1
|
Shanthi Sravan J, Lee H, Bang Y, Chang IS. NADH-dependent CO 2 reductase on graphite for capacitive electrocatalytic interfacing mediated by solid-binding peptide. BIORESOURCE TECHNOLOGY 2025; 417:131841. [PMID: 39557098 DOI: 10.1016/j.biortech.2024.131841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 11/20/2024]
Abstract
NAD+/NADH-dependent CO2 reductase (CR) adapted from Candida methylica (E.C. 1.17.1.9) was introduced with a non-native graphite-specific peptide (Gr; IMVTESSDYSSY) as molecular binder to modify the native enzyme (CR-WT) with peptide insertion at N, C and NC terminus (CR-GrN, CR-GrC and CR-GrNC) to assess the influence of site-specific fusion on electrode binding. Graphite surface-binding activity relative to the electrode topography was evaluated for both native and synthetic CRs to establish the enzyme-electrode interfacing potentiality for efficient electron channelling. Impact of site-specific peptide fusion and amino-acids positioning was assessed for the active site binding availability and adsorption/desorption capability towards competent CO2-based redox catalysis. Solid-binding peptide and graphite surface interactive ability on direct electron transfer was studied with structural, enzymatic and electrochemical characterizations for efficient CO2 electrosynthesis. Overall, enzymatic CO2 reduction to formate based on interactive potentiality of enzyme-electrode complex with peptide modifications and graphite surface towards possibility of bioelectronics upscaling was depicted.
Collapse
Affiliation(s)
- J Shanthi Sravan
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Hyeryeong Lee
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Yuna Bang
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - In Seop Chang
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
2
|
Park W, Cha S, Hahn JS. Advancements in Biological Conversion of C1 Feedstocks: Sustainable Bioproduction and Environmental Solutions. ACS Synth Biol 2024; 13:3788-3798. [PMID: 39610332 DOI: 10.1021/acssynbio.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The use of one-carbon (C1) feedstocks, including carbon dioxide (CO2), carbon monoxide (CO), formate (HCO2H), methanol (CH3OH), and methane (CH4), presents a significant opportunity for sustainable bioproduction and environmental conservation. This Perspective explores the development of biological methods for converting C1 feedstocks into valuable products, emphasizing major progress from engineering native C1 assimilation pathways to the creation of synthetic autotrophs and methylotrophs that utilize these carbon sources. Additionally, we discuss hybrid approaches that merge biological and electrochemical systems, particularly for the conversion of CO2. This Perspective underscores the importance of C1 bioconversion in promoting sustainable biotechnological strategies for a low-carbon future.
Collapse
Affiliation(s)
- Wooyoung Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seungwoo Cha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Jia M, Shao L, Jiang J, Jiang W, Xin F, Zhang W, Jiang Y, Jiang M. Mitigating toxic formaldehyde to promote efficient utilization of C1 resources. Crit Rev Biotechnol 2024:1-13. [PMID: 39647989 DOI: 10.1080/07388551.2024.2430476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/10/2024] [Accepted: 10/27/2024] [Indexed: 12/10/2024]
Abstract
The C1 resource is widely considered because of its abundance and affordability. In the context of extensive utilization of C1 resources by methylotrophic microorganisms, especially for methanol, formaldehyde is an important intermediate metabolite that is at the crossroads of assimilation and dissimilation pathways. However, formaldehyde is an exceedingly reactive compound that can form covalent cross-linked complexes with amine and thiol groups in cells, which causes irreversible damage to the organism. Thus, it is important to balance the intensity of the assimilation and dissimilation pathways of formaldehyde, which can avoid formaldehyde toxicity and improve the full utilization of C1 resources. This review details the source of endogenous formaldehyde and its toxicity mechanism, explaining the harm of excessive accumulation of formaldehyde to metabolism. Importantly, the self-detoxification and various feasible strategies to mitigate formaldehyde toxicity are discussed and proposed. These strategies are meant to help appropriately handle formaldehyde toxicity and accelerate the effective use of C1 resources.
Collapse
Affiliation(s)
- Mengshi Jia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Lei Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Jie Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|
4
|
Orsi E, Hernández-Sancho JM, Remeijer MS, Kruis AJ, Volke DC, Claassens NJ, Paul CE, Bruggeman FJ, Weusthuis RA, Nikel PI. Harnessing noncanonical redox cofactors to advance synthetic assimilation of one-carbon feedstocks. Curr Opin Biotechnol 2024; 90:103195. [PMID: 39288659 DOI: 10.1016/j.copbio.2024.103195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
One-carbon (C1) feedstocks, such as carbon monoxide (CO), formate (HCO2H), methanol (CH3OH), and methane (CH4), can be obtained either through stepwise electrochemical reduction of CO2 with renewable electricity or via processing of organic side streams. These C1 substrates are increasingly investigated in biotechnology as they can contribute to a circular carbon economy. In recent years, noncanonical redox cofactors (NCRCs) emerged as a tool to generate synthetic electron circuits in cell factories to maximize electron transfer within a pathway of interest. Here, we argue that expanding the use of NCRCs in the context of C1-driven bioprocesses will boost product yields and facilitate challenging redox transactions that are typically out of the scope of natural cofactors due to inherent thermodynamic constraints.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Javier M Hernández-Sancho
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maaike S Remeijer
- Amsterdam Institute for Life and Environment and Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | | | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nico J Claassens
- Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, the Netherlands
| | - Frank J Bruggeman
- Amsterdam Institute for Life and Environment and Institute of Molecular and Life Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Wageningen, the Netherlands
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
5
|
Olavarria K, Sousa DZ. Thermodynamic tools for more efficient biotechnological processes: an example in poly-(3-hydroxybutyrate) production from carbon monoxide. Curr Opin Biotechnol 2024; 90:103212. [PMID: 39357457 DOI: 10.1016/j.copbio.2024.103212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/19/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024]
Abstract
Modern biotechnology requires the integration of several disciplines, with thermodynamics being a crucial one. Experimental approaches frequently used in biotechnology, such as rewiring of metabolic networks or culturing of micro-organisms in engineered environments, can benefit from the application of thermodynamic tools. In this paper, we provide an overview of several thermodynamic tools that are useful for the design and optimization of biotechnological processes, and we demonstrate their potential application in the production of poly-(3-hydroxybutyrate) (PHB) from carbon monoxide (CO). We discuss how these tools can aid in the design of metabolic engineering strategies, the calculation of expected yields, the assessment of the thermodynamic feasibility of the targeted conversions, the identification of potential thermodynamic bottlenecks, and the selection of genetic engineering targets. Although we illustrate these tools using the specific example of PHB production from CO, they can be applied to other substrates and products.
Collapse
Affiliation(s)
- Karel Olavarria
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE, Wageningen, the Netherlands; Centre for Living Technologies, Alliance EWUU, Princetonlaan 6, 3584CB, Utrecht, the Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE, Wageningen, the Netherlands; Centre for Living Technologies, Alliance EWUU, Princetonlaan 6, 3584CB, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Patel SKS, Singh D, Pant D, Gupta RK, Busi S, Singh RV, Lee JK. Polyhydroxyalkanoate Production by Methanotrophs: Recent Updates and Perspectives. Polymers (Basel) 2024; 16:2570. [PMID: 39339034 PMCID: PMC11435153 DOI: 10.3390/polym16182570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Methanotrophs are bacteria that consume methane (CH4) as their sole carbon and energy source. These microorganisms play a crucial role in the carbon cycle by metabolizing CH4 (the greenhouse gas), into cellular biomass and carbon dioxide (CO2). Polyhydroxyalkanoates (PHAs) are biopolymers produced by various microorganisms, including methanotrophs. PHA production using methanotrophs is a promising strategy to address growing concerns regarding plastic pollution and the need for sustainable, biodegradable materials. Various factors, including nutrient availability, environmental conditions, and metabolic engineering strategies, influence methanotrophic production. Nutrient limitations, particularly those of nitrogen or phosphorus, enhance PHA production by methanotrophs. Metabolic engineering approaches, such as the overexpression of key enzymes involved in PHA biosynthesis or the disruption of competing pathways, can also enhance PHA yields by methanotrophs. Overall, PHA production by methanotrophs represents a sustainable and versatile approach for developing biomedical materials with numerous potential applications. Additionally, alternative feedstocks, such as industrial waste streams or byproducts can be explored to improve the economic feasibility of PHA production. This review briefly describes the potential of methanotrophs to produce PHAs, with recent updates and perspectives.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India
| | - Deepshikha Singh
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India
| | - Diksha Pant
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India
| | - Rahul K Gupta
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Siddhardha Busi
- Department of Microbiology, Pondicherry University, Pondicherry 605014, Kalapet, India
| | - Rahul V Singh
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
7
|
Sun M, Gao AX, Liu X, Bai Z, Wang P, Ledesma-Amaro R. Microbial conversion of ethanol to high-value products: progress and challenges. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:115. [PMID: 39160588 PMCID: PMC11334397 DOI: 10.1186/s13068-024-02546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024]
Abstract
Industrial biotechnology heavily relies on the microbial conversion of carbohydrate substrates derived from sugar- or starch-rich crops. This dependency poses significant challenges in the face of a rising population and food scarcity. Consequently, exploring renewable, non-competing carbon sources for sustainable bioprocessing becomes increasingly important. Ethanol, a key C2 feedstock, presents a promising alternative, especially for producing acetyl-CoA derivatives. In this review, we offer an in-depth analysis of ethanol's potential as an alternative carbon source, summarizing its distinctive characteristics when utilized by microbes, microbial ethanol metabolism pathway, and microbial responses and tolerance mechanisms to ethanol stress. We provide an update on recent progress in ethanol-based biomanufacturing and ethanol biosynthesis, discuss current challenges, and outline potential research directions to guide future advancements in this field. The insights presented here could serve as valuable theoretical support for researchers and industry professionals seeking to harness ethanol's potential for the production of high-value products.
Collapse
Affiliation(s)
- Manman Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Hefei Artificial Intelligence Breeding Accelerator, Hefei, 230000, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Institute of Hefei Artificial Intelligence Breeding Accelerator, Hefei, 230000, China.
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
8
|
Liang J, Xiao K, Wang X, Hou T, Zeng C, Gao X, Wang B, Zhong C. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chem Rev 2024; 124:9081-9112. [PMID: 38900019 DOI: 10.1021/acs.chemrev.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow. This review provides a systematic overview of the notable advancements in this nascent field, with a particular focus on the discussion of three pivotal steps of energy flow: solar energy capture, cross-membrane energy transport, and energy conversion into chemicals. While key challenges faced in each stage are independently identified and discussed, viable solutions are correspondingly postulated. In view of the interplay of the three steps in affecting the overall efficiency of solar-to-chemical energy conversion, subsequent discussions thus take an integrative and systematic viewpoint to comprehend, analyze and improve the solar energy flow in the current NMHSs of different configurations, and highlighting the contemporary techniques that can be employed to investigate various aspects of energy flow within NMHSs. Finally, a concluding section summarizes opportunities for future research, providing a roadmap for the continued development and optimization of NMHSs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kemeng Xiao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianfeng Hou
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuiping Zeng
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Zhong
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
9
|
Severinsen MM, Bachleitner S, Modenese V, Ata Ö, Mattanovich D. Efficient production of itaconic acid from the single-carbon substrate methanol with engineered Komagataella phaffii. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:98. [PMID: 39010147 PMCID: PMC11251334 DOI: 10.1186/s13068-024-02541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Amidst the escalating carbon dioxide levels resulting from fossil fuel consumption, there is a pressing need for sustainable, bio-based alternatives to underpin future global economies. Single-carbon feedstocks, derived from CO2, represent promising substrates for biotechnological applications. Especially, methanol is gaining prominence for bio-production of commodity chemicals. RESULTS In this study, we show the potential of Komagataella phaffii as a production platform for itaconic acid using methanol as the carbon source. Successful integration of heterologous genes from Aspergillus terreus (cadA, mttA and mfsA) alongside fine-tuning of the mfsA gene expression, led to promising initial itaconic acid titers of 28 g·L-1 after 5 days of fed-batch cultivation. Through the combined efforts of process optimization and strain engineering strategies, we further boosted the itaconic acid production reaching titers of 55 g·L-1 after less than 5 days of methanol feed, while increasing the product yield on methanol from 0.06 g·g-1 to 0.24 g·g-1. CONCLUSION Our results highlight the potential of K. phaffii as a methanol-based platform organism for sustainable biochemical production.
Collapse
Affiliation(s)
- Manja Mølgaard Severinsen
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, 1190, Vienna, Austria
| | - Simone Bachleitner
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, 1190, Vienna, Austria
| | - Viola Modenese
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, 1190, Vienna, Austria
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Özge Ata
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology, 1190, Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, 1190, Vienna, Austria.
- Austrian Centre of Industrial Biotechnology, 1190, Vienna, Austria.
| |
Collapse
|
10
|
Moon J, Poehlein A, Daniel R, Müller V. Redirecting electron flow in Acetobacterium woodii enables growth on CO and improves growth on formate. Nat Commun 2024; 15:5424. [PMID: 38926344 PMCID: PMC11208171 DOI: 10.1038/s41467-024-49680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Anaerobic, acetogenic bacteria are well known for their ability to convert various one-carbon compounds, promising feedstocks for a future, sustainable biotechnology, to products such as acetate and biofuels. The model acetogen Acetobacterium woodii can grow on CO2, formate or methanol, but not on carbon monoxide, an important industrial waste product. Since hydrogenases are targets of CO inhibition, here, we genetically delete the two [FeFe] hydrogenases HydA2 and HydBA in A. woodii. We show that the ∆hydBA/hydA2 mutant indeed grows on CO and produces acetate, but only after a long adaptation period. SNP analyzes of CO-adapted cells reveal a mutation in the HycB2 subunit of the HydA2/HydB2/HydB3/Fdh-containing hydrogen-dependent CO2 reductase (HDCR). We observe an increase in ferredoxin-dependent CO2 reduction and vice versa by the HDCR in the absence of the HydA2 module and speculate that this is caused by the mutation in HycB2. In addition, the CO-adapted ∆hydBA/hydA2 mutant growing on formate has a final biomass twice of that of the wild type.
Collapse
Affiliation(s)
- Jimyung Moon
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, Germany
| | - Anja Poehlein
- Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg August University, Grisebachstr. 8, Göttingen, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute for Microbiology and Genetics, Georg August University, Grisebachstr. 8, Göttingen, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, Germany.
| |
Collapse
|
11
|
Kim SM, Kang SH, Jeon BW, Kim YH. Tunnel engineering of gas-converting enzymes for inhibitor retardation and substrate acceleration. BIORESOURCE TECHNOLOGY 2024; 394:130248. [PMID: 38158090 DOI: 10.1016/j.biortech.2023.130248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Carbon monoxide dehydrogenase (CODH), formate dehydrogenase (FDH), hydrogenase (H2ase), and nitrogenase (N2ase) are crucial enzymatic catalysts that facilitate the conversion of industrially significant gases such as CO, CO2, H2, and N2. The tunnels in the gas-converting enzymes serve as conduits for these low molecular weight gases to access deeply buried catalytic sites. The identification of the substrate tunnels is imperative for comprehending the substrate selectivity mechanism underlying these gas-converting enzymes. This knowledge also holds substantial value for industrial applications, particularly in addressing the challenges associated with separation and utilization of byproduct gases. In this comprehensive review, we delve into the emerging field of tunnel engineering, presenting a range of approaches and analyses. Additionally, we propose methodologies for the systematic design of enzymes, with the ultimate goal of advancing protein engineering strategies.
Collapse
Affiliation(s)
- Suk Min Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Sung Heuck Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Byoung Wook Jeon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
12
|
Kurt E, Qin J, Williams A, Zhao Y, Xie D. Perspectives for Using CO 2 as a Feedstock for Biomanufacturing of Fuels and Chemicals. Bioengineering (Basel) 2023; 10:1357. [PMID: 38135948 PMCID: PMC10740661 DOI: 10.3390/bioengineering10121357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial cell factories offer an eco-friendly alternative for transforming raw materials into commercially valuable products because of their reduced carbon impact compared to conventional industrial procedures. These systems often depend on lignocellulosic feedstocks, mainly pentose and hexose sugars. One major hurdle when utilizing these sugars, especially glucose, is balancing carbon allocation to satisfy energy, cofactor, and other essential component needs for cellular proliferation while maintaining a robust yield. Nearly half or more of this carbon is inevitably lost as CO2 during the biosynthesis of regular metabolic necessities. This loss lowers the production yield and compromises the benefit of reducing greenhouse gas emissions-a fundamental advantage of biomanufacturing. This review paper posits the perspectives of using CO2 from the atmosphere, industrial wastes, or the exhausted gases generated in microbial fermentation as a feedstock for biomanufacturing. Achieving the carbon-neutral or -negative goals is addressed under two main strategies. The one-step strategy uses novel metabolic pathway design and engineering approaches to directly fix the CO2 toward the synthesis of the desired products. Due to the limitation of the yield and efficiency in one-step fixation, the two-step strategy aims to integrate firstly the electrochemical conversion of the exhausted CO2 into C1/C2 products such as formate, methanol, acetate, and ethanol, and a second fermentation process to utilize the CO2-derived C1/C2 chemicals or co-utilize C5/C6 sugars and C1/C2 chemicals for product formation. The potential and challenges of using CO2 as a feedstock for future biomanufacturing of fuels and chemicals are also discussed.
Collapse
Affiliation(s)
- Elif Kurt
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Alexandria Williams
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Youbo Zhao
- Physical Sciences Inc., 20 New England Business Ctr., Andover, MA 01810, USA;
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| |
Collapse
|
13
|
Orsi E, Nikel PI, Nielsen LK, Donati S. Synergistic investigation of natural and synthetic C1-trophic microorganisms to foster a circular carbon economy. Nat Commun 2023; 14:6673. [PMID: 37865689 PMCID: PMC10590403 DOI: 10.1038/s41467-023-42166-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023] Open
Abstract
A true circular carbon economy must upgrade waste greenhouse gases. C1-based biomanufacturing is an attractive solution, in which one carbon (C1) molecules (e.g. CO2, formate, methanol, etc.) are converted by microbial cell factories into value-added goods (i.e. food, feed, and chemicals). To render C1-based biomanufacturing cost-competitive, we must adapt microbial metabolism to perform chemical conversions at high rates and yields. To this end, the biotechnology community has undertaken two (seemingly opposing) paths: optimizing natural C1-trophic microorganisms versus engineering synthetic C1-assimilation de novo in model microorganisms. Here, we pose how these approaches can instead create synergies for strengthening the competitiveness of C1-based biomanufacturing as a whole.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Lars Keld Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072, Brisbane, QLD, Australia
| | - Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
14
|
Yu J, Park MJ, Lee J, Kwon SJ, Lim JK, Lee HS, Kang SG, Lee JH, Kwon KK, Kim YJ. Genomic potential and physiological characteristics of C1 metabolism in novel acetogenic bacteria. Front Microbiol 2023; 14:1279544. [PMID: 37933250 PMCID: PMC10625859 DOI: 10.3389/fmicb.2023.1279544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/05/2023] [Indexed: 11/08/2023] Open
Abstract
Acetogenic bacteria can utilize C1 compounds, such as carbon monoxide (CO), formate, and methanol, via the Wood-Ljungdahl pathway (WLP) to produce biofuels and biochemicals. Two novel acetogenic bacteria of the family Eubacteriaceae ES2 and ES3 were isolated from Eulsukdo, a delta island in South Korea. We conducted whole genome sequencing of the ES strains and comparative genome analysis on the core clusters of WLP with Acetobacterium woodii DSM1030T and Eubacterium limosum ATCC8486T. The methyl-branch cluster included a formate transporter and duplicates or triplicates copies of the fhs gene, which encodes formyl-tetrahydrofolate synthetase. The formate dehydrogenase cluster did not include the hydrogenase gene, which might be replaced by a functional complex with a separate electron bifurcating hydrogenase (HytABCDE). Additionally, duplicated copies of the acsB gene, encoding acetyl-CoA synthase, are located within or close to the carbonyl-branch cluster. The serum bottle culture showed that ES strains can utilize a diverse range of C1 compounds, including CO, formate, and methanol, as well as CO2. Notably, ES2 exhibited remarkable resistance to high concentrations of C1 substrates, such as 100% CO (200 kPa), 700 mM formate, and 500 mM methanol. Moreover, ES2 demonstrated remarkable growth rates under 50% CO (0.45 h-1) and 200 mM formate (0.34 h-1). These growth rates are comparable to or surpassing those previously reported in other acetogenic bacteria. Our study introduces novel acetogenic ES strains and describes their genetic and physiological characteristics, which can be utilized in C1-based biomanufacturing.
Collapse
Affiliation(s)
- Jihyun Yu
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Mi-Jeong Park
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Joungmin Lee
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Soo Jae Kwon
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Jae Kyu Lim
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Hyun Sook Lee
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Sung Gyun Kang
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Jung-Hyun Lee
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Kae Kyoung Kwon
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Yun Jae Kim
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
15
|
Patel SKS, Gupta RK, Kim IW, Lee JK. Encapsulation of Methanotrophs within a Polymeric Matrix Containing Copper- and Iron-Based Nanoparticles to Enhance Methanol Production from a Simulated Biogas. Polymers (Basel) 2023; 15:3667. [PMID: 37765522 PMCID: PMC10537138 DOI: 10.3390/polym15183667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The production of renewable energy or biochemicals is gaining more attention to minimize the emissions of greenhouse gases such as methane (CH4) and carbon dioxide for sustainable development. In the present study, the influence of copper (Cu)- and iron (Fe)-based nanoparticles (NPs), such as Cu, Fe3O4, and CuFe2O4, was evaluated during the growth of methanotrophs for inoculum preparation and on the development of a polymeric-matrix-based encapsulation system to enhance methanol production from simulated biogas (CH4 and CO2). The use of simulated biogas feed and the presence of NP-derived inoculums produce a remarkable enhancement in methanol production up to 149% and 167% for Methyloferula stellata and Methylocystis bryophila free-cells-based bioconversion, respectively, compared with the use of pure CH4 as a control feed during the growth stage. Furthermore, these methanotrophs encapsulated within a polymeric matrix and NPs-based systems exhibited high methanol production of up to 156%, with a maximum methanol accumulation of 12.8 mmol/L over free cells. Furthermore, after encapsulation, the methanotrophs improved the stability of residual methanol production and retained up to 62.5-fold higher production potential than free cells under repeated batch reusability of 10 cycles. In the presence of CH4 vectors, methanol production by M. bryophila improved up to 16.4 mmol/L and retained 20% higher recycling stability for methanol production in paraffin oil. These findings suggest that Cu and Fe NPs can be beneficially employed with a polymeric matrix to encapsulate methanotrophs and improve methanol production.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Rahul K Gupta
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|