1
|
He H, Zeng Y, Dong H, Cui P, Lu W, Xu H, Qiu B, Sun D, Ma J, Dang Y. Enrichment of Methanothrix species via riboflavin-loaded granular activated carbon in anaerobic digestion of high-concentration brewery wastewater amidst continuous inoculation of Methanosarcina barkeri. WATER RESEARCH 2024; 268:122739. [PMID: 39504698 DOI: 10.1016/j.watres.2024.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Effective treatment of high-concentration brewery wastewater through anaerobic digestion (AD) has always been a challenging issue. Enhancing direct interspecies electron transfer (DIET) was demonstrated to increase methane production during AD under high organic loading rate (OLR). Herein, the feasibility of enhancing DIET with the addition of riboflavin-loaded granular activated carbon (RF-GAC) as well as co-addition with Methanosarcina barkeri (Rf-GAC+M.barkeri) was investigated (M.barkeri is well-known to be capable of DIET with electroactive bacteria). During the whole process, the Rf-GAC and the Rf-GAC+M.barkeri group both achieved average COD removal rates above 97 %, which was 14 % higher than that of the control. The average methane production in the Rf-GAC group and the Rf-GAC+M.barkeri group respectively reached 0.334 ± 0.02 L(stp)/g COD and 0.345 ± 0.02 L(stp)/g COD, 1.35 and 1.39 times higher than the 0.247 ± 0.03 L(stp)/g COD reached by the control. The control reactor deteriorated at an OLR of 12 kg COD/(m3·d), whereas the Rf-GAC and the Rf-GAC+M.barkeri group maintained stable as the OLR reached as high as 17.5 kg COD/(m3·d) and the volatile fatty acids concentration was consistently below 10 mM. The RF-GAC performed better than Rf-GAC+M.barkeri in enriching Methanothrix, whose relative abundance was 60.6 % in the former group. Metabolic pathway analysis revealed the addition of RF-GAC upregulated genes related to DIET in Methanothrix species, including hdrA and fpoD. Furthermore, Methanothrix remained the dominant archaea even continuously inoculating pure strains of M.barkeri during the entire operational period. Pure culture experiments proved that GAC inhibited M.barkeri growth. The results of this study can be optimized for practical application of AD treating high-concentration brewery wastewater.
Collapse
Affiliation(s)
- Hao He
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yiwei Zeng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - He Dong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Pengfei Cui
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Wenduo Lu
- Beijing Drainage Management Center, Beijing 101117, China
| | - Haiyu Xu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd, Shanghai 201800, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Junyi Ma
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Ye J, Liu X, Khalid M, Li X, Romantschuk M, Bian Y, Li C, Zhang J, Zhao C, Wu J, Hua Y, Chen W, Hui N. The simultaneous addition of chitosan and peat enhanced the removals of antibiotics resistance genes during biogas residues composting. ENVIRONMENTAL RESEARCH 2024; 263:120109. [PMID: 39369780 DOI: 10.1016/j.envres.2024.120109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Direct reuse of biogas residue (BR) has the potential to contribute to the dissemination of antibiotic resistance genes (ARGs). Although high-temperature composting has been demonstrated as an effective method for the harmless treatment of organic waste, there is few researches on the fate of ARGs in high-temperature composting of BR. This research examined the impact of adding 5% chitosan and 15% peat on physicochemical characteristics, microbial communities, and removal of ARGs during BR-straw composting in 12 Biolan 220L composters for 48 days. Our results showed that the simultaneous addition of chitosan and peat extended the high-temperature period, and increased the highest temperature to 74 °C and germination index. These effects could be attributed to the presence of thermophilic cellulose-decomposing genera (Thermomyces and Thermobifida). Although the microbial communities differed compositionally among temperature stages, their dissimilarity drastically reduced at final stage, indicating that the impact of different treatments on microbial community composition decreases at the end of composting. Peat had a greater impact on aerobic genera capable of cellulose degradation at thermophilic stage than chitosan. Surprisingly, despite the total copy number of ARGs significantly decreased during composting, especially in the treatment with both chitosan and peat, intI1 gene abundance significantly increased 2 logs at thermophilic stage and maintained high level in the final compost, suggesting there is still a potential risk of transmission and proliferation of ARGs. Our work shed some lights on the development of waste resource utilization and emerging contaminants removal technology.
Collapse
Affiliation(s)
- Jieqi Ye
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Pudong Development (Group) CO., Ltd., Shanghai, China.
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Muhammad Khalid
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China.
| | - Xiaoxiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Martin Romantschuk
- Faculty of Biological and Environmental Science, University of Helsinki, Lahti, Finland.
| | - Yucheng Bian
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Chi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Junren Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Jian Wu
- Shanghai Pudong Development (Group) CO., Ltd., Shanghai, China.
| | - Yinfeng Hua
- Shanghai Pudong Development (Group) CO., Ltd., Shanghai, China.
| | - Weihua Chen
- Shanghai Pudong Development (Group) CO., Ltd., Shanghai, China.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Faculty of Biological and Environmental Science, University of Helsinki, Lahti, Finland.
| |
Collapse
|
3
|
Huang W, Cao L, Ge R, Wan Z, Zheng D, Li F, Li G, Zhang F. Higher thermal remediation temperature facilitates the sequential bioaugmented reductive dechlorination. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134825. [PMID: 38876014 DOI: 10.1016/j.jhazmat.2024.134825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
The coupling of thermal remediation with microbial reductive dechlorination (MRD) has shown promising potential for the cleanup of chlorinated solvent contaminated sites. In this study, thermal treatment and bioaugmentation were applied in series, where prior higher thermal remediation temperature led to improved TCE dechlorination performance with both better organohalide-respiring bacteria (OHRB) colonization and electron donor availability. The 60 °C was found to be a key temperature point where the promotion effect became obvious. Amplicon sequencing and co-occurrence network analysis demonstrated that temperature was a more dominating factor than bioaugmentation that impacted microbial community structure. Higher temperature of prior thermal treatment resulted in the decrease of richness, diversity of indigenous microbial communities, and simplified the network structure, which benefited the build-up of newcoming microorganisms during bioaugmentation. Thus, the abundance of Desulfitobacterium increased from 0.11 % (25 °C) to 3.10 % (90 °C). Meanwhile, released volatile fatty acids (VFAs) during thermal remediation functioned as electron donors and boosted MRD. Our results provided temperature-specific information on synergistic effect of sequential thermal remediation and bioaugmentation, which contributed to better implementation of the coupled technologies in chloroethene-impacted sites.
Collapse
Affiliation(s)
- Wan Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lifeng Cao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Runlei Ge
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ziren Wan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Di Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Fangzhou Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Fang Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.
| |
Collapse
|
4
|
Hu F, Fu N, Wei Q, Liu S, Hu Y, Zhang S, Wang X, Peng X, Dai H, Wei Y. Effect of alkali pretreatment time on kitchen waste anaerobic digestion performance enhanced by alkali pretreatment combined with bentonite: performance enhancement, microbial community structure, and functional gene analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7167-7178. [PMID: 38157170 DOI: 10.1007/s11356-023-31646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Kitchen waste was mainly composed of carbohydrates, lipids, and proteins. Anaerobic digestion (AD) of kitchen waste usually occurred acidification and further deteriorated. In our previous study, alkali pretreatment combined with bentonite (AP/Be) treatment was proved to enhance high solid AD of kitchen waste. However, effects of AP time on AP/Be were not yet studied. This study investigated the effects of AP time on AP/Be treatment on enhancing high solid AD. The results showed that compared with the control group, the cumulative methane production rate could be increased by 3.30 times (149.7 mL CH4/g VS) and the volatile solids (VS) reduction rate increased by 63.36%. Microbial community analysis showed that the relative abundance of Methanosarcina and Methanosaeta were increased from 6.49 and 7.83% to 47.14 and 16.39% respectively. Predictive functional analysis showed that AP/Be treatment increased the abundance of energy production and conversion, coenzyme transport, and metabolism. This study revealed the potential mechanism of AP/Be enhanced kitchen waste AD performance and AP/Be was a potential strategy to strengthen AD.
Collapse
Affiliation(s)
- Fengping Hu
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Ningxin Fu
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Qun Wei
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Susu Liu
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China.
- Jiangxi Province Zhonggantou Survey and Design Co., Ltd, Nanchang, 330000, China.
| | - Yuying Hu
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Shihao Zhang
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Xin Wang
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Xiaoming Peng
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Hongling Dai
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| | - Yang Wei
- School of Civil Engineering and Architecture, East China JiaoTong University, Nanchang, 330013, China
| |
Collapse
|
5
|
Ma J, Yao Z, Zhao L. Comprehensive study of the combined effects of biochar and iron-based conductive materials on alleviating long chain fatty acids inhibition in anaerobic digestion. ENVIRONMENTAL RESEARCH 2023; 239:117446. [PMID: 37858695 DOI: 10.1016/j.envres.2023.117446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
This study investigated the feasibility of alleviating the negative influence of long-chain fatty acids (LCFAs) on anaerobic digestion by biochar, micron zero-valent iron, micron-magnetite (mFe3O4) and their combination. The results demonstrate that co-addition of biochar and 6 g/L mFe3O4 (BC+6 g/L mFe3O4) increased cumulative methane production by 50% as suffered from LCFAs inhibition exerted by 2 g/L glycerol trioleate. The BC+6 g/L mFe3O4 did best in accelerating total organic carbon degradation and volatile fatty acids conversion, through successively enriching Bacteroides, Corynebacterium, and DMER64 to dominant the bacterial community. The proportion of acetotrophic Methanothrix that could alternatively reduce CO2 to methane by accepting electrons via direct interspecies electron transfer (DIET) was 0.09% with BC+6 g/L mFe3O4, nine times more than the proportion in control. Prediction of functional genes revealed the enrichment of the bacterial secretion system, indicating that BC+6 g/L mFe3O4 promoted DIET by stimulating the secretion of extracellular polymeric substances. This study provided novel insights into combining biochar and iron-based conductive materials to enhance AD performance under LCFAs inhibition.
Collapse
Affiliation(s)
- Junyi Ma
- Key Laboratory of Low-carbon Green Agriculture in North China of Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zonglu Yao
- Key Laboratory of Low-carbon Green Agriculture in North China of Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lixin Zhao
- Key Laboratory of Low-carbon Green Agriculture in North China of Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Zhang J, Yang X, Wang S, Li T, Li W, Wang B, Yang R, Wang X, Rinklebe J. Immobilization of zinc and cadmium by biochar-based sulfidated nanoscale zero-valent iron in a co-contaminated soil: Performance, mechanism, and microbial response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165968. [PMID: 37543321 DOI: 10.1016/j.scitotenv.2023.165968] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Mining and smelting of mineral resources causes excessive accumulation of potentially toxic metals (PTMs) in surrounding soils. Here, biochar-based sulfidated nanoscale zero-valent iron (SNZVI/BC) was designed via a one-step liquid phase reduction method to immobilize cadmium (Cd) and zinc (Zn) in a copolluted arable soil. A 60 d soil incubation experiment revealed that Cd and Zn immobilization efficiency by 6 % SNZVI/BC (25.2-26.2 %) was higher than those by individual SNZVI (13.9-18.0 %) or biochar (14.0-19.3 %) based on the changes in diethylene triamine pentaacetic acid (DTPA)-extractable PTM concentrations in soils, exhibiting a synergistic effect. Cd2+ or Zn2+ replaced isomorphously Fe2+ in amorphous ferrous sulfide, as revealed by XRD, XPS, and high-resolution TEM-EDS, forming metal sulfide precipitates and thus immobilizing PTMs. PTM immobilization was further enhanced by adsorption by biochar and oxidation products (Fe2O3 and Fe3O4) of SNZVI via precipitation and surface complexation. SNZVI/BC also increased the concentration of dissolved organic carbon and soil pH, thus stimulating the abundances of beneficial bacteria, i.e., Bacilli, Clostridia, and Desulfuromonadia. These functional bacteria further facilitated microbial Fe(III) reduction, production of ammonium and available potassium, and immobilization of PTMs in soils. The predicted function of the soil microbial community was improved after supplementation with SNZVI/BC. Overall, SNZVI/BC could be a promising functional material that not only immobilized PTMs but also enhanced available nutrients in cocontaminated soils.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xianni Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, China.
| | - Taige Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Wenjing Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ruidong Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| |
Collapse
|
7
|
Manikandan S, Vickram S, Sirohi R, Subbaiya R, Krishnan RY, Karmegam N, Sumathijones C, Rajagopal R, Chang SW, Ravindran B, Awasthi MK. Critical review of biochemical pathways to transformation of waste and biomass into bioenergy. BIORESOURCE TECHNOLOGY 2023; 372:128679. [PMID: 36706818 DOI: 10.1016/j.biortech.2023.128679] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biofuel or biogas have become the primary source of bio-energy, providing an alternative to conventionally used energy that can meet the growing energy demand for people all over the world while reducing greenhouse gas emissions. Enzyme hydrolysis in bioethanol production is a critical step in obtaining sugars fermented during the final fermentation process. More efficient enzymes are being researched to provide a more cost-effective technique during enzymatic hydrolysis. The exploitation of microbial catabolic biochemical reactions to produce electric energy can be used for complex renewable biomasses and organic wastes in microbial fuel cells. In hydrolysis methods, a variety of diverse enzyme strategies are used to promote efficient bioethanol production from various lignocellulosic biomasses like agricultural wastes, wood feedstocks, and sea algae. This paper investigates the most recent enzyme hydrolysis pathways, microbial fermentation, microbial fuel cells, and anaerobic digestion in the manufacture of bioethanol/bioenergy from lignocellulose biomass.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3#, Shaanxi, Yangling 712100, China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248001 Uttarakhand, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Radhakrishnan Yedhu Krishnan
- Department of Food Technology, Amal Jyothi College of Engineering, Kanjirappally, Kottayam 686 518, Kerala, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, India
| | - C Sumathijones
- Department of Pharmacology, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, India
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India; Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3#, Shaanxi, Yangling 712100, China.
| |
Collapse
|