1
|
Li D, Wang F, Zheng X, Zheng Y, Pan X, Li J, Ma X, Yin F, Wang Q. Lignocellulosic biomass as promising substrate for polyhydroxyalkanoate production: Advances and perspectives. Biotechnol Adv 2024; 79:108512. [PMID: 39742901 DOI: 10.1016/j.biotechadv.2024.108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The depletion of fossil resources, coupled with global warming and adverse environmental impact of traditional petroleum-based plastics, have necessitated the discovery of renewable resources and innovative biodegradable materials. Lignocellulosic biomass (LB) emerges as a highly promising, sustainable and eco-friendly approach for accumulating polyhydroxyalkanoate (PHA), as it completely bypasses the problem of "competition for food". This sustainable and economically efficient feedstock has the potential to lower PHA production costs and facilitate its competitive commercialization, and support the principles of circular bioeconomy. LB predominantly comprises cellulose, hemicellulose, and lignin, which can be converted into high-quality substrates for PHA production by various means. Future efforts should focus on maximizing the value derived from LB. This review highlights the momentous and valuable research breakthroughs in recent years, showcasing the biosynthesis of PHA using low-cost LB as a potential feedstock. The metabolic mechanism and pathways of PHA synthesis by microbes, as well as the key enzymes involved, are summarized, offering insights into improving microbial production capacity and fermentation metabolic engineering. Life cycle assessment and techno-economic analysis for sustainable and economical PHA production are introduced. Technological hurdles such as LB pretreatment, and performance limitations are highlighted for their impact on enhancing the sustainable production and application of PHA. Meanwhile, the development direction of co-substrate fermentation of LB and with other carbon sources, integrated processes development, and co-production strategies were also proposed to reduce the cost of PHA and effectively valorize wastes.
Collapse
Affiliation(s)
- Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Fei Wang
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xuening Zheng
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yingying Zheng
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xiaosen Pan
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Jianing Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Fen Yin
- Engineering College, ,Qinghai Institute of Technology, Xining 810016, PR China.
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
2
|
Liang J, Liu S, Zhang R, Chang J, Lv L, Nabi M, Zhang G, Zhang P. Yeast culture enhances long-term fermentation of corn straw by ruminal microbes for volatile fatty acid production: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122736. [PMID: 39362162 DOI: 10.1016/j.jenvman.2024.122736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Ruminal microbes can efficiently ferment biomass waste to produce volatile fatty acids (VFAs). However, keeping long-term efficient VFA production efficiency has become a bottleneck. In this study, yeast culture (YC) was used to enhance the VFA production in long-term fermentation. Results showed that YC group improved the volatile solid removal and VFA concentration to 47.8% and 7.82 g/L, respectively, 18.6% and 16.1% higher than the control, mainly enhancing the acetic, propionic, and butyric acid production. YC addition reduced the bacterial diversity, changed the bacterial composition, and improved interactions among bacteria. The regulation mechanism of YC was to increase the abundance and activity of hydrolytic and acidogenic bacteria such as Prevotella and Treponema, improve bacterial interactions, and further promote expression of functional genes. Ultimately, a long-term efficient ruminal fermentation of corn straw into VFAs was achieved.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Shiqi Liu
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Ru Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jianning Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Longyi Lv
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Mohammad Nabi
- Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, 515063, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Amin FR, Khalid H, Wang J, Li Y, Ma L, Chen W, Duan Y, Zhai Y, Li D. High value-added chemical production through anaerobic codigestion of corn straw with a microbial consortium, cow manure and cow digestion solution. Anaerobe 2024; 89:102900. [PMID: 39154705 DOI: 10.1016/j.anaerobe.2024.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES This study investigated the codigestion of corn straw (CS) with cow manure (CM), cow digestion solution (CD), and a strain consortium (SC) for enhanced volatile fatty acid (VFA) production. The aims of this study were to develop a sustainable technique to increase VFA yields, examine how combining microbial reagents with CS affects VFA production by functional microorganisms, and assess the feasibility of improving microbial diversity through codigestion. METHODS Batch experiments evaluated VFA production dynamics and microbial community changes with different combinations of CS substrates with CM, CD, and SC. Analytical methods included measuring VFAs by GC, ammonia and chemical oxygen demand (COD) by standard methods and microbial community analysis by 16S rRNA gene sequencing. RESULTS Codigesting CS with the strain consortium yielded initial VFA concentrations ranging from 0.6 to 1.0 g/L, which were greater than those of the other combinations (0.05-0.3 g/L). Including CM, and CD further increased VFA production to 1.0-2.0 g/L, with the highest value of 2.0 g/L occurring when all four substrates were codigested. Significant ammonium reduction (194-241 mg/L to 29-37 mg/L) and COD reduction (3310-5250 mg/L to 730-1210 mg/L) were observed. Codigestion with CM and CD had greater Shannon diversity indices (3.19-3.24) than did codigestion with the other consortia (2.26). Bacillota dominated (96.5-99.6 %), with Clostridiales playing key roles in organic matter breakdown. CONCLUSIONS This study demonstrated the feasibility of improving VFA yields and harnessing microbial diversity through anaerobic codigestion of lignocellulosic and animal waste streams. Codigestion substantially enhanced VFA production, which was dominated by butyrate, reduced ammonium and COD, and enriched fiber-degrading and fermentative bacteria. These findings can help optimize codigestion for sustainable waste management and high-value chemical production.
Collapse
Affiliation(s)
- Farrukh Raza Amin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China; Department of Chemistry, COMSATS University Islamabad, Park Road, Tarlai Kalan, 45550, Islamabad, Pakistan
| | - Habiba Khalid
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China; Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 50-375, Wrocław, Poland
| | - Jingjing Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Yaxiang Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Longxue Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Wuxi Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Yu Duan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Yida Zhai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China
| | - Demao Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Innovation Centre for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
4
|
Zhao B, Wang S, Dong Z, Cao S, Yuan A, Sha H, Chen N. Enhancing dark fermentative hydrogen production from wheat straw through synergistic effects of active electric fields and enzymatic hydrolysis pretreatment. BIORESOURCE TECHNOLOGY 2024; 406:130993. [PMID: 38889871 DOI: 10.1016/j.biortech.2024.130993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Hydrogen, a clean and sustainable energy source, faces challenges from energy-intensive pre-processing technologies. This study explores the synergistic enhancement of active electric fields on enzymolysis of wheat straw and hydrogen production through dark fermentation. The active electric field enzymolysis system improved the adsorption capacity of wheat straw to cellulase, increasing cellulase activity by 18.0 %, causing a 39.1 % increase in reducing sugar content. In the active fermentation system, Clostridium_sensu_stricto_1 activity was enhanced in the first stage, increasing hydrogenase activity by 23.0 %, prolonging the first hydrogen production peak. Elevated reducing sugars were observed in the second stage, with Prevotella_9 and Bacteroides becoming the dominant hydrogen-producing bacteria in the third stage, leading to a second hydrogen production peak. Overall, cumulative hydrogen production was enhanced by 50.9 % compared to the control. The synergistic pretreatment with an active electric field and cellulase provides a novel approach for efficiently utilizing wheat straw.
Collapse
Affiliation(s)
- Bo Zhao
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Shi Wang
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Zheng Dong
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Shengxian Cao
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Ankai Yuan
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Hao Sha
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Nan Chen
- Jilin Electric Power Co., Ltd Technology Development Company, Changchun 130015, China
| |
Collapse
|
5
|
Cao Z, Zhu R, Li Y, Kakade A, Zhang S, Yuan Y, Wu Y, Mi J. Mitigation of ammonia and hydrogen sulfide emissions during aerobic composting of laying hen waste through NaOH-modified biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121634. [PMID: 38943752 DOI: 10.1016/j.jenvman.2024.121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
The impact of NaOH-modified biochar on the release of NH3 and H2S from laying hens' manure was examined for 44 days, using a small-scale simulated aerobic composting system. The findings revealed that the NaOH-modified biochar reduced NH3 and H2S emissions by 40.63% and 77.78%, respectively, compared to the control group. Moreover, the emissions of H2S were significantly lower than those of the unmodified biochar group (p < 0.05). The increased specific surface area and microporous structure of the biochar, as well as the higher content of alkaline and oxygenated functional groups, were found to facilitate the adsorption of NH3 and H2S. This enhanced adsorption capability was the primary reason for the significant reduction in NH3 emissions. Furthermore, during the high-temperature phase of composting, there was a notable alteration in the microbial community. The abundance of Limnochordaceae, Savagea, and IMCC26207 increased significantly which aided in the conversion of H2S to stable sulfate. These microorganisms also influenced the abundance of functional genes involved in sulfur metabolism, thereby inhibiting cysteine synthesis, along with the decomposition and conversion of sulfate to sulfite. This led to a significant decrease in H2S emissions. This study provides valuable data for the selection of deodorizers in the composting process of egg-laying hens. The results have significant implications for the application of NaOH-modified biochar for odor reduction in aerobic composting processes.
Collapse
Affiliation(s)
- Ze Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecocystems, International Centre of Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Run Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yong Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Apurva Kakade
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecocystems, International Centre of Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Shiyu Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yilin Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiandui Mi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Li S, Sun Y, Guo T, Liu W, Tong X, Zhang Z, Sun J, Yang Y, Yang S, Li D, Min L. Sargassum mcclurei Mitigating Methane Emissions and Affecting Rumen Microbial Community in In Vitro Rumen Fermentation. Animals (Basel) 2024; 14:2057. [PMID: 39061518 PMCID: PMC11274217 DOI: 10.3390/ani14142057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Methane emissions from ruminants significantly contribute to greenhouse gases. This study explores the methane mitigation effect and mechanism of S. mcclurei through in vitro rumen fermentation, aiming to establish its potential as a feed additive. We investigated the effects of freeze-dried and dried S. mcclurei at supplementation levels of 2%, 5%, and 10% of dry matter on nutrient degradation, ruminal fermentation, methane inhibition, and microbial community structure in in vitro rumen fermentation. The freeze-dried S. mcclurei at 2% supplementation significantly reduced CH4 emissions by 18.85% and enhanced crude protein degradability. However, total VFA and acetate concentrations were lower in both treatments compared to the control. The microbial shifts included a decrease in Lachnospiraceae_NK3A20_group and Ruminococcus and an increase in Selenomonas, Succinivibrio, and Saccharofermentans, promoting propionate production. Additionally, a significant reduction in Methanomicrobium was observed, indicating direct methane mitigation. Freeze-dried S. mcclurei at a 2% supplementation level shows potential as an effective methane mitigation strategy with minimal impact on rumen fermentation, supported by detailed insights into microbial community changes.
Collapse
Affiliation(s)
- Shuai Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Yi Sun
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Tongjun Guo
- Key Laboratory of Xinjiang feed biotechnology, Feed Research Institute, Xinjiang Academy of Animal Science, Urumqi 830000, China;
| | - Wenyou Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
- College of Life Sciences and Engineering, Foshan University, Foshan 528231, China;
| | - Xiong Tong
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
| | - Zhifei Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Yufeng Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Shuli Yang
- College of Life Sciences and Engineering, Foshan University, Foshan 528231, China;
| | - Dagang Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
| | - Li Min
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.L.); (Y.S.); (W.L.); (X.T.); (Z.Z.)
- Key Laboratory of Xinjiang feed biotechnology, Feed Research Institute, Xinjiang Academy of Animal Science, Urumqi 830000, China;
| |
Collapse
|
7
|
Rodrigues CV, Camargo FP, Lourenço VA, Sakamoto IK, Maintinguer SI, Silva EL, Amâncio Varesche MB. Towards a circular bioeconomy to produce methane by co-digestion of coffee and brewery waste using a mixture of anaerobic granular sludge and cattle manure as inoculum. CHEMOSPHERE 2024; 357:142062. [PMID: 38636915 DOI: 10.1016/j.chemosphere.2024.142062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Coffee processing wastes, such as solid (pulp and husk) and wastewater, co-digested with industrial brewery wastewater, serve as excellent substrates for generating methane in the anaerobic digestion process. This study compared methane production using different compositions of cattle manure (CM) and granular sludge from an Upflow Anaerobic Sludge Blanket (UASB) reactor used in poultry wastewater treatment (GS). Four anaerobic batch reactors (500 mL) were assembled, A (50% CM and 50% GS), B (60% CM and 40% GS), C (70% CM and 30% of GS) and D (60% CM and 40% GS). Equal concentrations of substrates were added to all reactors: pulp and husk pretreated by hydrothermolysis (1 g L-1), coffee (10 g COD L-1) and brewery (1.5 g COD L-1) wastewaters. Assays A, B and C were supplemented with 2 g L-1 of yeast extract, except for assay D. The reactors were operated at 37 °C and pH 7.0. In assay B, the highest CH4 production of 759.15 ± 19.20 mL CH4 g-1 TS was observed, possibly favored by the synergistic interactions between cellulolytic bacteria Christensenellaceae_R-7_group and Methanosaeta archaea, as inferred by genes encoding enzymes related to acetoclastic methanogenesis (acetyl-CoA synthetase). Consequently, the electricity production potential of assay B (45614.08 kWh-1 year-1) could meet the energy demand of a farm producing coffee and beer, contributing to a positive energy balance concerning methane generation.
Collapse
Affiliation(s)
- Caroline Varella Rodrigues
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil.
| | - Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil
| | - Vitor Alves Lourenço
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil
| | - Sandra Imaculada Maintinguer
- Bioenergy Research Institute (IPBEN), São Paulo State University (UNESP), 2527 10 Street, Rio Claro, SP, 13500230, Brazil
| | - Edson Luiz Silva
- Center of Exact Sciences and Technology, Department of Chemical Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP CEP, 13565905, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil.
| |
Collapse
|
8
|
Liu S, Xie B, Ji H, Li S. Effects of dietary supplementation with alkaline mineral complex on in vitro ruminal fermentation and bacterial composition. Front Vet Sci 2024; 11:1357738. [PMID: 38846789 PMCID: PMC11155302 DOI: 10.3389/fvets.2024.1357738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/09/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Dairy industry growth faces challenges in China due to inadequate forage, leading to high-concentrate diets and potential rumen issues. Buffering agents, like sodium bicarbonate, play a crucial role in stabilizing rumen pH. Alkaline Mineral Complex (AMC), a liquid additive with a pH of 14, shows promise in supporting dairy cow health and mitigating heat stress through ionization. Methods This experiment was aimed to study the effect of adding AMC to total mixed ration (TMR) on in vitro ruminal fermentation and bacterial composition. AMCat 1, 2, 4, and 8 mL/kg was added to the substrate (0.5 g TMR). Nutrient digestibility was measured after 48 h fermentation, and fermentation parameters and microbial composition were measured after 48 h fermentation. Results and discussion The results of the experiment indicated that: The different concentrations of AMC showed a significant impact on time taken for gas production to reach 1/2 of the total gas production (HT) parameters (p < 0.05). Linear pH increase occurs at 6 and 24 h with rising AMC concentration (p < 0.05), showing a quadratic trend at 12 h (p < 0.05). The optimal buffering effect on rumen acid-base balance was observed at a 2 mL/kg concentration of AMC. Microbial diversity analysis indicated that there was no significant change in α-diversity with different AMC concentrations (p > 0.05). The microbial level demonstrated no significant difference in species diversity of rumen fluid bacteria among the various AMC concentration treatment groups compared to the control group, further supporting that the advantage of adding AMC in stabilizing the rumen environment without altering the structure of the rumen microbiota. Besides, the addition of AMC significantly increased the concentrations of acetate, propionate, total fatty acids (TVFA), and NH3-N, suggesting that AMC contributed to enhancing the energy and nitrogen utilization efficiency in ruminants. Based on the above detection indicators, we recommend that the most favorable concentration is 2 mL/kg.
Collapse
Affiliation(s)
| | | | | | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Yu Q, Sun C, Cao W, Liu R, Abd-Alla MH, Rasmey AHM. Rumen fluid pretreatment promotes anaerobic methane production: revealing microbial dynamics driving increased acid yield from different concentrations of corn straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33615-0. [PMID: 38733442 DOI: 10.1007/s11356-024-33615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
In this work, the corn straw (CS) with concentrations of 3%, 6%, and 9% (w/v) were pretreated by rumen fluid (RF) and then used for batched mesophilic biogas production. The results showed that after a 6-day pretreatment, volatile fatty acid (VFAs) production of 3.78, 8.27, and 10.4 g/L could be found in 3%, 6%, and 9%, respectively. When concerning with biogas production, the highest accumulative methane production of 149.1 mL CH4/g volatile solid was achieved by 6% pretreated CS, which was 22% and 45% higher than 3% and 9%, respectively. Also, it was 3.6 times higher than the same concentration of unpretreated CS. The results of the microbial community structure analysis revealed that the 6% CS pretreatment not only maintained a microbial community with the highest richness and diversity, but also exhibited the highest relative abundance of Firmicutes (45%) and Euryarchaeota (3.9%). This high abundance was conducive to its elevated production of VFAs and methane. These findings provide scientific reference for the utilization of CS and support the development of agricultural waste resource utilization and environmental protection.
Collapse
Affiliation(s)
- Qing Yu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Chen Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Weixing Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Ronghou Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Mohamed Hemida Abd-Alla
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Abdel-Hamied M Rasmey
- Botany and Microbiology Department, Faculty of Science, Suez University, Suez, 43518, Egypt
| |
Collapse
|
10
|
Liang J, Zhang R, Chang J, Chen L, Nabi M, Zhang H, Zhang G, Zhang P. Rumen microbes, enzymes, metabolisms, and application in lignocellulosic waste conversion - A comprehensive review. Biotechnol Adv 2024; 71:108308. [PMID: 38211664 DOI: 10.1016/j.biotechadv.2024.108308] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
The rumen of ruminants is a natural anaerobic fermentation system that efficiently degrades lignocellulosic biomass and mainly depends on synergistic interactions between multiple microbes and their secreted enzymes. Ruminal microbes have been employed as biomass waste converters and are receiving increasing attention because of their degradation performance. To explore the application of ruminal microbes and their secreted enzymes in biomass waste, a comprehensive understanding of these processes is required. Based on the degradation capacity and mechanism of ruminal microbes and their secreted lignocellulose enzymes, this review concentrates on elucidating the main enzymatic strategies that ruminal microbes use for lignocellulose degradation, focusing mainly on polysaccharide metabolism-related gene loci and cellulosomes. Hydrolysis, acidification, methanogenesis, interspecific H2 transfer, and urea cycling in ruminal metabolism are also discussed. Finally, we review the research progress on the conversion of biomass waste into biofuels (bioethanol, biohydrogen, and biomethane) and value-added chemicals (organic acids) by ruminal microbes. This review aims to provide new ideas and methods for ruminal microbe and enzyme applications, biomass waste conversion, and global energy shortage alleviation.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Mohammad Nabi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
11
|
Dhakal R, Neves ALA, Sapkota R, Khanal P, Ellegaard-Jensen L, Winding A, Hansen HH. Temporal dynamics of volatile fatty acids profile, methane production, and prokaryotic community in an in vitro rumen fermentation system fed with maize silage. Front Microbiol 2024; 15:1271599. [PMID: 38444805 PMCID: PMC10912478 DOI: 10.3389/fmicb.2024.1271599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Anaerobic in vitro fermentation is widely used to simulate rumen kinetics and study the microbiome and metabolite profiling in a controlled lab environment. However, a better understanding of the interplay between the temporal dynamics of fermentation kinetics, metabolic profiles, and microbial composition in in vitro rumen fermentation batch systems is required. To fill that knowledge gap, we conducted three in vitro rumen fermentations with maize silage as the substrate, monitoring total gas production (TGP), dry matter degradability (dDM), and methane (CH4) concentration at 6, 12, 24, 36, and 48 h in each fermentation. At each time point, we collected rumen fluid samples for microbiome analysis and volatile fatty acid (VFA) analysis. Amplicon sequencing of 16S rRNA genes (V4 region) was used to profile the prokaryotic community structure in the rumen during the fermentation process. As the fermentation time increased, dDM, TGP, VFA concentrations, CH4 concentration, and yield (mL CH4 per g DM at standard temperature and pressure (STP)) significantly increased. For the dependent variables, CH4 concentration and yield, as well as the independent variables TGP and dDM, polynomial equations were fitted. These equations explained over 85% of the data variability (R2 > 0.85) and suggest that TGP and dDM can be used as predictors to estimate CH4 production in rumen fermentation systems. Microbiome analysis revealed a dominance of Bacteroidota, Cyanobacteria, Desulfobacterota, Euryarchaeota, Fibrobacterota, Firmicutes, Patescibacteria, Proteobacteria, Spirochaetota, and Verrucomicrobiota. Significant temporal variations in Bacteroidota, Campylobacterota, Firmicutes, Proteobacteria, and Spirochaetota were detected. Estimates of alpha diversity based on species richness and the Shannon index showed no variation between fermentation time points. This study demonstrated that the in vitro fermentation characteristics of a given feed type (e.g., maize silage) can be predicted from a few parameters (CH4 concentration and yield, tVFA, acetic acid, and propionic acid) without running the actual in vitro trial if the rumen fluid is collected from similar donor cows. Although the dynamics of the rumen prokaryotes changed remarkably over time and in accordance with the fermentation kinetics, more time points between 0 and 24 h are required to provide more details about the microbial temporal dynamics at the onset of the fermentation.
Collapse
Affiliation(s)
- Rajan Dhakal
- Department of Veterinary and Animal Sciences, Production, Nutrition and Health, University of Copenhagen, Frederiksberg, Denmark
| | - André Luis Alves Neves
- Department of Veterinary and Animal Sciences, Production, Nutrition and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Prabhat Khanal
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Anne Winding
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Hanne Helene Hansen
- Department of Veterinary and Animal Sciences, Production, Nutrition and Health, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
12
|
Liang J, Zhang P, Zhang R, Chang J, Chen L, Wang G, Tian Y, Zhang G. Response of rumen microorganisms to pH during anaerobic hydrolysis and acidogenesis of lignocellulose biomass. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:476-486. [PMID: 38128366 DOI: 10.1016/j.wasman.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Rumen microorganisms can efficiently degrade lignocellulosic wastes to produce volatile fatty acids (VFAs). pH is a key factor in controlling the type and yield of VFAs by affecting the microorganisms involved in rumen fermentation. However, the effects of different pH on rumen microbial diversity, communities, and mechanisms are unclear. In this study, the hydrolysis and acidogenesis of corn straw and diversity, communities, and mechanisms of rumen microorganisms were explored at different initial pHs. Results showed that the highest hemicellulose, cellulose, and lignin degradation efficiency of corn straw was 55.2 %, 38.3 %, and 7.01 %, respectively, and VFA concentration was 10.2 g/L at pH 7.0. Low pH decreased the bacterial diversity and increased the fungal diversity. Rumen bacteria and fungi had different responses to initial pHs, and the community structure of bacteria and fungi had obviously differences at the genus level. The core genera Succiniclasticum, Treponema, and Neocallimastix relative abundance at initial pH 7.0 samples were significantly higher than that at lower initial pHs, reaching 6.01 %, 1.61 %, and 5.35 %, respectively. The bacterial network was more complex than that of fungi. pH, acetic acid, and propionic acid were the main factors influencing the bacterial and fungal community structure. Low pH inhibited the expression of functional genes related to hydrolysis and acidogenesis, explaining the lower hydrolysis and acidogenesis efficiency. These findings will provide a better understanding for rumen fermentation to produce VFAs.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ru Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianning Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Le Chen
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Gongting Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
13
|
Chen R, Ji X, Chen Z, Huang L, Zhu J. Regulation of hydraulic retention time on caproic acid production via two-phase anaerobic fermentation of Chinese cabbage waste with autopoietic electron donors. J Biotechnol 2024; 381:1-10. [PMID: 38176540 DOI: 10.1016/j.jbiotec.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
The effects of hydraulic retention time (HRT) on the performance of two-phase anaerobic fermentation for caproic acid production from Chinese cabbage waste (CCW) were investigated. In the electron donor phase, yeast was inoculated to achieve efficient autopoietic ethanol, providing electron donors for the chain elongation process. Shorter HRT led to drastic fluctuations in microorganisms, thus resulting in lower acid yields at HRT of 6 days. At HRT of 10 days, the balanced collaboration of various key bacteria avoided the accumulation of intermediate by-products, and the caproic acid production reached 4660 mg COD/L, which was 119.5% and 154.8% higher than that at HRTs of 6 and 14 days, respectively. At HRT of 14 days, the low ethanol loading rate resulted in ethanol excessive-oxidation to acetic acid. Acetic acid accounted for 41.5% of the total product, while the selectivity of caproic acid was only 15.3%. The main contributor to the production process of caproic acid was Caproiciproducens, while the Ruminalococcaceae also played a role in the process. This study provided a theoretical basis for the efficient production of caproic acid through continuous fermentation with autopoietic electron donors.
Collapse
Affiliation(s)
- Ranran Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Xiaofeng Ji
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Zhengang Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Liu Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Jiying Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
14
|
Yuan Y, Zhang G, Fang H, Guo H, Li Y, Li Z, Peng S, Wang F. Diversity, composition, metabolic characteristics, and assembly process of the microbial community in sewer system at the early stage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13075-13088. [PMID: 38240967 DOI: 10.1007/s11356-024-31941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
Sewer systems play vital roles in wastewater treatment facilities, and the microbial communities contribute significantly to the transformation of domestic wastewater. Therefore, this study conducted a 180-day experiment on a sewer system and utilized the high-throughput sequencing technology to characterize the microbial communities. Additionally, community assembly analysis was performed to understand the early-stage dynamics within the sewer system. The results demonstrated that the overall diversity of microbial communities exhibited fluctuations as the system progressed. The dominant phyla observed were Chloroflexi, Bacteroidetes, Firmicutes, and Proteobacteria, accounting for over 85.4% of the total relative abundances. At the genus level, bacteria associated with fermentation displayed a high relative abundance, particularly during days 75 to 180. A random-forest machine-learning model identified a group of microbes that confirmed the substantial contribution of fermentation. During the process of fermentation, microorganisms predominantly utilized propionate formation as the main pathway for acidogenesis, followed by acetate and butyrate formation. In terms of nitrogen and sulfur cycles, dissimilatory nitrate reduction and assimilatory sulfate reduction played significant roles. Furthermore, stochastic ecological processes had a dominant effect during the experiment. Dispersal limitation primarily governed the assembly process almost the entire experimental period, indicating the strong adaptability and metabolic plasticity of microorganisms in response to environmental variations. This experiment provides valuable insights into the metabolic mechanisms and microbial assembly associated with sewer systems.
Collapse
Affiliation(s)
- Yiming Yuan
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
- Yellow River Laboratory, Zhengzhou University, Zhengzhou, 450001, China
- National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou, 450001, China
- Collaborative Innovation Center of Water Conservancy and Transportation Infrastructure Safety, Zhengzhou, 450001, Henan Province, China
| | - Guangyi Zhang
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China.
| | - Hongyuan Fang
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
- Yellow River Laboratory, Zhengzhou University, Zhengzhou, 450001, China
- National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou, 450001, China
- Collaborative Innovation Center of Water Conservancy and Transportation Infrastructure Safety, Zhengzhou, 450001, Henan Province, China
| | - Haifeng Guo
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
| | - Yongkang Li
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
| | - Zezhuang Li
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
| | - Siwei Peng
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
| | - Fuming Wang
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, Henan Province, China
- Yellow River Laboratory, Zhengzhou University, Zhengzhou, 450001, China
- National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou, 450001, China
- Collaborative Innovation Center of Water Conservancy and Transportation Infrastructure Safety, Zhengzhou, 450001, Henan Province, China
| |
Collapse
|
15
|
Huang J, Xu J, Wu R, Wang J, Yang J, Li Y, Wang B, Xiong W, Guo Y. Influence of Cuticular Waxes from Triticale on Rumen Fermentation: A Metabolomic and Microbiome Profiling Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1592-1606. [PMID: 38198510 DOI: 10.1021/acs.jafc.3c07416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cuticular wax, a critical defense layer for plants, remains a relatively unexplored factor in rumen fermentation. We investigated the impact of cuticular wax on rumen fermentation using triticale as a model. In total, six wax classes were identified, including fatty acids, aldehydes, alkane, primary alcohol, alkyresorcinol, and β-diketone, with low-bloom lines predominated by 46.05% of primary alcohols and high-bloom lines by 35.64% of β-diketone. Low-wax addition (2.5 g/kg DM) increased the gas production by 19.25% (P < 0.05) and total volatile fatty acids by 6.34% (P > 0.05), and enriched key carbohydrate-fermenting rumen microbes like Saccharofermentans, Ruminococcus, and Prevotellaceae, when compared to non-wax groups. Metabolites linked to nucleotide metabolism, purine metabolism, and protein/fat digestion in the rumen showed a positive correlation with low-wax, benefiting rumen microbes. This study highlights the intricate interplay among cuticular wax, rumen microbiota, fermentation, and metabolomics in forage digestion, providing insights into livestock nutrition and forage utilization.
Collapse
Affiliation(s)
- Jiahao Huang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Jiawei Xu
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, P. R. China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Ruixin Wu
- Dry-Land Farming Institute of Hebei Academy of Agricultural and Forestry Sciences, Hengshui 053000, P. R. China
| | - Jinjing Wang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Jianfeng Yang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yuan Li
- Dry-Land Farming Institute of Hebei Academy of Agricultural and Forestry Sciences, Hengshui 053000, P. R. China
| | - Bo Wang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Wangdan Xiong
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, P. R. China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257091, P. R. China
| | - Yanjun Guo
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, P. R. China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, P. R. China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257091, P. R. China
| |
Collapse
|
16
|
Ma J, Liu H, Liu M, Xu J, Lu J, Cao S, Li S, Ma S, Wang Z, Zhu X, Li D, Sun H, Shi Y, Cui Y. Effects of Diets Combining Peanut Vine and Whole-Plant Corn Silage on Growth Performance, Meat Quality and Rumen Microbiota of Simmental Crossbred Cattle. Foods 2023; 12:3786. [PMID: 37893679 PMCID: PMC10606686 DOI: 10.3390/foods12203786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Peanut vine is a typical peanut by-product and can be used as a quality roughage resource. Whole-plant corn silage is a commonly used roughage. However, few studies have investigated the effects of diets combining peanut vine and whole-plant corn silage on growth performance, antioxidant capacity, meat quality, rumen fermentation and microbiota of beef cattle. To investigate these effects, eighty Simmental crossbred cattle (body weight, 451.27 ± 10.38 kg) approximately 14 months old were randomly divided into four treatments for a 90-day feeding experiment. A one-way design method was used in this experiment. According to the roughage composition, the cattle were divided into a control treatment of 45% wheat straw and 55% whole-plant corn silage (WG), and three treatments of 25% peanut vine and 75% whole-plant corn silage (LPG), 45% peanut vine and 55% whole-plant corn silage (MPG), and 65% peanut vine and 35% whole-plant corn silage (HPG), and the concentrate was the same for all four treatment diets. The results showed that compared to the WG group, the MPG group experienced an increase in their average daily feed intake of 14%, an average daily gain of 32%, and an increase in SOD activity in the spleen of 33%; in the meat, dry matter content increased by 11%, crude protein by 9%, and ether extract content by 40%; in the rumen, the NH3-N content was reduced by 36%, the relative abundance of Firmicutes increased, and the relative abundance of Bacteroidetes decreased (p < 0.05). These results showed the composition of 45% peanut vine and 55% whole-plant corn silage in the roughage improved growth performance, antioxidant capacity, meat quality, rumen fermentation, and microbiota of beef cattle.
Collapse
Affiliation(s)
- Jixiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
| | - Hua Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
| | - Junying Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
| | - Jiading Lu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China (Y.C.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
17
|
Zhao B, Dong Z, Sha H, Cao S, Duan J, Yuan A, Song Z. Thermally modified tourmaline enhances hydrogen production by influencing hydrolysis acidification in two stages during dark fermentation of corn stover. BIORESOURCE TECHNOLOGY 2023; 386:129568. [PMID: 37506940 DOI: 10.1016/j.biortech.2023.129568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
This study investigated the influence of thermally modified tourmaline (Tur) on hydrogen production during the dark fermentation of corn stover. Single-factor experimental results revealed influencing factors of particle size, mass, and temperature. Optimization of the experimental process was achieved using the Box-Behnken design, reaching optimum at conditions of 407 °C, 910-mesh, and 6.2 g. The principle analysis experiment showed that the Tur-enhanced group (Tur_En) amplified cumulative hydrogen production by elevating hydrogen production during the sugar-production stage. The Tur_En group's cumulative hydrogen production was measured at 396.2 ± 40.3 (mL/g VS), marking a 34.2% increase compared to the control group. Analysis of microbial diversity indicated that Firmicutes and Bacteroidota emerged as dominant colonies in both stages. Tur facilitated hydrogen production by stimulating the activity of Firmicutes. This study suggests a highly effective Tur-enhanced technology for hydrogen production from corn stover and elucidates the principles underpinning this method from two stages.
Collapse
Affiliation(s)
- Bo Zhao
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Zheng Dong
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Hao Sha
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Shengxian Cao
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jie Duan
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Ankai Yuan
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Zijian Song
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
18
|
Yu S, Li L, Zhao H, Tu Y, Liu M, Jiang L, Zhao Y. Characterization of the Dynamic Changes of Ruminal Microbiota Colonizing Citrus Pomace Waste during Rumen Incubation for Volatile Fatty Acid Production. Microbiol Spectr 2023; 11:e0351722. [PMID: 36862010 PMCID: PMC10101060 DOI: 10.1128/spectrum.03517-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/03/2023] [Indexed: 03/03/2023] Open
Abstract
Rumen microorganisms are promising for efficient bioconversion of lignocellulosic wastes to biofuels and industrially relevant products. Investigating the dynamic changes of the rumen microbial community colonizing citrus pomace (CtP) will advance our understanding of the utilization of citrus processing waste by rumen fluid. Citrus pomace in nylon bags was incubated in the rumen of three ruminally cannulated Holstein cows for 1, 2, 4, 8, 12, 24, and 48 h. Results showed that total volatile fatty acids concentrations and proportions of valerate and isovalerate were increased over time during the first 12 h. Three major cellulose enzymes attached to CtP rose initially and then decreased during the 48-h incubation. Primary colonization happened during the initial hours of CtP incubation, and microbes compete to attach CtP for degrading easily digestible components and/or utilizing the waste. The 16S rRNA gene sequencing data revealed the diversity and structure of microbiota adhered to CtP were distinctly different at each time point. The increased abundance of Fibrobacterota, Rikenellaceae_RC9_gut_group, and Butyrivibrio may explain the elevated volatile fatty acids concentrations. This study highlighted key metabolically active microbial taxa colonizing citrus pomace in a 48-h in situ rumen incubation, which could have implications for promoting the biotechnological process of CtP. IMPORTANCE As a natural fermentation system, the rumen ecosystem of ruminants can efficiently degrade plant cellulose, indicating that the rumen microbiome offers an opportunity for anaerobic digestion to utilize biomass wastes containing cellulose. Knowledge of the response of the in situ microbial community to citrus pomace during anaerobic fermentation will help improve the current understanding of citrus biomass waste utilization. Our results demonstrated that a highly diverse rumen bacterial community colonized citrus pomace rapidly and continuously changed during a 48-h incubation period. These findings may provide a deep understanding of constructing, manipulating, and enriching rumen microorganisms to improve the anaerobic fermentation efficiency of citrus pomace.
Collapse
Affiliation(s)
- Shiqiang Yu
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yan Tu
- Beijing Key Laboratory of Dairy Cow Nutrition, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
- Beijing Beinong Enterprise Management Co., Ltd., Beijing, China
| |
Collapse
|
19
|
Enhancing Biobased Volatile Fatty Acids Production from Olive Mill Solid Waste by Optimization of pH and Substrate to Inoculum Ratio. Processes (Basel) 2023. [DOI: 10.3390/pr11020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The pH and substrate-to-inoculum ratio (S/I) are important parameters in the anaerobic fermentation of agroindustrial residues, and therefore the optimization of these two parameters is needed for a stable, efficient, and sustainable reactor operation. In this work, the parameters pH (5–9) and S/I (0.5–3 gVS gVS−1) were optimized to produce biobased volatile fatty acids (VFAs) from hydrothermally pretreated olive mill solid waste (HPOMSW). The response variables evaluated in the Doehlert design were total VFAs concentration (tVFAs) (mg L−1) and amounts (%) of isobutyric, butyric, isovaleric, and valeric acids on the VFAs profile. The pH was the variable that most influenced the mixed culture fermentation of HPOMSW, proving to be a key parameter in the process. Microbial community analyses of conditions 1 (S/I = 3 gVS gVS−1 and pH = 7) and 4 (S/I = 1.13 gVS gVS−1 and pH = 5) showed that Proteobacteria and Firmicutes accounted for more than 87% of the total microorganisms identified for both conditions. In addition, the second-order model best fitted the experimental data for the VFAs production at the desirable condition (S/I = 3 gVS gVS−1 and pH = 8).
Collapse
|
20
|
Piechota G, Unpaprom Y, Dong CD, Kumar G. Recent advances in biowaste management towards sustainable environment. BIORESOURCE TECHNOLOGY 2023; 368:128326. [PMID: 36396035 DOI: 10.1016/j.biortech.2022.128326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bio-wastes and their utilization has been increasing enormously, due to its generation and management practices towards making the clearner environment. Bio-waste disposal that follow the emerging global human population has commended the hunt to certain methods sustainably for the bio-waste management to overwhelmed the ecological issues, prompted by means of the collection of such waste materials. The bio-conversion process of the various bio-wastes into high value added products seems to be practicable in various venues in terms of technological and financial supports. Thereby, this preface presentat about of bio-wastes management and new trends towards circular economy and challenges to acheive it by considering the Virtual Special Issue (VSI) dedicated in Bioresourse Technology Journal.
Collapse
Affiliation(s)
- Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100 Toruń, Poland
| | - Yuwalee Unpaprom
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| | - Cheng-Di Dong
- Research Center for Environmental Medicine, Kaohsiung University, Kaohsiung City 807, Taiwan
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway.
| |
Collapse
|
21
|
Zi X, Wang W, Zhou S, Zhou F, Rao D, Shen P, Fang S, Wu B. Prolonged drought regulates the silage quality of maize ( Zea mays L.): Alterations in fermentation microecology. FRONTIERS IN PLANT SCIENCE 2022; 13:1075407. [PMID: 36570957 PMCID: PMC9780442 DOI: 10.3389/fpls.2022.1075407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Prolonged drought stress caused by global warming poses a tremendous challenge to silage production of maize. Drought during maize growth and development resulted in altered micro-environment for silage fermentation. How fermentation of silage maize responds to moisture scales remains uncharted territory. In this research, Maize water control trials were conducted and the silage quality and microbial community of drought-affected maize were determined. The results showed that drought stress significantly reduced the dry matter but increased root-to-shoot ratio, soluble sugar and malonaldehyde content in maize. Before fermentation, the crude protein, crude ash and acid detergent fiber contents were significantly increased but the ether extract content was decreased under drought. The crude protein and acid detergent fiber were significantly decreased in the drought affected group after fermentation. Furthermore, water stress at maize maturity stage greatly reduced the number of total bacteria in silage fermentation but increased the proportion of the lactobacillus and lactic acid content of silage. Drought stress alters the microbial ecosystem of the fermentation process and reconstitutes the diversity of the bacterial community and its metabolites. This study provides a theoretical basis for the study of changes in silage fermentation as affected by abiotic stresses.
Collapse
Affiliation(s)
- Xuejing Zi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wan Wang
- Kunming Seed Management Station, Kunming, Yunnan, China
| | - Shiyong Zhou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Feng Zhou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dongyun Rao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Peng Shen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Siyang Fang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bozhi Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
22
|
Yang C, Deng X, Lund P, Liu H, Ding X, Fu Z, Zhang N, Li J, Dong L. Rumen microbiota-host transcriptome interaction mediates the protective effects of trans-10, cis-12 CLA on facilitating weaning transition of lambs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:345-359. [PMID: 36788929 PMCID: PMC9898626 DOI: 10.1016/j.aninu.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Developing alternatives to antibiotics for prevention of gastrointestinal dysbiosis in early-weaning farmed animals is urgently needed. This study was to explore the potential effects of trans-10, cis-12 conjugated linoleic acid (CLA) on maintaining ruminal homeostasis of young ruminants during the weaning transition period. Thirty neonatal lambs were selected (6 lambs per group) and euthanized for rumen microbial and epithelial analysis. The lambs were weaned at 28 d and experienced the following 5 treatments: euthanized on d 28 as the pre-weaning control (CON0), fed starter feed for 5 (CON5) or 21 (CON21) d, fed starter feed with 1% of CLA supplemented for 5 (CLA5) or 21 (CLA21) d. Results showed that the average daily weight gain and dry matter intake were significantly higher in CLA5 than CON5 group. As compared with the CON5 and CON21 group, the relative abundances of volatile fatty acid (VFA) producing bacteria including Bacteroides, Treponema, Parabacteroides and Anaerovibrio, as well as the concentrations of acetate, butyrate and total VFA were significantly increased in CLA5 and CLA21 group, respectively. Integrating microbial profiling and epithelial transcriptome results showed that 7 downregulated inflammatory signaling-related host genes IL2RA, CXCL9, CD4, CCR4, LTB, SPP1, and BCL2A1 with CLA supplementation were significantly negatively correlated with both VFA concentration and VFA producing bacteria, while 3 (GPX2, SLC27A2 and ALDH3A1) and 2 (GSTM3 and GSTA1) upregulated metabolism-related genes, significantly positively correlated with either VFA concentration or VFA producing bacteria, respectively. To confirm the effects of CLA on epithelial signal transduction, in vitro experiment was further conducted by treating rumen epithelial cells without or with IL-17A + TNF-α for 12 h after pretreatment of 100 μM CLA or not (6 replicates per treatment). The results demonstrated the anti-inflammatory effect of CLA via suppressing the protein expression of NF-кB p-p65/p65 with the activation of peroxisome proliferator-activated receptor gamma (PPARγ). In conclusion, CLA supplementation enhanced the ruminal microbiota-driven transcriptional regulation in healthy rumen epithelial development via rumen VFA production, and CLA may therefore serve as an alternative way to alleviate early-weaning stress and improve physiological and metabolic conditions of young ruminants.
Collapse
Affiliation(s)
- Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiangfei Deng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Peter Lund
- Department of Animal Science, Aarhus University, AU Foulum, DK-8830, Tjele, Denmark
| | - Haixia Liu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Xingwang Ding
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Naifeng Zhang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab on Nutrition and Metabolism of Ruminant, Beijing, 100081, China
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China,Corresponding authors.
| | - Lifeng Dong
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab on Nutrition and Metabolism of Ruminant, Beijing, 100081, China,Corresponding authors.
| |
Collapse
|
23
|
Zhao B, Xie F, Zhou A, Liu Z, Ji L, Zhang G, Yue X. Analysis of energy recovery and microbial community in an amalgamated CSTR-UASBs reactor for a three-stage anaerobic fermentation process of cornstalks. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1848-1857. [PMID: 36240316 DOI: 10.2166/wst.2022.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, a continuous stirred-tank reactor (CSTR) coupled with up-flow anaerobic sludge beds (UASBs) reactor was successfully developed for enhancing methane production and carbon recovery rate from cornstalks. Acetic acid production was higher in regions A than in B and C. The methane percentage achieved at 75.98% of total gas and methane production of cornstalks was up to 520.07 mL/g, during the stable operation period. The carbon of recovery rate, represented substrates converted to methane gas, reached 69.32% in stable stage. Microbial community structure analysis revealed that Paludibacter, Prevotella/Clostridium sensu stricto, and Caldisericum were the dominant bacteria for the degradation of cellulose, lignin, and other refractory macromolecules in regions A, B, and C, respectively. Methanobacterium and Methanolinea were the two major genera, accounting for methanogenesis generation.
Collapse
Affiliation(s)
- Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China E-mail:
| | - Fei Xie
- School of Environmental Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China E-mail:
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China E-mail:
| | - Li Ji
- School of Environmental Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Guixiang Zhang
- School of Environmental Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China E-mail:
| |
Collapse
|