average temperature by 19.06% whilst also increasing the degradation rate of organic matter by 30.81%. Additionally, the germination index value reached more than 80%, 3 days in advance. Compared to those of the BV group, the CH4, N2O, and NH3 emissions of MV2 were reduced by 32.67%, 21.52%, and 22.57%, respectively, with the total greenhouse gas emissions decreasing by 24.17%. Overall, this study demonstrated a multichannel ventilation system as a new method for improving the composting efficiency of vegetable waste whilst reducing gas emissions.
Collapse
Affiliation(s)
- Ruirong Li
- School of Energy and Environment, Southeast University (SEU), Nanjing, 210096, China
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| | - Liang Cai
- School of Energy and Environment, Southeast University (SEU), Nanjing, 210096, China.
| | - Jie Cao
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| | - Pengjun Wang
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| | - Haoli Qu
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| | - Mingjiang Chen
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| | - Yongsheng Chen
- Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing, 210014, China
| |
Collapse
|
13
|
Deng WK, He JL, Chen JY, Wu RT, Xing SC, Liao XD. Effects of microplastics on functional genes related to CH 4 and N 2O metabolism in bacteriophages during manure composting and its planting applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132288. [PMID: 37611393 DOI: 10.1016/j.jhazmat.2023.132288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Microplastics (MPs), as a new type of pollutant, widely exist in livestock and poultry breeding and agricultural soils. However, research on MPs pollution on greenhouse gas emissions in combined planting and breeding systems is lacking, especially from the perspective of phage horizontal gene transfer. Therefore, this paper explores the effects of MPs on functional genes related to CH4 and N2O metabolism in bacteriophages during manure composting and its planting applications. The results of the study indicated that the addition of MPs had an impact on both the physicochemical properties and microbial community structure of manure during the composting process and on the compost-applied rhizosphere soil of lactuca (Lactuca sativa). Specifically, on day 7 of composting, mcrA/pmoA and (nirS+nirK) levels in bacteria in the MP group significantly increased. Additionally, it was observed that the MP group had higher average temperatures during the high-temperature period of composting, which led to a rapid reduction in phages. However, the phage levels quickly recovered during the cooling period. Furthermore, the addition of MPs to the rhizosphere soil resulted in higher levels of nirK. These changes may affect greenhouse gas emissions.
Collapse
Affiliation(s)
- Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jun-Liang He
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Rui-Ting Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
14
|
Zhu L, Huang C, Li W, Wu W, Tang Z, Tian Y, Xi B. Ammonia assimilation is key for the preservation of nitrogen during industrial-scale composting of chicken manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:50-61. [PMID: 37544234 DOI: 10.1016/j.wasman.2023.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/16/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Nitrogen loss from compost is a serious concern, causing severe environmental pollution. The NH4+-N content reflects the release of NH3. However, the nitrogen conversion pathway that has the greatest impact on NH4+-N content is still unclear. This study attempted to explore the key pathways, core functional microorganisms, and mechanisms involved in the transformation of ammonia nitrogen during composting. KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic pathways revealed that ammonia assimilation was dominated by the glutamate dehydrogenase (GDH) pathway (53.4%), which is crucial for nitrogen preservation. The combined analysis of KEGG, NR species annotation, and co-occurrence network identified 20 easy-to-regulate obligate core nitrogen-transforming functional microorganisms, including 18 ammonia-assimilating bacteria. Furthermore, the effects of environmental parameters on the obligate core functional microorganisms were investigated. The present study results provided a theoretical basis for the utilization of ten ammonia-assimilating bacteria, such as Paenibacillus, Erysipelatoclostridium, and Defluviimonas to improve the quality of compost.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weixia Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Zhurui Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
15
|
Xu M, Sun H, Chen E, Yang M, Wu C, Sun X, Wang Q. From waste to wealth: Innovations in organic solid waste composting. ENVIRONMENTAL RESEARCH 2023; 229:115977. [PMID: 37100364 DOI: 10.1016/j.envres.2023.115977] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023]
Abstract
Organic solid waste (OSW) is not only a major source of environmental contamination, but also a vast store of useful materials due to its high concentration of biodegradable components that can be recycled. Composting has been proposed as an effective strategy for recycling OSW back into the soil in light of the necessity of a sustainable and circular economy. In addition, unconventional composting methods such as membrane-covered aerobic composting and vermicomposting have been reported more effective than traditional composting in improving soil biodiversity and promoting plant growth. This review investigates the current advancements and potential trends of using widely available OSW to produce fertilizers. At the same time, this review highlights the crucial role of additives such as microbial agents and biochar in the control of harmful substances in composting. Composting of OSW should include a complete strategy and a methodical way of thinking that can allow product development and decision optimization through interdisciplinary integration and data-driven methodologies. Future research will likely concentrate on the potential in controlling emerging pollutants, evolution of microbial communities, biochemical composition conversion, and the micro properties of different gases and membranes. Additionally, screening of functional bacteria with stable performance and exploration of advanced analytical methods for compost products are important for understanding the intrinsic mechanisms of pollutant degradation.
Collapse
Affiliation(s)
- Mingyue Xu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Enmiao Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Min Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Xiaohong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
16
|
Tao M, Kong Y, Jing Z, Guan L, Jia Q, Shen Y, Hu M, Li YY. Acorus calamus recycled as an additional carbon source in a microbial fuel cell-constructed wetland for enhanced nitrogen removal. BIORESOURCE TECHNOLOGY 2023:129324. [PMID: 37315619 DOI: 10.1016/j.biortech.2023.129324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Acorus calamus was recycled as an additional carbon source in microbial fuel cell-constructed wetlands (MFC-CWs), for efficient nitrogen removal of low carbon wastewater. The pretreatment methods, adding positions, and nitrogen transformations were investigated. Results indicated that alkali-pretreatment cleaved the benzene rings in dominant released organics, producing chemical oxygen demand of 164.5 mg from per gram of A. calamus. Pretreated biomass addition in the anode of MFC-CW attained the maximum total nitrogen removal of 97.6% and power generation of 12.5 mW/m2, which were higher than those with biomass in the cathode (97.6% and 1.6 mW/m2, respectively). However, the duration of a cycle with biomass in the cathode (20-25 days) was longer than that in the anode (10-15 days). Microbial metabolisms related to organics degradation, nitrification, denitrification, and anammox were intensified after biomass recycling. This study provides a promising method to improve nitrogen removal and energy recovery in MFC-CWs.
Collapse
Affiliation(s)
- Mengni Tao
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Kong
- Nanjing Municipal Design and Research Institute Co., Ltd., Nanjing 210008, China
| | - Zhaoqian Jing
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Lin Guan
- Nanjing Municipal Design and Research Institute Co., Ltd., Nanjing 210008, China
| | - Qiusheng Jia
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiwei Shen
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meijia Hu
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
17
|
Li H, Tan L, Liu W, Li X, Zhang D, Xu Y. Unraveling the effect of added microbial inoculants on ammonia emissions during co-composting of kitchen waste and sawdust: Core microorganisms and functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162522. [PMID: 36868270 DOI: 10.1016/j.scitotenv.2023.162522] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Despite the role of microorganisms in nitrogen biotransformation has been extensively explored, how microorganisms mitigate NH3 emissions in the transformation of nitrogen throughout the composting system is rarely addressed. The present study explored the effect of microbial inoculants (MIs) and the contribution of different composted phases (solid, leachate, and gas) on NH3 emissions by constructing a co-composting system of kitchen waste and sawdust with and without the addition of MI. The results showed that NH3 emissions increased markedly after adding MIs, in which the contribution of leachate ammonia volatilization to NH3 emissions was most prominent. The core microorganisms of NH3 emission had a clear proliferation owing to the MIs reshaping community stochastic process. Also, MIs can strengthen the co-occurrence between microorganisms and functional genes of nitrogen to promote nitrogen metabolism. In particular, the abundances of nrfA, nrfH, and nirB genes, which could augment the dissimilatory nitrate reduction process, were increased, thus enhancing NH3 emissions. This study bolsters the fundamental, community-level understanding of nitrogen reduction treatments for agricultural.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wei Liu
- Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Switzerland.
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Switzerland.
| |
Collapse
|
18
|
Cao T, Zheng Y, Dong H. Control of odor emissions from livestock farms: A review. ENVIRONMENTAL RESEARCH 2023; 225:115545. [PMID: 36822532 DOI: 10.1016/j.envres.2023.115545] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Odor emission seriously affects human and animal health, and the ecological environment. Nevertheless, a systematic summary regarding the control technology for odor emissions in livestock breeding is currently lacking. This paper summarizes odor control technology, highlighting its applicability, advantages, and limitations, which can be used to evaluate and identify the most appropriate methods in livestock production management. Odor control technologies are divided into four categories: dietary manipulation (low-crude protein diet and enzyme additives in feed), in-housing management (separation of urine from feces, adsorbents used as litter additive, and indoor environment/manure surface spraying agent), manure management (semi-permeable membrane-covered, reactor composting, slurry cover, and slurry acidification), and end-of-pipe measures for air treatment (wet scrubbing of the exhaust air from animal houses and biofiltration of the exhaust air from animal houses or composting). Findings of this paper provide a theoretical basis for the application of odor control technology in livestock farms.
Collapse
Affiliation(s)
- Tiantian Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing, 100081, PR China.
| | - Yunhao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing, 100081, PR China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Key Laboratory of Energy Conservation and Waste Treatment of Agricultural Structures, Ministry of Agriculture, Beijing, 100081, PR China.
| |
Collapse
|
19
|
Su Y, Xiong J, Fang C, Qu H, Han L, He X, Huang G. Combined effects of amoxicillin and copper on nitrogen transformation and the microbial mechanisms during aerobic composting of cow manure. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131569. [PMID: 37172386 DOI: 10.1016/j.jhazmat.2023.131569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/14/2023]
Abstract
Pollutants in livestock manure have a compound effect during aerobic composting, but research to date has focused more on single factors. This study investigated the effects of adding amoxicillin (AMX), copper (Cu) and both (ACu) on nitrogen transformation and the microbial mechanisms in cow manure aerobic composting with wheat straw. In this study, compared with CK, AMX, Cu, and ACu increased NH3 cumulative emissions by 32.32%, 41.78% and 8.32%, respectively, due to their inhibition of ammonia oxidation. Coexisting AMX and Cu decreased the absolute abundances of amoA/ nxrA genes and increased the absolute abundances of nirS /nosZ genes, but they had an antagonistic effect on the changes in functional gene abundances. Pseudomonas and Luteimonas were enriched during the thermophilic and cooling periods due to the addition of AMX and ACu, which enhanced denitrification in these two groups. Moreover, adding AMX and/or Cu led to more complex bacterial networks, but the effect of the two pollutants was lower than those of the individual pollutants. These findings provide theoretical and experimental support for controlling typical combined pollution with antibiotics and heavy metals in livestock manure.
Collapse
Affiliation(s)
- Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chen Fang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Huiwen Qu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
20
|
Xiong J, Su Y, Qu H, Han L, He X, Guo J, Huang G. Effects of micro-positive pressure environment on nitrogen conservation and humification enhancement during functional membrane-covered aerobic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161065. [PMID: 36565881 DOI: 10.1016/j.scitotenv.2022.161065] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Aerobic composting is a humification process accompanied by nitrogen loss. This study is the first research systematically investigating and elucidating the mechanism by which functional membrane-covered aerobic composting (FMCAC) reduces nitrogen loss and enhances humification. The variations in bioavailable organic nitrogen (BON) and humic substances (HSs) in different composting systems were quantitatively studied, and the functional succession patterns of fungal groups were determined by high-throughput sequencing and FUNGuild. The FMCAC improved oxygen utilization and pile temperature, increased BON by 29.95 %, reduced nitrogen loss by 34.00 %, and enhanced humification by 26.09 %. Meanwhile, the FMCAC increased the competitive advantage of undefined saprotroph and significantly reduced potential pathogenic fungi (<0.10 %). Structural equation modeling indicated that undefined saprotroph facilitated the humification process by increasing the production of BON and storing BON in stable humic acid. Overall, the FMCAC increased the safety, stability, and quality of the final compost product.
Collapse
Affiliation(s)
- Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Huiwen Qu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
21
|
Li M, Li S, Chen S, Meng Q, Wang Y, Yang W, Shi L, Ding F, Zhu J, Ma R, Guo X. Measures for Controlling Gaseous Emissions during Composting: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3587. [PMID: 36834281 PMCID: PMC9964147 DOI: 10.3390/ijerph20043587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Composting is a promising technology for treating organic solid waste. However, greenhouse gases (methane and nitrous oxide) and odor emissions (ammonia, hydrogen sulfide, etc.) during composting are practically unavoidable, leading to severe environmental problems and poor final compost products. The optimization of composting conditions and the application of additives have been considered to mitigate these problems, but a comprehensive analysis of the influence of these methods on gaseous emissions during composting is lacking. Thus, this review summarizes the influence of composting conditions and different additives on gaseous emissions, and the cost of each measure is approximately evaluated. Aerobic conditions can be achieved by appropriate process conditions, so the contents of CH4 and N2O can subsequently be effectively reduced. Physical additives are effective regulators to control anaerobic gaseous emissions, having a large specific surface area and great adsorption performance. Chemical additives significantly reduce gaseous emissions, but their side effects on compost application must be eliminated. The auxiliary effect of microbial agents is not absolute, but is closely related to the dosage and environmental conditions of compost. Compound additives can reduce gaseous emissions more efficiently than single additives. However, further study is required to assess the economic viability of additives to promote their large-scale utilization during composting.
Collapse
Affiliation(s)
- Minghan Li
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Shuyan Li
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Shigeng Chen
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Qingyu Meng
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Yu Wang
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Wujie Yang
- Shandong Agricultural Technology Extension Center, Jinan 250014, China
| | - Lianhui Shi
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Fangjun Ding
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Jun Zhu
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Ronghui Ma
- Shandong Agricultural Technology Extension Center, Jinan 250014, China
| | - Xinsong Guo
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| |
Collapse
|
22
|
Deng L, Liu W, Chang N, Sun L, Zhang J, Bello A, Uzoamaka Egbeagu U, Shi S, Sun Y, Xu X. Disentangling the coupling relationships between functional denitrifiers and nitrogen transformation during cattle-manure and biochar composting: A novel perspective. BIORESOURCE TECHNOLOGY 2023; 367:128235. [PMID: 36332857 DOI: 10.1016/j.biortech.2022.128235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
This study explored the coupling relationships between denitrifiers and N-transformation using multi-level (DNA, RNA and enzyme) and multi-aspect (abundance, diversity, structure, key community, network pattern, and functional module) analyses during cattle-manure (CM) and biochar (CMB) composting. Amino sugar-N (ASN, 0.914) and hydrolysable unknown-N (-0.724) were main organic-N components mediating NH4+-N in CM and CMB, respectively. Biochar lowered nirK, nirS, and nosZ genes copies, up-regulated nir gene transcripts, and inhibited nitrite reductase (NIR) activity. For nirK-denitrifiers, Luteimonas was predominant taxa influencing NO2--N and amino acid-N (AAN). Unclassified_k_norank_d_Bacteria and unclassified_p_Proteobacteria regulated NO3--N and ASN, respectively. These three genera played crucial roles in mediating NIR activity and nosZ/nirK. For nirS-denitrifiers, Paracoccus and Pseudomonas mediated NH4+-N and AAN, respectively, and they were vital genera regulating NO3--N, ASN and NIR activity. Furthermore, nirK-denitrifiers was major contributor to denitrification. Overall, functional denitrifiers might simultaneously participate in multiple N-transformation processes.
Collapse
Affiliation(s)
- Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wanying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Nuo Chang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jizhou Zhang
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuai Shi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
23
|
Sun X, Huang G, Huang Y, Fang C, He X, Zheng Y. Large Semi-Membrane Covered Composting System Improves the Spatial Homogeneity and Efficiency of Fermentation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15503. [PMID: 36497578 PMCID: PMC9737267 DOI: 10.3390/ijerph192315503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Homogenous spatial distribution of fermentation characteristics, local anaerobic conditions, and large amounts of greenhouse gas (GHGs) emissions are common problems in large-scale aerobic composting systems. The aim of this study was to examine the effects of a semi-membrane covering on the spatial homogeneity and efficiency of fermentation in aerobic composting systems. In the covered group, the pile was covered with a semi-membrane, while in the non-covered group (control group), the pile was uncovered. The covered group entered the high-temperature period earlier and the spatial gradient difference in the group was smaller compared with the non-covered group. The moisture content loss ratio (5.91%) in the covered group was slower than that in the non-covered group (10.78%), and the covered group had a more homogeneous spatial distribution of water. The degradation rate of organic matter in the non-covered group (11.39%) was faster than that in the covered group (10.21%). The final germination index in the covered group (85.82%) was higher than that of the non-covered group (82.79%) and the spatial gradient difference in the covered group was smaller. Compared with the non-covered group, the oxygen consumption rate in the covered group was higher. The GHG emissions (by 30.36%) and power consumption in the covered group were reduced more significantly. The spatial microbial diversity of the non-covered group was greater compared with the covered group. This work shows that aerobic compost covered with a semi-membrane can improve the space homogeneity and efficiency of fermentation.
Collapse
Affiliation(s)
| | | | | | | | - Xueqin He
- Correspondence: (X.H.); (Y.Z.); Tel./Fax: +86-10-6273-6778 (X.H.); +86-10-6273-6385 (Y.Z.)
| | - Yongjun Zheng
- Correspondence: (X.H.); (Y.Z.); Tel./Fax: +86-10-6273-6778 (X.H.); +86-10-6273-6385 (Y.Z.)
| |
Collapse
|