1
|
Yu X, Zhou H, Tang J, Peng C, Chen S, Huan S, Wen Q, Zhang Y, Xiang W, Chen X, Zhang Q. Degradation Kinetics and Mechanism of β-Cypermethrin and 3-Phenoxybenzoic Acid by Lysinibacillus pakistanensis VF-2 in Soil Remediation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:202-215. [PMID: 39601326 DOI: 10.1021/acs.jafc.4c08344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Pyrethroid pesticide residues have detrimental effects on soil ecology and crop growth during insecticidal operations in agriculture. In this study, a novel strain Lysinibacillus pakistanensis VF-2 was isolated from long-term pesticide-treated cropland and had a maximum degradation efficiency of 81.66% for synthetic pyrethroid β-cypermethrin (β-CY) under optimized conditions. The analysis of intermediate products revealed that the degradation pathway of β-CY mainly involves ester bond hydrolysis, diphenyl ether decomposition, and phthalate ester degradation. Whole-genome sequencing and RT-qPCR analysis revealed the involvement of carboxylesterases, dioxygenases, and aromatic compound degrading enzymes in the degradation of β-CY. In the soil bioaugmentation experiment, the strain VF-2 can synergistically interact with indigenous microorganisms, significantly enhancing the degradation efficiency of β-CY and its metabolite 3-phenoxybenzoic acid (3-PBA) from 17.08% and 7.62% to 73.46% and 62.29%, respectively. This study suggests that strain VF-2 is a promising candidate for in situ coremediation of pyrethroid and intermediate metabolite residues in soil.
Collapse
Affiliation(s)
- Xuan Yu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, Sichuan, China
| | - Hu Zhou
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Jie Tang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, Sichuan, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, Sichuan, China
| | - Chuanning Peng
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Siqi Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Siqi Huan
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Qi Wen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Yingyue Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Wenliang Xiang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, Sichuan, China
| | - Xuejiao Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, Sichuan, China
| | - Qing Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, Sichuan, China
| |
Collapse
|
2
|
Hou L, Hu K, Huang F, Pan Z, Jia X, Liu W, Yao X, Yang Z, Tang P, Li J. Advances in immobilized microbial technology and its application to wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2024; 413:131518. [PMID: 39321941 DOI: 10.1016/j.biortech.2024.131518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The use of immobilized microbial technology in wastewater treatment has drawn extensive attention due to its advantages of high colony density, rapid reaction speed, and good stability. Immobilization carriers are the core of immobilization technology. This review summarizes the types of immobilization carriers and their advantages and disadvantages, focusing on the potential for utilizing novel immobilization carriers (composite carriers, nanomaterials, metal-organic frameworks (MOFs), and biochar materials) in wastewater applications. The basic principles and technical advantages and disadvantages of novel immobilization methods (layer-by-layer self-assembly (LBL) and electrostatic spinning) are then summarized. Additionally, the research progress and application characteristics of immobilized anaerobic ammonia oxidizing (Anammox) and aerobic denitrifying (AD) bacteria for enhanced wastewater nitrogen removal are discussed. Finally, the current challenges of immobilized microbial technology are discussed, and its future development trends are summarized and prospected. This review provides guidance and theoretical support for the practical engineering application of immobilized microbial technology.
Collapse
Affiliation(s)
- Liangang Hou
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Kaiyao Hu
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China.
| | - Feng Huang
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Zhengwei Pan
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Xiang Jia
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Wanqi Liu
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Xingrong Yao
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Zongyi Yang
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Peng Tang
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Kubiak A. Impact of LED radiation intensity on gold nanoparticles photodeposition on TiO 2 with physicochemical and photocatalytic characterization. Sci Rep 2024; 14:20563. [PMID: 39232108 PMCID: PMC11375081 DOI: 10.1038/s41598-024-71605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
This study investigates the influence of LED radiation intensity on the photodeposition of gold nanoparticles onto TiO2 substrates, examining their physicochemical properties and photocatalytic activities. Utilizing a range of radiation intensities and wavelengths, TiO2-Au composites were synthesized and characterized through techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The deposition process, markedly enhanced by shorter wavelengths and higher intensities, efficiently formed gold nanoparticles. This research distinctly highlights observable morphological changes in the nanoparticles; increased radiation intensity not only augmented the size but also altered their shape from spherical to hexagonal. These morphological transformations significantly improve the composites' light absorption and catalytic properties due to the surface plasmon resonance of the gold nanoparticles. Photocatalytic assessments, using metronidazole as a model pollutant, demonstrated that composites prepared with higher LED intensities showed significantly enhanced degradation capabilities compared to those synthesized with lower intensities. The findings underscore that manipulating photodeposition parameters can critically influence the structural and functional properties of TiO2-Au composites, potentially advancing their applications in environmental remediation and solar energy utilization.
Collapse
Affiliation(s)
- Adam Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, 61614, Poznan, Poland.
| |
Collapse
|
4
|
Cai H, Niu Y, Guan T, Zhang Y, Ma Z. Removal of metronidazole using a novel ZnO-CoFe 2O 4@Biochar heterostructure composite in an intimately coupled photocatalysis and biodegradation system under visible light. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121431. [PMID: 38875984 DOI: 10.1016/j.jenvman.2024.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/19/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
The intimate coupling of photocatalysis and biodegradation (ICPB) technology has received much attraction because of the advantages of both photocatalytic reaction and biological treatment. In this study, ZnO-CoFe2O4@BC (ZCFC) with p-n heterojunction was prepared and used in an ICPB system to degrade metronidazole (MNZ) wastewater. The microstructure, morphology, and optical behavior of heterojunctions in ZCFC were investigated using SEM, XRD, UV-vis, FTIR, and XPS techniques. The results showed that ZCFC inherited the advantages of bamboo biochar's large pore size, and its large pore structure could provide a habitat for bacterial colonization in ICPB, thus shortening the internal mass transfer distance. The degradation of MNZ and chemical oxygen demand (COD) by the ICPB system was 86.8% and 58.5%, respectively, which was superior to single photocatalysis (72.5% for MNZ and 43.8% for COD) and single biodegradation (23.5% for MNZ and 20.1% for COD). In ICPB, photocatalysis and biodegradation showed a synergistic effect in the removal of MNZ, and the order of the major reactive oxygen species (ROS) leading to reduced toxicity of MNZ to the biofilm was •OH > h+ > O2•-. High-throughput sequencing analysis showed continuous evolution of biofilm structures in ICPB enriched a variety of functional species, among which the electroactive bacteria Alcaligenes and Brevundimonas played an important role in the degradation of MNZ. In this study, we investigated the possible mechanism of photocatalytic and microbial synergistic degradation of MNZ in the ICPB system and proposed a new technology for degrading antibiotic wastewater that combines the advantages of photocatalysis and biodegradation.
Collapse
Affiliation(s)
- Hao Cai
- Hebei Province Key Laboratory of Sustained Utilization and Development of Water Resources, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, China.
| | - Yifei Niu
- Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang, China
| | - Tianyuan Guan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Yin Zhang
- Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zichuan Ma
- Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
5
|
Shomar B, Rovira J. Human health risk assessment associated with the reuse of treated wastewater in arid areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123478. [PMID: 38311158 DOI: 10.1016/j.envpol.2024.123478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Qatar produces more than 850,000 m3/day of highly treated wastewater. The present study aims at characterizing the effluents coming out of three central wastewater treatment plants (WWTPs) of chemical pollutants including metals, metalloids and antibiotics commonly used in the country. Additionally, the study is assessing human health risks associated with the exposure to the treated wastewater (TWW) via dermal and ingestion routes. Although the origin of domestic wastewater is desalinated water (the only source of fresh water), the results show that the targeted parameters in TWW were within the international standards. Concentrations of Cl, F, Br, NO3, NO2, SO4 and PO4, were 389, <0.1, 1.2, 25, <0.1, 346, and 2.8 mg/L, respectively. On the other hand, among all cations, metals and metalloids, only boron (B) was 2.1 mg/L which is higher than the Qatari guidelines for TWW reuse in irrigation of 1.5 mg/L. Additionally, strontium (Sr) and thallium (Tl) were detected with relatively high concentrations of 30 mg/L and 12.5 μg/L, respectively, due to their natural and anthropogenic sources. The study found that the low concentrations of all tested metals and metalloids do not pose any risk to human health. However, Tl presents exposure levels above the 10 % of oral reference dose (HQ = 0.4) for accidental oral ingestion of TWW. The results for antibiotics show that exposure for adults and children to TWW are far below the admissible daily intakes set using minimum therapeutic dose and considering uncertainty factors. Treated wastewater of Qatar can be used safely for irrigation. However, further investigations are still needed to assess microbiological quality.
Collapse
Affiliation(s)
- Basem Shomar
- Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Paisos Catalans Avenue 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Institut d'Investigació Sanitaria Pere Virgili (IISPV), 43204, Reus, Catalonia, Spain.
| |
Collapse
|
6
|
Xin H, Chen X, Ye Y, Liao Y, Luo H, Tang CY, Liu G. Enhanced metronidazole removal in seawater using a single-chamber bioelectrochemical system. WATER RESEARCH 2024; 252:121212. [PMID: 38320394 DOI: 10.1016/j.watres.2024.121212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024]
Abstract
The aim of this study was to investigate the removal of metronidazole (MNZ) from seawater using a bioelectrochemical system (BES). Single-chamber BES (i.e., S-BES) and dual-chamber BES (i.e., D-BES) were constructed with carbon brush as the anode and cathode. With the inoculum of sea mud and 2 g/L of glucose as the substrate in seawater, S-BES and D-BES were acclimated to test the MNZ removal. Results showed that S-BES could remove almost 100 % of 200 mg/L MNZ within 120 h and remain stable within 10 cycles of operation (∼50 d) under the applied voltage of 0.8 V. The MNZ removal reached ∼100 % and 60.2 % in the cathodic and anodic chambers of D-BES fed by 100 mg/L MNZ under 0.8 V, respectively. The MNZ concentration of 200 mg/L significantly inhibited the sulfur metabolism, decreased the ratio of live to dead cells in the electrode biofilms, and thus reduced the SO42- removal in the S-BES. The MNZ degradation and S2- oxidation was mainly attributed to the cathodic and anodic biofilms of S-BES, respectively. Three degradation pathways of MNZ were proposed based on the identified intermediates and results of density functional theory calculations. The synergies among different genus species in the bacterial communities of biofilms, and between anodic and cathodic reactions could be responsible for the high performance of S-BES. Results from this study should be not only useful for the MNZ removal but also for effective MNZ inhibition of sulfate-reducing bacteria induced microbiologically influenced corrosion in seawater.
Collapse
Affiliation(s)
- Haoran Xin
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xindi Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongbei Ye
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongjun Liao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Yu X, Mao C, Zong S, Khan A, Wang W, Yun H, Zhang P, Shigaki T, Fang Y, Han H, Li X. Transcriptome analysis reveals self-redox mineralization mechanism of azo dyes and novel decolorizing hydrolases in Aspergillus tabacinus LZ-M. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121459. [PMID: 36934962 DOI: 10.1016/j.envpol.2023.121459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Bio-degradation is the most affordable method of azo dye decontamination, while its drawbacks such as aromatic amines accumulation and low degradation efficiency must be overcome. In this study, a novel mechanism of azo dye degradation by a fungus was discovered. At a concentration of 400 mg/L, the decolorization efficiency of Acid Red 73 (AR73) by Aspergillus tabacinus LZ-M was 90.28%. Metabolite analysis and transcriptome sequencing analysis revealed a self-redox process of AR73 degradation, where the electrons generated in carbon oxidation were transferred to the reduction of -C-N = and -NN. The metabolites, 2-hydroxynaphthalene and N-phenylnitrous amide were mineralized into CO2 through catechol pathway and a glycolytic process. Furthermore, the mineralization ratio of dye was computed to be 31.8% by the carbon balance and electron balance. By using comparative transcriptome, a novel decoloring enzyme Ord95 was discovered in unknown genes through gene cloning. It hydrolyzed AR73 into 2-hydroxynaphthalene and N-phenylnitrous amide, containing a glutathione S-transferase domain with three arginines as key active sites. Here the new mechanism of azo dye degradation was discovered with identification of a novel enzyme in Aspergillus tabacinus LZ-M.
Collapse
Affiliation(s)
- Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Chunlan Mao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Simin Zong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Wenxue Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technoloy of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, 730020, Gansu, China
| | - Toshiro Shigaki
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China.
| |
Collapse
|